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C2-ketonyl-2-deoxysugars, sugars with the C2-hydroxyl group replaced by a ketone side chain, are
important carbohydrate mimetics in glycobiology and drug discovery studies; however,
their preparation remains a vital challenge in organic synthesis. Here we report the first direct
strategy to synthesize this class of glycomimetics from readily available 1-bromosugars and silyl enol

ethers via an excited-state palladium-catalyzed 1,2-spin-center shift (SCS) process. This step-
Received 17th February 2022 . i feat broad substrat h hiah f ti l tol d
Accepted 1st May 2022 economic reaction features broad substrate scope, has a high functional group tolerance, and can
be used in late-stage functionalization of natural product- and drug-glycoconjugates. Preliminary
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Introduction

Carbohydrates with substituents at C2 are ubiquitous in nature
and feature prominently in bioactive agents and natural prod-
ucts, including many clinically significant antiviral, anticancer,
and antibiotic drugs." For example, N-acetylglucosamine
(GleNAc), N-acetylmannosamine (ManNAc), and N-acetylga-
lactosamine (GalNAc) can be found in living organisms ranging
from bacteria to vertebrates and are fundamental components
of the cell wall, glycoproteins, and glycolipids (Fig. 1A).*
Consequently, their C2-carbon isosteres, C2-ketonylsugars such
as 2-ketoGle, 2-ketoMan, and 2-ketoGal, have been synthesized
for the development of antibiotics® and to study cell surface
recognition, metabolic pathways, and the mechanism of poly-
saccharide formation and protein post-translational modifica-
tions.> However, the preparation of C2-ketonylsugars is labor-
intensive and time-consuming. It requires an 8-step procedure
with less than 21% overall yield, multiple protection/
deprotection protocols, and the use of toxic alkyl tin and OsO,
reagents (Fig. 1B).>**»* This synthetic strategy is substrate-
specific, and it is difficult to produce other such C2-
ketonylsugars. Thus, the development of a concise, general
method to access a wide array of C2-ketonylsugars from readily
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involving photoexcited palladium species, a 1,2-SCS process, and a radical Mizoroki—Heck reaction.

accessible starting materials can have a significant impact on
glycobiology, medicinal chemistry, and drug discovery.

To develop such a transformation, we were drawn to a 1,2-
spin-center shift (SCS) process that involves a 1,2-radical
translocation and a group elimination/migration.® This process
has been observed and studied in various biological and
chemical applications.® For example, during DNA biosynthesis,
ribonucleotide reductase mediates the formation of deoxy-
ribonucleoside diphosphates via a 1,2-SCS process.* In carbo-
hydrate chemistry, a tin hydride-mediated 1,2-SCS of 1-
bromosugars for the synthesis of 2-deoxysugars was developed
by Giese et al.” Inspired by these reports, we hypothesized that
1,2-SCS could serve as a reaction platform with which to develop
a general, catalytic C2-functionalization of carbohydrates. The
feasibility of this hypothesis was recently demonstrated by our
preliminary studies using nickel catalysis®*® and excited-state
palladium catalysis.’®"* On the basis of these initial findings
and the recent development of the excited-state Pd-catalyzed
radical Mizoroki-Heck reactions,'®'? we questioned whether
we could merge these two reactivities to achieve a catalytic, one-
step C2-ketonylation of 1-bromosugars using silyl enol ethers as
coupling partners. The mechanism involves the generation of
a 1-glycosyl radical (II) followed by a concerted B-C-O bond
scission and acetoxyl migration leading to a transition state
(TS), then forming a deoxypyranosan-2-yl radical (III) (Fig. 1C). A
subsequent radical Mizoroki-Heck reaction and hydrolysis
furnishes the desired C2-ketonylsugars. Realization of such
a reaction would be novel and significant because it (i) greatly
streamlines the synthesis of C2-ketonylsugars from an 8-step
protocol to a single-step procedure, (ii) expands the reactivity
profile of the excited-state Pd catalysis, and (iii) provides a new

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Applications and synthesis of C2-ketonylated carbohydrates.

strategy for the preparation of useful glycomimetics to tackle
fundamental questions in glycobiology and drug discovery.

