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Alcohols are among the most widely occurring functional groups found in naturally abundant, biologically
relevant organic compounds, which in many cases are considered feedstock chemicals. Herein, we report
a metal-free method for the deoxygenative coupling of alcohol-derived benzoates and pyridines promoted
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reported a powerful methodology for in situ activation and
arylation of alcohols enabled by metallaphotoredox catalysis.®

Despite the advances in this area, the majority of deoxy-
genative methods for the synthesis of C(sp®)-C(sp*) bonds with
heteroarenes rely on the use of transition metal complexes, either
as coupling catalysts and/or as photocatalysts. Arguably, the price
and toxicity of transition-metal complexes/ligands, and the chal-
lenging removal of metal residues from desired products, have
driven recent efforts to develop metalfree organic trans-
formations. Surprisingly, there is only an isolated example of
metal-free deoxygenative functionalization of heteroarenes, albeit
with limited functional group tolerance due to a combination of
highly oxidizing conditions and use of activated heteroarenes
such as quinoxalinone (Fig. 1C).° Therefore, a general, mild, and
practical metal-free deoxygenative method for the heteroarylation
of aliphatic alcohols as sp® synthons is highly desirable.

Herein, we describe the development of a general metal-free
platform for the deoxygenative coupling of alcohol-derived
benzoates and pyridines promoted by visible light (Fig. 1D).
Feedstock and complex alcohols can be readily converted to the
desired products in high yields, even in the case of top-selling
pharmaceuticals such as haloperidol and ezetimibe. Given the
mild reaction conditions and compatibility with diluted and
aqueous conditions, our chemistry can be also utilized to
functionalize DNA headpieces, allowing, for the first time, the
use of alcohols as building blocks for the synthesis of DNA-
encoded libraries (DELs).

Design plan

The mechanistic details of our proposed transformation are
outlined in Fig. 2. Initially, the aliphatic alcohol is converted to
the corresponding electron-deficient benzoate via a high-

A-Electron-deficient benzoates as alcohol derivatives for the C(sp®)—-0 bond homolysis-
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Fig.2 Strategy for a metal-free deoxygenative C(sp®)—C(sp?) coupling

of alcohols and pyridines.
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yielding esterification reaction. Under visible light irradiation,
the commercially available Hantzsch ester (HE) can donate an
electron (SET) to the benzoate ester via direct visible-light
excitation or an electron donor-acceptor complex (Fig. 2A).*°
The resulting benzoate radical anion undergoes B-scission
fragmentation, providing the desired alkyl radical along with
a benign carboxylate byproduct." It is noteworthy that the
alcohol is activated through a new metal-free reductive process,
which is complementary to many existing methodologies that
oxidatively generate radicals from oxalate salts,> triphenyl-
phosphonium salts,” NHC®? and alkyl carbazates.* Concur-
rently, another equivalent of HE activates the pyridine precursor
through a second photoinduced single electron transfer
(Fig. 2B); cyano-substituted pyridines are known to undergo
facile single electron reduction to the corresponding radical
anions," although HE is rarely used."* Remarkably, both the
alcohol and pyridine metal-free activation steps occur simulta-
neously without any compatibility issues. Finally, radical-
radical coupling between the alkyl radical derived from the
initial alcohol and the persistent cyanopyridine radical anion
forges the desired C(sp®)-C(sp®) bond (Fig. 2C). Given the
strongly reducing conditions, we anticipated that oxidatively
sensitive moieties such as tertiary amines and guanosines
would be unaffected, thereby ensuring broad functional group
tolerance and DNA compatibility.

