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is of an iminium-linked covalent
organic framework for synergetic RNA interference
and metabolic therapy of fibrosarcoma†

Le-Le Zhou,‡a Qun Guan, ‡a Wei Zhou, b Jing-Lan Kana and Yu-Bin Dong *a

Small interfering RNA (siRNA)-mediated gene silencing is a promising therapeutic approach. Herein, we

report the ambient synthesis of a positively charged iminium-linked covalent organic framework by

a three-component one-pot reaction. Through anion exchange and siRNA adsorption, the resulting

multifunctional siRNA@ABMBP-COF, which possesses both the HK2 inhibitor 3-bromopyruvate and

SLC7A11 siRNA, exhibits powerful synergistic antitumor activity against fibrosarcoma via the ferroptosis

and apoptosis pathways.
Introduction

Small interfering RNAs (siRNAs) are powerful laboratory tools
that can specically inhibit targeted gene expression.1,2 The
clinical translation of siRNA therapeutics is limited due to their
negative charge, high molecular weight (approximately 14 kDa),
ease of degradation, and low transmembrane uptake.3 Various
delivery vectors, including viruses,4 proteins,5 liposomes,6

polymers,7,8 metal–organic frameworks,9–11 inorganic nano-
particles,12 and extracellular vesicles,13 have been developed to
transport siRNAs into cells. However, the limited loading
amount, insufficient lysosome escape, and difficulty in syner-
gizing with other therapeutics greatly hinder their use in
tumour treatment.14,15 Therefore, designing next-generation
vectors for efficient siRNA delivery is urgent and important.

Since the pioneering work of Yaghi et al. in 2005,16 covalent
organic frameworks (COFs), which are a class of porous mate-
rials, have shown great potential in drug delivery,17–20 protein
encapsulation,21–24 phototherapy,25–30 and immunotherapy.31–33

In principle, COFs can adsorb nucleic acids to generate nucleic
acid@COFs for oncotherapy. However, nucleic acid@COFs have
never been used in antitumor treatments, which might also
result from extremely low nucleic acid loading.34–38 We
hypothesize that this bottleneck could be overcome by synthe-
sizing positively charged COF-based carriers in which the
loading amount of negatively charged therapeutic siRNA could
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be signicantly improved via electrostatic interactions.
Furthermore, the counterions in cationic COFs could be
replaced with negatively charged metabolic inhibitors and
chemotherapeutic drugs via ion exchange.39 Thus, multifunc-
tional COF-based siRNA delivery and metabolic therapy could
be logically achieved.

To date, the reported cationic COFs have been typically
synthesized from positively charged monomers, including
ethidium bromide,40,41 propidium iodide,42 imidazolium,43–45

quaternary ammonium,46 and guanidinium,47 under harsh sol-
vothermal conditions. This energy-intensive and tedious
approach is not conductive to large-scale synthesis. Herein, we
report the ambient synthesis of the iminium-linked cationic
ABMI-COF via a three-component one-pot reaction (Scheme
1A).48–53 Through ion exchange of the iodide counterion with 3-
bromopyruvate, a hexokinase 2 (HK2) inhibitor,54 multifunc-
tional ABMBP-COF was generated. Both ABMI-COF and ABMBP-
COF possess high siRNA adsorption capacity (greater than 1
nmol mg�1) and can escape the lysosome. More importantly,
aer being loaded with solute carrier family 7 member 11
(SLC7A11) siRNA,55 siRNA@ABMBP-COF could silence SLC7A11
and inhibit HK2, consequently achieving antitumor effects in
vitro and in vivo through ferroptosis and apoptosis (Scheme 1B).
Results and discussion

Inspired by the organic reaction reported by Raston et al.,56 the
reaction of 1,3,5-tris(4-aminophenyl)benzene (TAPB), benzene-
1,3,5-tricarbaldehyde (BTA), and iodomethane in CH3CN with
acetic acid produced a 78% yield in ABMI-COF in aer 24 h at
room temperature (Fig. S1A†). Elemental analysis and induc-
tively coupled plasma-mass spectrometry (ICP-MS) indicated
that the obtained ABMI-COF had the molecular formula
C33H21N3(CH3I)2.80, which is very close to the theoretical
composition of C33H21N3(CH3I)3 (Fig. S1B†).
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 (A) Synthesis of ABMI-COF and ABMBP-COF. (B) ABMBP-COF with surface-adsorbed siRNA induced ferroptosis and apoptosis by
inhibiting SLC7A11 expression and HK2 activity.
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Thermogravimetric analysis (TGA) showed that ABMI-COF was
thermally stable up to approximately 380 �C (Fig. S1C†).