Results and discussion

According to the postulated mechanism in Fig. 1C, we
commenced our study by investigating the reaction of acetyl-
protected 1-glucosyl bromide 1a with acetophenone trime-
thylsilyl enol ether 2a under photoexcited Pd-catalyzed condi-
tions (Table 1). To our delighted, in the presence of 5.00 mol%
Pd(PPh;),, 6.00 mol% Xantphos, and 1.50 equiv. KOAc in
benzene (0.015 M) at 90 °C under the irradiation of 36 W blue
LEDs for 24 h, the desired C2-ketonylsugar 3a was obtained in
85% yield with 4.5:1 axial: equatorial (ax:eq) selectivity
together with a small amount of the C1-ketonylsugar byproduct
(entry 1). Pd(PPhs), was critical for this reaction since no reac-
tion occurred in its absence, and only 10% of the desired
product was obtained by replacing Pd(PPhj), with Pd(OAc),
(entries 2 & 3). Removal of Xantphos or replacing it with BINAP
decreased the reaction yield (entries 4 & 5). Other photosensi-
tizers, such as Ir(ppy)s;, Ru(bpy)s;(PFs),, and eosin Y free acid,
were either inefficient or failed to catalyze the desired reaction
(entries 6-8). Other bases, such as Cs,CO;, diminished the
reaction efficiency (entry 9). The use of 1,4-dioxane as a solvent
formed hydro-debromination side products, lowering the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Selected optimization experiments®

Pd(PPhs), (5.00 mol%)
o, e VBRI s
AcO Ph Benzene (0.015 M) O
AcOg, 90 °C, 36 W blue LED, 20 h \/:\T R
la 2a "standard conditions" 3a o}
1.00 equiv 3.00 equiv
Yield
Entry Deviation from standard conditions (%) ax/eq
1 None 85 4.5:1
2 Without Pd(PPh;), N.R. —
3 Pd(OAc), instead of Pd(PPh;), 10 3.2:1
4 Without xantphos 18 4.0:1
5 BINAP instead of xantphos 36 4.3:1
6 Ir(ppy)s as photocatalyst 24 3.0:1
7 Ru(bpy)s(PFe), as photocatalyst N.R. —
8 Eosin Y free acid as photocatalyst N.R. —
9 Cs,CO; as base 35 46:1
10 Dioxane as solvent 33 3.7:1
11 0.10 M 25 5.0:1
12 RT 39 51:1
13 Air N.R. —
14 Keep in dark 0 —

“See ESI for Experimental details. Reaction yields and axial to
equatorial (ax/eq) ratios were determined by 1H-NMR using CH,Br, as
an internal standard. Ac, acetyl; BINAP, 2,2'-bis(diphenylphosphino)-
1,1-binaphthyl; LED, light-emitting diode; N.R., no reaction.

product yield (entry 10). Higher reaction concentrations or
lower temperatures favored the formation of the C1-
ketonylsugar side product, decreasing the yield of the desired
product 3a (entries 11 & 12). Control experiments confirmed
that both oxygen-free conditions and visible light were essential
for product formation (entries 13 & 14).

With optimized conditions in hand, we examined scope of
the different silyl enol ethers in the reaction. As shown in Table
2, A, a diverse array of silyl enol ethers proved to be competent
coupling partners for the C2-ketonylation protocol. Aryl silyl
enol ethers with electron-neutral (2a), electron-withdrawing
(2b-2e), or electron-donating (2f) substituents on the aryl ring
reacted well, delivering the corresponding C2-ketonyl gluco-
sides (3a-3f) in 61-84% yields and with 4.4:1t0 6.0:1 ax: eq
selectivity. Aryl silyl enol ethers with multiple substituents (2g-
2h) or extended conjugation (2i-2j) were compatible. The
transformation is effective for compounds with medicinally
relevant heterocyclic derivatives, such as pyridyl (2k) or thio-
phenyl (21). Alkyl silyl enol ethers were also viable substrates,
furnishing the desired products (2m-20) with moderate to good
yields. Silyl vinyl ether, a surrogate for acetaldehyde, couples
with the C2-radical to give the C2-formylmethyl glucoside 3p in
81%yield and 5.1 : 1 ax : eq selectivity. When the silyl enol ether
(2q) derived from tert-butyl acetate was employed as a substrate,
the C2-carboxymethyl glucoside 3q was generated, presumably
through the hydrolysis of the resulting silyl enol intermediate.
Finally, the C2-acetamidated product 3r could also be obtained
with this strategy. The absolute stereochemistry of the product
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Table 2 Scope of excited-state palladium-catalyzed C2-ketonylation of carbohydrates®
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@ See ESI for Experimental details. Isolated yield and ax : eq ratio are indicated below each entry.
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was confirmed by a single-crystal analysis of 30, as shown in
Table 2.%

Next, we evaluated the generality of this transformation with
respect to 1-bromosugars (Table 2, B). A wide range of 1-bro-
mosugars, including derivatives of p-galactose, p-glucose, b-
xylose, and i-fucose (1b-1g), reacted with silyl enol ether 2a,
affording the desired products (4b-4g) in 62-86% yields and
with up to 10: 1 ax: eq selectivity. It is noteworthy that per-
acetylated monosaccharide derivatives are particularly useful
because they have been shown to passively diffuse through
mammalian cell membranes and undergo subsequent deace-
tylation by cytosolic or ER esterases.** Other protecting groups
such as benzyl, tert-butyldiphenylsilyl, acetal, and benzoyl were
well-tolerated as well. The p-glucuronic acid derivative (1h) was
also a viable substrate, and disaccharide derivatives, such as
cellobiose, maltose, and melibiose, proved to be compatible
with the standard reaction conditions (4i-4k). In addition, C2-
esters substituted with aryl or heteroaryl groups migrated
smoothly, delivering the desired products (41-4m) in good
yields and with good selectivity.