Results and discussion
Optimization of the reaction conditions

We began our investigations by evaluating the efficiency of the
alkyl radical formation from different 1-phenylpropanol

Table 1 Evaluation of the benzoate ester structure®

B L
@& ) Blue LED
\
P —EWG +
/ Hantzsch ester (2 equiv)
NaOAc (2 equiv)
Esters 1-8 (1 equiv) 9 (1.5 equiv) DMSO, rt, 17 h 10
Entry Ester 10 (%)°
1 1 0 A@\
2 2 0 NO,
3 3 87(84)°
4 4 16 1 2
5 5 10
6 6 5 F
7 7 21 /\()\
8 8 0
7 CN
9 3, no light 0 CN
10 3, no base 0 3 4
E
/( ; _COOEt A ; _CF3 F
A@\ F F
COOEt CFs E
5 6

“ Reaction conditions: 1-8 (0.1 mmol), 9 (0.15 mmol), Hantzsch ester
£0.2 mmol), NaOAc (0.2 mmol) in DMSO (0.05 M) at rt for 17 h.

NMR yields using 1,1,2,2-tetrachloroethane as the internal standard.
¢ In brackets isolated yield on 0.2 mmol scale.
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benzoate ester derivatives 1-8 in the presence of 4-cyanopyr-
idine 9, Hantzsch ester, sodium acetate, and DMSO under blue
light irradiation (Table 1). While a color change was observed
when nitro derivatives 1 or 2 were mixed with Hantzsch ester,
indicating the formation of possible EDA complexes, no
coupling product was formed under the reaction conditions.
The nitro-benzoate esters were exclusively converted to the
corresponding N-hydroxyanilines through the reduction of the

pre-actlvatlon via Oi )b\

Esters (1 equiv)

OH estenflcatlon

Alcohols

Pyridines (1.5 equiv)
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nitro group. These results indicated that a photoinduced single
electron transfer was operative under the reaction conditions,
though the negative charge was mainly localized on the nitro
group and not at the ester functionality required to promote the
desired B-scission fragmentation.

Arguably, a balance between the electron-deficiency of the
benzoate ester and localization of the negative charge in the
carbonyl group was found with the 4-cyano-2-fluorobenzoate
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Fig. 3 Metal-free deoxygenative coupling of alcohols and pyridines for small molecules synthesis. Reaction conditions as in Table 1 (entry 3). All
yields are isolated on 0.2 mmol scale. ? NMR yield using 1,1,2,2-tetrachloroethane as the internal standard. *See the ESIT for experimental details.
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derivative 3. Indeed, we were pleased to find that benzoate ester
3 provided the desired coupled product 10 in 84% yield.

Importantly, in contrast to many existing methods,>>**?
high yields of cross-coupled product were obtained using only 1
equivalent of preactivated alcohol. When other esters (4-8) were
tested, the coupling product was obtained in generally low
yields, confirming the superior reactivity of the 4-cyano-2-
fluorobenzoate ester. Control experiments showed that light
and sodium acetate were crucial for the formation of the desired
product; the starting benzoate ester 3 was completely recovered
in both cases, while 4-cyanopyridine 9 was intact only in the
former. Therefore, we propose that sodium acetate favours -
scission fragmentation by deprotonating the radical cation of
the Hantzsch ester (pK,cae in DMSO = 3.0)" after SET or
through proton-coupled electron transfer (PCET)," thus inhib-
iting unproductive back electron transfer.

Generality of the reaction for small molecules synthesis

Next, we turned our attention to exploring the scope of our
transformation for small molecule synthesis. As evident from the
results compiled in Fig. 3, our visible-light-mediated metal-free
deoxygenative coupling could be conducted with a wide variety
of 4-cyano-2-fluorobenzoate esters derived from primary,
secondary, and tertiary alcohols. Both electron withdrawing (11,
15, 41) and donating (16, 37, 38) substituents on the benzylic
alcohols were well tolerated, delivering the corresponding prod-
ucts in good yields. Viable motifs in this transformation include
furan (18), thiophene (19), pyridine (20), indole (21, 39), imid-
azole (22), 1,3-dioxanes (14-22, 34) and N-Boc protected amines
(23, 24, 32, 33). Cyclic (26-34, 40) and acyclic (35) tertiary alcohols
were readily converted to the coupling products despite their
steric hindrance; such molecules would be hard to access using
transition-metal catalysis. Importantly, we were able to apply our
methodology for the late-stage functionalization of top-selling
alcohol-containing pharmaceuticals such as haloperidol (40)
and ezetimibe (41), obtaining the desired cross-coupled products
in 73% and 71% yield respectively. The presence of a tertiary
amine in haloperidol, which is normally not compatible with
other photocatalytic conditions due to oxidative degradation, was
not affected under our reaction conditions. Finally, we were
delighted to find that this method is also amenable to non-
benzylic substrates such as allylic (42) and tertiary a-keto alco-
hols (43); the latter represent the first example of a deoxygenative
cross-coupling reaction with tertiary a-keto alcohols.