The crystal structure of ABMI-COF was determined using
Materials Studio soware based on the measured powder X-ray
diffraction (PXRD) pattern, in which a series of observed peaks
at 2q ¼ 5.7�, 9.9�, 11.5�, 15.2�, and 26.1� were assigned to the
(010), (�120), (020), (�130), and (001) facets, respectively
(Fig. 1A). The results indicated that ABMI-COF possessed a 2D
Fig. 1 Characterization of ABMI-COF. (A) Experimental (black), Paw-
ley-refined (red) and simulated (yellow and green) PXRD patterns and
difference plot (grey). (B) Structural representations. (C) Nitrogen
adsorption–desorption isotherm at 77 K and pore size distribution
(inset). (D) SEM image.

© 2022 The Author(s). Published by the Royal Society of Chemistry
network with an eclipsed AA stacking mode (Fig. 1B). The
Pawley renement showed a negligible difference between the
simulated and experimental PXRD patterns. ABMI-COF was
assigned to the space group P3 with optimized parameters of
a ¼ b ¼ 17.8 Å, c ¼ 3.4 Å, a ¼ b ¼ 90�, g ¼ 120�, residuals Rwp ¼
2.90%, and Rp ¼ 2.13% (Table S1†).

The type I N2 adsorption–desorption isotherm at 77 K of
ABMI-COF showed that the Brunauer–Emmett–Teller (BET)
surface area was SBET ¼ 608 m2 g�1 and the total pore volume at
P/P0 ¼ 0.99 was 0.38 cm3 g�1, conrming its porosity (Fig. 1C).
The pore size distribution was determined by nonlocal density
functional theory (NLDFT) analysis and indicated that it
possessed a narrow pore diameter distribution centred at
approximately 1.1 nm, which was consistent with the simulated
structure.

The formation of ABMI-COF was also conrmed by spec-
troscopic methods. The Fourier transform infrared spectrum
showed the characteristic peak of C]N+ at 1666 cm�1, and the
appearance of peaks at 1248 and 1197 cm�1 were due to C–N+

(Fig. S1D†). The symmetrical and asymmetrical stretching
vibrations of the CH3 group were located at 2872 and
2948 cm�1, respectively. Weak peaks of residual CHO and C]N
were observed at 1697 and 1626 cm�1, respectively, indicating
the presence of bonding defects.57 The observed carbon reso-
nances in its 13C solid-state nuclear magnetic resonance spec-
trum showed that ABMI-COF contained iminium (182 ppm),
methyl (53 ppm), and aromatic (100–150 ppm) species
(Fig. S1E†).58 XPS analysis of ABMI-COF in the N1s region was
deconvoluted into a C]N+ peak at 401.1 eV and a C]N peak at
398.3 eV (Fig. S1F†).59 Furthermore, two peaks with a well-
Chem. Sci., 2022, 13, 7846–7854 | 7847
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Fig. 2 Ferroptosis- and apoptosis-related cell death. (A) Lysosome
escape of siRNA-Cy3 in HT-1080 cells treatedwith siRNA-Cy3@ABMI-
COF and siRNA-Cy3@ABMBP-COF. Scale bar, 50 mm. (B) Viability of
HT-1080 cells based on the CCK-8 method. (C) Western blot analysis
of GPX4, SLC7A11, FSP1, and ACSL4 in HT1080 cells. (D) GPX4 and HK2
enzymatic activity in HT-1080 cells. (E) Viability of HT-1080 cells
treated with siRNA@ABMBP-COF (40 mg mL�1, COF equiv.) and
cultured for an additional 48 h in the presence of sodium pyruvate,
GSH-EE, NAC, 2-ME, Fer-1, zVAD, Nec-1, and 3-MA in minimum
essential medium. The data are presented as the mean � SD, n ¼ 5 (B
and E) or 4 (D), and were compared by one-way ANOVA followed by
Dunnett's post hoc test (D) or Welch's ANOVA followed by Dunnett's
T3 multiple comparison test (E).
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separated spin–orbit component of 11.5 eV located at 619.2 and
630.7 eV were assigned to the iodide ion (Fig. S1G†).

Scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) images showed a uniform spherical
morphology of ABMI-COF with a diameter of approximately
230 nm (Fig. 1D and S1H†). The dynamic light scattering (DLS)
measurements showed a z-average size of 232.7 nm with
a polydispersity index of 0.120 in phosphate-buffered saline,
indicating its good dispersion (Fig. S1I†).

