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Access to chiral B-sulfonyl carbonyl compounds via
photoinduced organocatalytic asymmetric radical
sulfonylation with sulfur dioxidet

Fu-Sheng He,1? Chun Zhang,? Minghui Jiang,? Lujun Lou,? Jie Wy (& *ab<

An organocatalytic enantioselective radical reaction of potassium alkyltrifluoroborates, DABCO-(SO,), and
a,B-unsaturated carbonyl compounds under photoinduced conditions is developed, which provides an
efficient pathway for the synthesis of chiral B-sulfonyl carbonyl compounds in good yields with excellent
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enantioselectivity (up to 96% ee). Aside from a,B-unsaturated carbonyl compounds with auxiliary groups,

common chalcone substrates are also well compatible with this organocatalytic system. This method
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Introduction

The catalytic asymmetric conjugate addition of a,B-unsaturated
carbonyl compounds is one of the most powerful synthesis
strategies for the synthesis of chiral B-substituted carbonyl
compounds. Compared with the well-developed classic
Michael addition, the photoinduced radical addition process
provides more promising opportunities since the high activity
of radical species can overcome the inherent deficiencies of the
traditional pathway in terms of substrate activity and steric
hindrance. Since the pioneering work of Bach in photoinduced
catalytic enantioselective radical addition,> research in this field
has developed rapidly. Various carbon-centered radicals or N-
centered radicals are compatible in this transformation,
leading to diverse chiral B-substituted carbonyl compounds.>*

Chiral sulfur-containing molecules are ubiquitous in market
drugs and bioactive molecules.” Great attention has been
devoted to the catalytic asymmetric synthesis of enantioen-
riched sulfones and considerable progress has been made in
recent years.® However, construction of chiral sulfones through
a catalytic enantioselective radical process remains challenging.
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proceeds through an organocatalytic enantioselective
conditions, and represents a rare example of asymmetric transformation involving sulfur dioxide insertion.

radical sulfonylation under photoinduced

There are few reports on catalytic asymmetric sulfonyl radical
conjugate addition to a,B-unsaturated carbonyl compounds,
which would afford biologically interesting enantioenriched B-
sulfonyl carbonyl compounds (Scheme 1a). In 2017, Meggers
and co-workers described a photoinduced, chiral Rh catalyzed
enantioselective reaction of allyl sulfones with a,B-unsaturated
N-acylpyrazoles, affording a sulfonyl radical asymmetric addi-
tion product.” In 2019, Wu and co-workers reported one
example to access a chiral B-sulfonyl carbonyl compound using
sulfinic acid as a sulfonyl radical source.® Recently, Gong and
co-workers demonstrated a photoinduced asymmetric sulfonyl
radical addition to a,B-unsaturated carbonyl compounds under
chiral nickel catalysis.” The sulfonyl radical was generated in
situ from the reaction of the C(sp’)-H precursor and
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Scheme 1 Catalytic asymmetric sulfonyl radical conjugate addition to
a,B-unsaturated carbonyl compounds.
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DABCO-(SO,), in this transformation. Despite significant
advances, the aforementioned metal-catalyzed radical additions
still suffer from substrate limitations, where the coordination of
an auxiliary group to the metal center is essential for substrate
activation and stereochemical control. The development of
a novel catalytic system for the asymmetric synthesis of chiral -
sulfonyl carbonyl compounds with excellent enantioselectivity
and broader substrate scope is still highly desirable.

On the other hand, construction of a sulfonyl nucleus
through the radical-based sulfur dioxide insertion strategy has
been developed rapidly.'®'* Based on our continuous interest in
radical-based sulfur dioxide insertion and recent success in
squaramide catalyzed asymmetric addition of sulfonyl radicals
to VQMs (vinylidene ortho-quinone methides),"> we develop an
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organocatalytic enantioselective radical reaction of o,B-unsatu-
rated carbonyl compounds, potassium alkyltrifluoroborates,
and DABCO-(SO,), under visible light irradiation, affording
chiral B-sulfonyl carbonyl compounds in good yields with
excellent enantioselectivity (up to 96% ee). This method
proceeds through a photoinduced organocatalytic enantiose-
lective sulfonyl radical conjugate addition process, and repre-
sents a rare example of asymmetric transformation involving
sulfur dioxide insertion (Scheme 1b).