Pleasingly, our metal-free cross-coupling methodology was
found to be applicable with a wide array of cyanopyridine
derivatives. Substituents in the ortho position, including alkyl
groups (44, 45, 49), free alcohols (46), and methyl esters (47)
posed no problems, while the lower yield observed when using
a 2-phenylpyridine derivative (48) could be explained by the
highly stabilized nature of the radical anion, resulting in
sluggish reactivity. On the other hand, alkyl and aryl meta-
substituents were well tolerated under the reaction condi-
tions, forming a variety of cross-coupled products in good
yields (50-57). Notably, an electron-rich morpholine-
containing pyridine (55) was found to be compatible,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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highlighting the broad functional group tolerance of our
methodology.

Mechanistic experiments

To gain insight into the mechanistic proposal detailed in Fig. 2,
we conducted a series of preliminary experiments summarized

A—— UV-Vis absorption studies suggest an interaction between HE and NaOAc
07
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Fig. 4 Mechanistic experiments: (A) [HE] = 1 x 10~% M, [NaOAc] =
saturated in DMSO (please see the ESI for detailst); (B) excitation
wavelength = 400 nm, [HE] = 1 x 10~° M, [NaOAc] = saturated in
DMSO; (C) excitation wavelength = 373 nm, [HE] = 1 x 107* M,
[NaOAc] = saturated in DMSO; (D) isolated yield on 0.02 mmol scale;
(E) NMR yields using 1,1,2,2-tetrachloroethane as the internal standard
(product 59 was isolated to confirm the structure).
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in Fig. 4. Firstly, we recorded the UV-Vis absorption spectra of
single reaction components and their combination to identify
the formation of possible electron donor-acceptor complexes.
While the mixture of the electron-rich Hantzsch ester (HE) and
electron-deficient dinitro benzoate 1 clearly showed a new
absorption band in the visible region, suggesting the formation
of a charge-transfer complex, no additional band was observed
when HE and 4-cyano-2-fluorobenzoate derivative 3 were mixed
(please see the ESIT for details). Surprisingly, the HE absorption
spectra clearly changed in the presence of NaOAc, suggesting
a ground-state interaction between these two species (Fig. 4A).
Emission studies showed a small but appreciable change in the
spectra of HE after the addition of NaOAc (Fig. 4B), consistent
with the UV-Vis experiments. In light of this, we conducted
Stern-Volmer quenching studies for the HE and the HE/NaOAc
mixture. In both cases we found a linear correlation between the
amounts of benzoate 3 and the ratio I,/I, with a higher Stern-

o

pre-activation via
- .

esterification

o

Oi ié\ H)l\k
o #
CN ©
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Volmer quenching constant for the HE/NaOAc system (Fig. 4C).
Further UV-Vis absorption studies excluded a static quenching
and therefore a ground-state ternary association between HE,
NaOAc and benzoate 3 (please see the ESI for detailst). Finally,
when the standard reaction was conducted in the presence of
1,4-dinitrobenzene, a known competitor for single electron
transfer processes due to its strong tendency to accept an
electron (E;eq = —0.64 Vvs. SCE),' ester 3 and 4-cyanopyridine 9
were completely recovered.