The iodide counterions within ABMI-COF could be partly
exchanged by 3-bromopyruvate in a weakly basic triethylamine
solution to generate ABMBP-COF, which had a molecular
formula of C33H21N3(CH3)2.80I0.48(C3H2BrO3)2.32 based on ICP-
MS and elemental analysis. As shown in Fig. S2,† ion
exchange did not cause changes in crystallinity, structure,
micromorphology, or dispersibility but resulted in a slight SBET
decrease (ABMBP-COF, 567 m2 g�1).

Due to the iminium linkage, ABMI-COF and ABMBP-COF
had positive zeta potentials of +28.2 and +25.0 mV, respectively,
which endowed these nanoparticles with a high capacity to
adsorb negatively charged siRNA. Not surprisingly, aer
adsorbing siRNA, the zeta potential of the nanoparticles
decreased to approximately 60% of that before adsorption,
while the hydrodynamic diameters based on DLS measure-
ments were almost unchanged, indicating that siRNA adsorp-
tion did not lead to signicant particle coagulation (Fig. S3A†).
Furthermore, aer adsorption, the uorescence of surface-
adsorbed Cy3-labelled siRNA (siRNA-Cy3) was effectively
quenched via uorescence resonance energy transfer caused by
the spectral overlap between the Cy3 donor emission and COF
acceptor absorption (Fig. S3B–D†). Fluorescent quantitative
experiments showed that the saturated adsorption capacities of
ABMI-COF and ABMBP-COF for siRNA were up to 1.2 and 1.1
nmol mg�1, respectively, which are signicantly higher than
those of electroneutral COFs (Fig. S3E†).34–38,60 Unsurprisingly,
due to the cytomembrane affinity and proton sponge effect
caused by the positive charges,7,61 the obtained siRNA@ABMI-
COF and siRNA@ABMBP-COF readily entered HT-1080 cells
within 4 h via pinocytosis (Fig. S4†) and then escaped from
lysosomes into the cytoplasm (Fig. 2A). Their transfection effi-
ciencies were superior to those of commercially available poly-
ethylenimine and calcium phosphate and were comparable to
those of Lipofectamine 2000 (Fig. S5†).

siRNA@ABMBP-COF, which contains the HK2 inhibitor 3-
bromopyruvate, can cause oxidative stress and consequent cell
death by inhibiting aerobic glycolysis and mitochondrial
oxidative phosphorylation.54 Theoretically, the antitumor effect
of 3-bromopyruvate could be further enhanced by blocking the
biosynthesis of glutathione (GSH), which is the major intracel-
lular response to oxidative stress.62 To examine this possibility,
SLC7A11,55,63 a key transporter that is upstream of GSH
biosynthesis, was selected as a therapeutic target. siRNA-
mediated knockdown of SLC7A11 could inhibit cellular
uptake of cystine, thereby blocking GSH synthesis and
enhancing oxidative stress.64

According to CCK-8 cell viability assays, siRNA@ABMBP-COF
(40 mg mL�1, COF equiv.) reduced HT-1080 cell viability to 34.5
7848 | Chem. Sci., 2022, 13, 7846–7854
� 2.2% compared to the untreated group, which was signi-
cantly better than siRNA@ABMI-COF (70.3 � 8.8%), ABMBP-
COF (73.8 � 2.8%), and ABMI-COF (90.5 � 6.6%), suggesting
a combined effect of SLC7A11 siRNA and 3-bromopyruvate
(Fig. 2B). Clonogenic analysis was performed, and siR-
NA@ABMBP-COF-treated HT-1080 cells had the lowest clone
formation compared with the other treatment groups, further
supporting the obtained results (Fig. S6†).