Results and discussion

We commenced this study by using commercially available
chalcone 1a and potassium cyclopentyltrifluoroborate 2a as

Table 1 Initial studies for the reaction of chalcone 1a, potassium cyclopentyltrifluoroborate 2a and DABCO-(SO,),"
9 Cat.* (x mol %)
Z O_BFZK Mes-Acr* (5 mol %) O D
O O CH,Cly, Temp.
DABCO(SOz); 30 W blue LEDs O RS
1a 3a
R1
g e
E -R2
N K HNR C N__O
H " N CF, OO N
Meo NS °  wmeo X HN)=S
N _ ¢, HN
A:R'=ethyl, R = Ar N CE
B:R' = vinyl, R? = Ar D:x=s F 3
C: R' = vinyl, RZ = CH,Ar E:Xx=0 FsC
Ph
(‘) pu {;ﬁ“ epg fadaes-ese
CFs
H I
Entry PC (mol%) Cat* (mol%) T (°C) Solvent Yield? (%) ee’ (%)
1 Mes-Acr 'ClO, ™~ A (5) -5 CH,CI, 80 —68
2 Mes-Acr'ClO,~ B (5) -5 CH,CI, 78 -73
3 Mes-Acr ClO,~ C (5) -5 CH,Cl, 78 —60
4 Mes-Acr'ClO,~ D (5) -5 CH,CI, 78 —60
5 Mes-Acr 'ClO,~ E(5) -5 CH,Cl, 88 —68
6 Mes-Acr'ClO,~ F (5) -5 CH,CI, 84 —46
7 Mes-Acr'ClO,~ G (5) -5 CH,CI, 72 60
8 Mes-Acr'ClO,~ H (5) -5 CH,CI, 84 80
9 Mes-Acr'ClO, ~ 1(5) -5 CH,Cl, 78 80
10 fac-Ir(ppy); (5) -5 CH,Cl, n.r. —
11 [Ir(dFCF;ppy),bpy|PFs (5) -5 CH,Cl, n.r. —
12 Ru(bpy);Cl, H(5) -5 CH,Cl, n.r. —
13 Mes-Acr'ClO,~ (5) —20 CH,Cl, 54 89
14 Mes-Acr 'ClO,~ (5) —20 CHCl, 70 87
15 Mes-Acr'ClO,~ H (5) —20 EtOAc 30 93
16 Mes-Acr'ClO,~ H (5) —20 'PrOH 20 86
17 Mes-Acr'ClO,~ (5) —20 MTBE 32 73
18 Mes-Acr'ClO,~ H (5) —20 MeCN 56 93
19 Mes-Acr'ClO,~ H(1) —-20 MeCN 64 (60) 95
20 Mes-Acr'ClO,~ — —20 MeCN Trace —
214 Mes-AcrClO, ™ H (1) —20 MeCN n.r. —
22° Mes-Acr'ClO,~ H(1) —20 MeCN n.r. —

“ Reaction conditions: chalcone 1a (0.1 mmol), potassmm cyclopentyltrifluoroborate 2a (0.2 mmol), DABCO-(SO,), (0.1 mmol), Mes-Acr'ClO,~

(5 mol%), solvent (2.0 mL), 30 W blue LED, 72 h. ? Determined by 'H NMR analy51s (isolated yield in parentheses). ¢
In the absence of Mes-Acr".