These findings, together with the control experiments in
the absence of light and NaOAc (Table 1, entries 9 and 10),
suggest that the HE, in combination with NaOAc, is the main
photoactive species in the reaction:'* upon absorption of
visible light, the excited HE-NaOAc complex (Ereq = —2.28 V
vs. SCE for HE)” donates an electron to 4-cyano-2-
fluorobenzoate 3, while 4-cyanopyridine 9 (E;eq = —1.87 V vs.
SCE)*® can also be reduced by excited HE alone (Table 1, entry
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Fig. 5 Metal-free deoxygenative coupling of alcohols and DNA-pyridine conjugate 60 for DELs synthesis. Starting DNA headpiece: 5'd Phos-
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10).*» The resulting radical anion of benzoate 3 is proposed
to undergo B-scission fragmentation, providing the desired
alkyl radical along with a benign carboxylate byproduct
(Fig. 2A). Interestingly, when we conducted the reaction in the
absence of 4-cyanopyridine 9, we observed the formation of
compound 58 (Fig. 4D). Arguably, the latter is obtained via
radical-radical coupling of 1-phenylpropyl radical and the
radical anion of benzoate 3, before the desired B-scission
fragmentation can occur. The formation of 1-phenylpropyl
radical was confirmed when the same experiment was per-
formed in the presence of TEMPO: trapping product 59 was
detected along with adduct 58 (Fig. 4E).

Applications in DNA-encoded libraries synthesis

Given the mild reaction conditions, we set out to explore the
aqueous compatibility of our system for its application in the
synthesis of DNA-encoded libraries (DELs). DELs are a powerful
technology that has found widespread application in medicinal
chemistry as a time- and cost-effective platform for the discovery
of new therapeutic candidates.” The key aspect is the conjuga-
tion of chemical compounds or building blocks to short DNA
fragments that serve as identification bar codes, and in some
cases also direct and control the chemical synthesis. To develop
DELs platforms, on-DNA chemistries are required to incorporate
multifunctional building-blocks from readily available chemicals
under mild, dilute, and aqueous conditions. Recently, pioneering
studies from the Baran, Flanagan, and Molander groups* have
highlighted the power of radical-based reactivity for DELs
synthesis through visible-light photochemistry** and RASS
(reversible adsorption to solid support) technology.*> N-(Acyloxy)
phthalimides,***'%22¢ amino acids,>*»%*%¢ carboxylic acids,** 4-
alkyldihydropyridines,>* silicates,?* alkyl halides,*** and o-TMS
amines* have all been employed as alkyl radical precursors.
However, to date, no general strategy for the deoxygenative
coupling of alcohols and DNA substrates has been reported.
Given the importance of DELs in medicinal chemistry and the
paucity of on-DNA reactions available from abundant building
blocks, a new method for the deoxygenative cross-coupling of
alcohols on DNA headpieces would be of great value.

We were delighted to find that our new protocol could be
used to functionalize DNA-pyridine conjugate 60 (50 uM, 2.5
nmol) with a variety of pre-activated alcohols (Fig. 5). Despite
the diluted aqueous conditions, the key coupling process took
place in just 75 minutes under visible light irradiation. The
reactions can be set up under air, although flushing with an
inert gas was required at the closure of the vial to ensure
reproducible results. Pharmaceutical alcohols such as halo-
peridol and ezetimibe were successfully installed into the DNA-
conjugate in high yields (74, 75), revealing that our method-
ology can also be used for DNA-drug coupling reactions.
Remarkably, the DNA remained intact during the photochem-
ical process and no oxidation was observed by mass spectrom-
etry. Finally, a commercial DNA headpiece devoid of the
cyanopyridine group was unaffected when exposed to the
reaction conditions, confirming the excellent chemoselectivity
of our methodology.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Conclusions

In summary, we have developed a new, practical, metal-free
platform for the deoxygenative coupling of alcohol-derived
benzoates and pyridines promoted by visible light. Given the
mild and water-compatible reaction conditions, our chemistry
can be used to successfully functionalize small molecules and
DNA headpieces. This protocol is distinguished by its wide
substrate scope and broad applicability, even in the context of
late-stage functionalization and DNA-drug coupling reactions.
Overall, we believe that the flexibility and simplicity of the newly
developed method will make this procedure of interest to
chemists in both industrial and academic environments and, in
particular, to practitioners of medical chemistry.
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