The cell death mechanism induced by the cationic COF-
based nanodrugs was investigated. Aer SLC7A11 siRNA was
loaded, siRNA@ABMI-COF and siRNA@ABMBP-COF decreased
SLC7A11 expression (Fig. 2C and S7†), which subsequently
blocked GSH synthesis. As a result, a series of cellular biological
changes were examined at 48 h, including decreases in the GSH
concentration (Fig. S8A†), increases in cytoplasmic Fe2+ levels
(Fig. S9†), reactive oxygen species (ROS) production (Fig. S10†)
and lipid peroxidation (Fig. S11†), decreases in glutathione
peroxidase 4 (GPX4) expression and activity (Fig. 2C and D),
increased malonaldehyde concentrations (Fig. S8B†), and
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 In vivo antitumor performance in HT-1080 tumour-bearing nude mice. (A) Photos of tumour tissue obtained by dissection at the end of
treatment. (B) Weight of the obtained tumours. (C) Tumour growth curves. (D) H&E staining of the obtained tumours. Scale bar, 100 mm. (E) Ki67
immunohistochemical staining of the obtained tumours. Scale bar, 100 mm. (F) Body weight curves. Data are presented as the mean� SD (n ¼ 5)
and compared by one-way (B) or two-way (C and F) ANOVA followed by Tukey's post hoc test.
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mitochondrial membrane potential loss (Fig. S12†). These
results were consistent with the characteristics of ferropto-
sis.65–67 Furthermore, the expression of ferroptosis suppressor
protein 1 (FSP1) and acyl-coenzyme A synthetase long-chain
family member 4 (ACSL4) was intact (Fig. 2C and S7†), sug-
gesting that HT-1080 cells triggered ferroptosis via the cyst(e)
ine–GPX4–GSH axis.68,69

Notably, ABMBP-COF treatment contributed to GSH deple-
tion (Fig. S8A†), ROS upregulation (Fig. S10†), and mitochon-
drial damage (Fig. S12†) but did not upregulate malonaldehyde
content (Fig. S8B†) or downregulate GPX4 expression (Fig. 2C
and S7†). These results suggested that 3-bromopyruvate
induced cell death through an additional mechanism. Aer
treatment with ABMBP-COF and siRNA@ABMBP-COF for 48 h,
HK2 activity in HT-1080 cells decreased to less than 30% of that
in the control group (Fig. 2D), and caspase 3 activation was
detected by immunouorescence staining (Fig. S13†), suggest-
ing that the released 3-bromopyruvate induced apoptosis by
triggering cellular energy stress. Interestingly, the combination
of ABMBP-COF-induced energy stress and siRNA-induced fer-
roptosis was more effective in reducing GSH and elevating ROS
than either treatment alone, emphasizing the distinct advan-
tage of synergistic treatment (Fig. S8A and S10†).

Ferroptosis and apoptosis were further validated by cell
rescue experiments in which different functional molecules
were added to the media and cultured with siRNA@ABMBP-
COF treated HT-1080 cells (Fig. 2E). Ferrostatin-1 (Fer-1)—
a ferroptosis inhibitor—alleviated cell death, and direct
supplementation with rawmaterials for GSH biosynthesis, such
as glutathione ethyl ester (GSH-EE), N-acetyl-L-cysteine (NAC),
and 2-mercaptoethanol (2-ME), restored cell viability to varying
degrees,70,71 suggesting that GSH depletion promoted ferrop-
totic cell death. In addition, pyruvate, which is a nal product of
the glycolytic pathway, unblocked glucose metabolism and
© 2022 The Author(s). Published by the Royal Society of Chemistry
restored cell viability,72 and the apoptosis inhibitor Z-VAD-FMK
(zVAD) inhibited cell death,73 suggesting that energy stress
induced apoptosis. The necroptosis inhibitor necrostatin-1
(Nec-1) and the autophagy inhibitor 3-methyladenine (3-MA)
had negligible effects on cell viability; thus, necroptosis- and
autophagy-related cell death were excluded.73