analysis on a chiral stationary phase. ¢ In the dark. ¢

© 2022 The Author(s). Published by the Royal Society of Chemistry

Determined by HPLC
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model substrates with DABCO-(SO,), as the sulfur dioxide
surrogate to explore suitable reaction conditions (Table 1).
Pleasingly, the reaction proceeded smoothly with A as the
organocatalyst, and Mes-Acr'ClO,~ as the photocatalyst in
CH,Cl, at —5 °C, providing the desired product 3a in 80% NMR
yield with —68% ee (Table 1, entry 1). Encouraged by this result,
we then examined the reaction with other bifunctional orga-
nocatalysts B-I (Table 1, entries 2-9). It was found that H was
the optimal oraganocatalyst in terms of yield and enantiose-
lectivity (Table 1, entry 8). No reaction occurred when other Ir or
Ru photocatalysts were used in this reaction (Table 1, entries
10-12). Lowering the reaction temperature to —20 °C resulted in
an improvement of enantioselectivity, albeit with a slightly
decreased yield (Table 1, entry 13). Furthermore, the screening
of solvents including CHCI;, EtOAc, iPrOH, MTBE, and MeCN
showed that MeCN was the ideal solvent for this transformation
(Table 1, entries 14-18). Remarkably, when the loading of
catalyst H was decreased to 1 mol%, an improved yield and ee
value of 3a was obtained (Table 1, entry 19). Control experi-
ments without an organocatalyst, light irradiation, or a photo-
catalyst suggested that these components were all essential to
achieve a product with excellent enantioselectivity (Table 1,
entries 20 and 21).

Under optimal reaction conditions, the substrate scope of
this organocatalytic asymmetric three-component reaction with
respect to o,B-unsaturated ketones 1 and potassium alkyltri-
fluoroborates 2 was investigated (Table 2). In general, the

Table 2 Scope exploration for the reaction of a,B-unsaturated
ketones 1, potassium alkyltrifluoroborates 2 and DABCO-(SO,),*

o R-BF 3K H (1 mol %) o R?
= + 0,
N 2 Mes-Acr® (5 mol %
R1E R* | 2 #. N SO,R?
= MeCN, -20 °C R
Z 3

1 DABCO(SO5), 30 W blue LEDs

3a,R"' = H, R* = H, 60% yield, 95% ee

3b, R' = H, R* = 4-Bu, 60% yield, 82% ee
3c, R' = H, R* = 4-CF3, 55% yield, 79% ee
3d, R' = 4-OMe, R* = H, 52% yield, 84% ee

3e, R" = 4-Cl, R* = H, 71% yield, 87% ee
3f, R" = R* = 4-F, 55% yield, 89% ee
3g, R' = R* = 4-Cl, 75% yield, 84% ee

L o A8 AL

3i, 86% yield, 95% ee

0 Ph
S
N\ o

3h, 56% yield, 91% ee

(o]
LD
P
0 O/,S\\O

3k, 41% vyield, 93% ee

o)
Ph /D
Yo

3n,n =0, 47% yield, 89% ee
30, n = 2, 87% yield, 86% ee

3], 37% yield, 90% ee

o
o”s“o

31, 42% yield, 84% ee 3m, 37% yield, 77% ee

3p, 70% yield, 90% ee 3q, 41% yield, 91% ee

“ Isolated yield based on o,B-unsaturated ketone 1.
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reaction proceeded smoothly with a wide range of substrates to
give the desired products in moderate to good yields with
universally high enantioselectivities. For example, o,B-unsatu-
rated ketones bearing both electron-donating or -withdrawing
substituents on the phenyl group participated in the reaction
well to furnish the corresponding products 3b-3g. Changing the
aryl group of R to an alkyl group had little effect on the enan-
tioselectivities (3i-3m). Moreover, the reaction was also
compatible with primary potassium alkyltrifluoroborates,
leading to the chiral sulfones 3n-3p in 47-87% yields with 86—
90% ee. The absolute configuration of 3d was determined to be
S by single-crystal X-ray diffraction analysis.** No product was
obtained when phenyltrifluoroborate was utilized in this reac-
tion under the standard reaction conditions.