Encouraged by the obtained results, in vivo antitumor
activity was evaluated using an HT-1080 human brosarcoma
xenogra model implanted in BALB/c nude mice. Tumours
were collected on day 10 aer intratumoral injection of the
nanodrugs (0.8 mg mL�1, COF equiv.), and the results showed
that the antitumor therapeutic efficacy was enhanced in the
following order: ABMI-COF, siRNA@ABMI-COF, ABMBP-COF,
and siRNA@ABMBP-COF (Fig. 3A and B). Specically, siR-
NA@ABMBP-COF reduced the tumour volume to approximately
60% of that before treatment, while siRNA@ABMI-COF and
ABMBP-COF exerted worse antitumoral effects, and ABMI-COF
had almost no antitumor effect (Fig. 3C). Histopathological
analysis of haematoxylin–eosin (H&E)-stained tumour tissues
collected at the end of the treatment showed that the histo-
logical morphology of siRNA@ABMBP-COF-treated tumours
was signicantly different from that of the control group, as
indicated by extensive cell membrane rupture, nuclear
contraction, and loosely arranged cells, indicating cellular
damage (Fig. 3D). Ki67 is a nuclear antigen associated with cell
proliferation and cancer prognosis and is a cellular marker for
measuring the proliferative potential of cancer cells.74 The
immunohistochemical staining results (Fig. 3E) showed that
siRNA@ABMBP-COF resulted in a lower ratio of Ki67-positive
cells than ABMBP-COF and siRNA@ABMI-COF, indicating the
suppression of tumour proliferation. These experimental
results are consistent with the trend in the tumour growth
curve.
Chem. Sci., 2022, 13, 7846–7854 | 7849
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The ferroptosis inhibitor liproxstatin-1 (Lip-1) clearly coun-
teracted the tumour treatment effect induced by siR-
NA@ABMBP-COF (Fig. 3A–E) and the terminal deoxynucleotidyl
transferase-mediated deoxyuridine triphosphate nick-end
labelling (TUNEL) assay demonstrated slight increases in the
proportion of apoptotic cells in the groups of ABMBP-COF and
siRNA@ABMBP-COF (Fig. S14†), suggesting ferroptosis- and
apoptosis-related antitumor mechanism in vivo. Furthermore,
the levels of ferroptosis- and apoptosis-related metabolites and
enzymatic activities were determined on day 4. Compared with
monotherapy with ABMBP-COF and siRNA@ABMI-COF, the
siRNA@ABMBP-COF-induced combination treatment resulted
in signicant intratumoral GSH downregulation and malo-
naldehyde upregulation, suggesting the presence of oxidative
stress and ferroptosis in vivo (Fig. S15A and B†). Additionally,
siRNA@ABMBP-COF inhibited intratumoral HK2 activity, but
there was no signicant difference in GPX4 activity (Fig. S15C
and D†), suggesting the presence of a compensatory mecha-
nism in solid tumours,75 which was different from the in vitro
observations. Although siRNA@ABMBP-COF achieved an
obvious antitumor effect, it is clear that the GPX4-related
compensatory mechanism in vivo is unfavourable for tumour
therapy. We believe that antitumor therapy can be further
optimized by combining GPX4 inhibitors76 or radiotherapy,77,78

which will be investigated in the future.
The systemic toxicity of the nanodrugs to nude mice during

the treatment was negligible, which was conrmed by a lack of
signicant weight loss in mice during the treatment (Fig. 3F)
and H&E staining of major organs collected at the end of
treatment (Fig. S16A†). Routine blood and biochemical exami-
nations showed negligible adverse effects of the nanodrugs on
liver function, kidney function, and the blood system in healthy
nudemice (Fig. S16B and C†). Therefore, the nanodrugs have no
obvious acute toxicity and have acceptable biosafety.
Conclusions

In conclusion, we reported the synthesis of an iminium-linked
positively charged COF by a three-component one-pot reaction
under ambient conditions. Through anion exchange and siRNA
adsorption, the resulting multifunctional COF-based nanodrug
exerts potent combined antitumor activity against HT-1080
tumour cells and tissues via ferroptosis and apoptosis. This
study not only enriches COF synthetic methodology but also
highlights cationic COF as a promising platform for siRNA-
mediated combination therapy.
Experimental section
Synthesis of ABMI-COF

The mixture of TAPB (562.3 mg, 1.6 mmol), BTA (259.4 mg, 1.6
mmol), acetonitrile (200 mL), acetic acid (32 mL), and iodo-
methane (32 mL) was stirred at 800 rpm and 25 �C for 24 h. The
precipitate was collected by centrifugation at 12 000 rpm
(14 800 � g) for 30 min at 4 �C and washed 3 times with
acetonitrile and then 3 times with ethanol. Finally, the
7850 | Chem. Sci., 2022, 13, 7846–7854
precipitate was dried under supercritical CO2 to obtain ABMI-
COF as an orange-red powder. The yield was 1.1 g (78%).

Synthesis of ABMBP-COF

ABMI-COF (50 mg) was dispersed in an aqueous solution (100
mL) containing 3-bromopyruvic acid (83.5 mg, 0.5 mmol) and
triethylamine (100 mL, 0.7 mmol). The mixture was stirred at
600 rpm and 25 �C for 12 h. The precipitate was separated by
centrifugation at 12 000 rpm (14 800� g) for 30 min at 4 �C. The
dispersion–stirring–centrifugation process was repeated 4
times. The obtained precipitate was washed three times with
water and once with ethanol and was dried under vacuum to
obtain ABMBP-COF as an orange-red powder. The yield was
50 mg.

Animal experimentation

All animal procedures were reviewed and approved by the Ethics
Committee of Shandong Normal University (Jinan, China;
application number AEECSDNU2021009). Further information
regarding experimental procedures are stated in the ESI.†
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