Subsequently, the generality of this transformation utilizing
a,B-unsaturated N-acylpyrazoles as radical acceptors was also
explored. As summarized in Table 3, a variety of structurally
diverse chiral sulfones were afforded under slightly modified
reaction conditions (see the ESI for details). It was found that
o, B-unsaturated N-acylpyrazoles with different substituents (R")
were all suitable for this reaction, providing the chiral products
5a-5i in moderate to good yields with high ee values. The
absolute configuration of 5a was assigned as S by comparison
with Gong's work.® Additionally, both primary and secondary
potassium alkyltrifluoroborates worked well and delivered the
target products 5j-5q in 31-80% yields with 80-95% ee.

Table 3 Scope exploration for the reaction of o,B-unsaturated N-
acylpyrazoles 4, potassium alkyltrifluoroborates 2 and DABCO-(SO5),"

o] A (5 mol %)

2. o R
/N\NJ\/\R1 R™“BFK  Mes-Acr* (5 mol %) N JK)
[ < . 2
Kﬁk * 2 MeCN, -10 °C ‘<’NK SOR
4 DABCO(SO2); 30 W blue LEDs 5
ka, /O ! OMe
//S\\ Q 7
N« .

5a, n =0, 84% yield, 95% ee
5b, n =2, 83% vyield, 92% ee
5c, n =6, 61% yield, 90% ee 5d, 65% yield, 91% ee

& ‘C\ 2

5f, 52% yield, 81% ee 5g, 80% yield 88% ee
O.

5e, 75% yield, 96% ee

‘&g &%

5h, 61% yield, 80% ee

, N ',:s\\/\H/
ge 2 ,u\),,s/vph
’/ \
’/ \\

5j, n =0, 56% yield, 94% ee
5k, n =2, 49% vyield, 95% ee
5l,n=3,54% yield 95% ee

5n, 67% yleld 80% ee 50, 80% yield, 85% ee

m

5i, 74% yield 85% ee 5m, 61% yleld 91% ee

M &%

5p, 45% yield, 95% ee

o]
0 Br » COOMe Ny ., /Cl
‘&K ”‘S“/\W ‘Lg ’:S“/\/ ‘&K &%

5q, 38% yield, 93% ee 5r, 36% yield, 86% ee 5s, 31% yield, 87% ee

“ Isolated yield based on o,B-unsaturated N-acylpyrazole 4.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(a) JOI\/\ pr - BFaK A (5 mol %) o

N 7 1.5mmol  Mes-Acr* (5 mol %) N P

v N N <

+ 2d /= PR, ¢ s
‘R MeCN, -10 °C ﬁ,l\ o
1.0 mmol DABCO(SO,), 30 W blue LEDs 5m
4a 1.5 mmol 52% yield, 99% ee

N
N« ", OMe
v N /:S\\ - -
— o0 + 8l
HoN

5a, 95% ee 6

sy
N- o)
= o EtOH, 75°C, 3 h o o”s“o
5m, 99% ee 8, 90% vyield, 94% ee
(d) o) OH
| NaBD, )
5 THF/MeOH, 0 °C, 4 h 2
o’ o eon, 076, D ¢
9, 90% yield

i 959
3i, 95% ee 1.6:1 dr, 94% ee, 93%ee

Scheme 2 (a) Large-scale synthesis. (b)—(d) Synthetic transformations.

To further evaluate the practicality of this method, a 1 mmol
scale reaction of a,B-unsaturated N-acylpyrazole 4a, potassium
phenethyltrifluoroborate 2d and DABCO-(SO,), was carried out
under standard conditions, affording the desired product 5m in
52% yield and with 99% ee (Scheme 2a). In addition, the pyr-
azole moiety of chiral sulfone product 5a could be substituted
by 4-methoxyaniline 6 and delivered the amide derivative 7 in
91% yield with 93% ee (Scheme 2b). Furthermore, esterification
product 8 could be generated in 90% yield with 94% ee from the
reaction of chiral sulfone product 5m with ethanol (Scheme 2c).
Next, a y-hydroxy sulfone product could be constructed by the
hydrogenation of the carbonyl group of chiral sulfone product
3i, and y-hydroxy sulfone product 9 could be obtained in 90%
yield with 1.6 : 1 dr (94% ee, 93% ee) (Scheme 2d).

Next, two control experiments were performed to elucidate
the reaction mechanism. As shown in Scheme 3a, the reaction
of a,B-unsaturated N-acylpyrazole 4a, potassium cyclo-
pentyltrifluoroborate 2a and DABCO-(SO,), was completely
suppressed in the presence of 4.0 equiv. of radical scavenger
TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) under standard
conditions, and radical trapping adduct 10 was detected by

(a)
o
BF;K A (5 mol %) ﬂ
~ = O_ 3
,N NJ\/\ 2a Mes-Acr* (5 mol %) N
— + - ..~ 5+ 16
MeCN, -10 °C trace

4a 30 W blue LEDs 10 \O

DABCO*(SO5);
TEMPO (4.0 equiv) Detected by HRMS (ESI),
found: 226.2176 [M + H*]

(b) 5a 60% yield, 95% ee
§
o E>_ ¥ Bu
BF.K A (5 mol %)
N\NJI\/\ s Mes-Acr* (5 mol %) O
4 + 2a —_— = = . N ,/O
— MeCN, -10 °C

30 W blue LEDs
BHT (4.0 equiv)

S Bu
4a DABCO*(SO,), "
Detected by HRMS (ESI),
found: 375.1968 [M + Na*]

Scheme 3
BHT.

(a) Radical trapping with TEMPO. (b) Radical trapping with

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Proposed mechanism.

HRMS (high-resolution mass spectrometry). Moreover, the
addition of 4.0 equiv. of another radical scavenger BHT (butyl-
ated hydroxytoluene) led to a decreased yield of product 5a with
retention of enantioselectivity, and confirmed the existence of
a sulfonyl radical upon the detection of compound 11 (Scheme
3b). Taken together, these results suggested that the organo-
catalytic asymmetric reaction involved a radical process.

Based on the above experiment results and previous reports
on the organocatalytic asymmetric radical transformations,'*
a plausible reaction pathway for this photoinduced enantiose-
lective radical sulfonylation with sulfur dioxide is shown in
Scheme 4. Initially, potassium alkyltrifluoroborate 2 could be
oxidized by a photocatalyst under visible light irradiation to
afford the alkyl radical, which would react with sulfur dioxide to
generate the alkylsulfonyl radical. The asymmetric addition of
a sulfonyl radical to substrate 1 was achieved by the hydrogen-
bond interaction in the presence of chiral squaramide catalyst
H, giving rise to the chiral radical intermediate Int II in the S
configuration. Subsequently, Int II would undergo single elec-
tron transfer (SET) reduction to produce the anion intermediate
Int-III. The desired product 3 was obtained by the protonation
of Int-III and regeneration of the organocatalyst H.

Conclusions

In conclusion, we have developed a photoinduced enantiose-
lective organocatalytic radical conjugate addition to access
enantioenriched B-sulfonyl carbonyl compounds through
a three-component reaction of potassium alkyltrifluoroborates,
DABCO-(SO,), and o,B-unsaturated carbonyl compounds.
Chiral B-sulfonyl carbonyl compounds were achieved with
excellent enantioselectivity and good yields. This process
features mild reaction conditions and broad substrate scope.
Not only a,B-unsaturated carbonyl compounds with auxiliary

Chem. Sci., 2022, 13, 8834-8839 | 8837
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groups, but also common chalcone substrates were workable in
this reaction. This method represents a rare example of asym-
metric transformation involving sulfur dioxide insertion as well.

Data availability

The data supporting this study are available within the article
and the ESI.f The X-ray crystallographic coordinates for the
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lographic Data Center (CCDC: 2165683).
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