Late-stage modification of complex molecules is often a key
to identifying medicinal agents."” To demonstrate the applica-
bility of the excited-state Pd-catalyzed C2-ketonylation to late-
stage syntheses, natural product- and drug-conjugated sugars
were subjected to the standard reaction conditions (Table 2, C).
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(decongestant and analgesic), febuxostat (an anti-
hyperuricemic drug), oleanolic acid, bezafibrate (antilipemic
agent), ibuprofen (non-steroidal anti-inflammatory drug,
NSAID), probenecid (anti-gout), zaltoprofen (NSAID), and ada-
palene (antiacne agent) worked well under the standard
conditions, affording the desired products 4n-4u in 40-66%
yields and with up to 6.3 : 1 ax : eq selectivity.

The C2-ketonylsugar products are useful synthetic interme-
diates and can be converted into other novel glycomimetics
(Table 3). For example, C2-ketonylated glycoside could be
reduced to C2-hydroxyalkylated glycoside 5a and C2-alkylated
glycoside 6a (Table 3, A and B). Cyclopropanated glycoside 7a,
an important glycosylation donor," could be prepared from the
C2-ketonylsugar (Table 3, C). Under Lewis acid activation
conditions, 3a undergoes cyclization, and the resulting carbo-
cation can be trapped with furan, affording perhydrofuro[2,3-5]
pyran 8a in good yield (Table 3, D)."” C2-ketonylsugars can also
serve as good glycosylation donors. For example, N/S/O-glyco-
sylation of 3a proceeds smoothly, furnishing glycosyl azide 9a,
thioglycoside 10a, trans-androsteronyl glycoside 12a, and
disaccharide 14a in good yields and up to 20 : 1 o/B-selectivity
(Table 3, E-H).

To better understand the mechanism of this excited-state Pd-
catalyzed C2-ketonylation, we conducted a series of experi-
mental and computational studies (Fig. 2). First, Stern-Volmer

For example, 1-bromosugar derivatives of tr-menthol quenching studiesshowed that 1-glucosyl bromide 1a quenches
Table 3 Post-functionalization of C2-ketonylsugars®
A. Reduction B. Hydrogenation
2 OH 2 PdIC (5.0 mol%) HH
AcO Ar NaBH, (4.00 equiv) AcO Ar AcO Ph H, (1.0 atm) AcO Ph
AcO O AcO 0, AcO O AcO O,
AcO THF (0.10M), t, 5 h AcO AcO AcOH (10 equiv) AcO
OAc Ar = 1-naphthyl OAc OAc MeOH (0.025M), rt, 20 h OAC
3i 5a, 73%, dr 1:1 3a 6a, 97%
C. Cyclopropanation D. Cyclization
o] o)
o]
AcO Ph t-BuOLi (1.50 equiv) AcO AcO Ph Furan (3.00 equiv)
AcO 10 > Ph AcO 0 X AcO
AcO DCE (0.10 M), rt, 2 h A/i%o AcO BF3eEt,0 (1.20 equiv) s
o OAc DCM (0.10 M), 0°C - 1t, 2 h AcO

3a 7a, 90%

E. N-Glycosylation
o
: AcO Ph
TMSN; (2.00
3 (: equiv) AcO o
BF3eEt,0 (1.20 equiv) AcO

OAG DCM (0.10 M), 0 °C -1t, 2 h N3
3a 9a, 65% (/B > 20:1)
G. O-Glycosylation
o
AcO Ph
AcO O
AcO
3 OAc BF3eEt,0 (1.20 equi Ph
o BFELO(20eauw) =
DCM (0.10 M) 0
0°C-rt,4h AGO
oRbe

12a, 74% (a/p = 17:1)

3a 8a, 80%, dr 1.4:1

F. S-Glycosylation

0 0
AcO < Pn PhSH (2.00 equiv) A/TCC)O G Ph
AcO C
/C\co BF3eEt,0 (1.20 equiv) AcO
OAc DCM (0.10 M), 0°C, 2 h SPh
3a 10a, 84% (/B = 10:1)

H. O-Glycosylation

o)
o)
AcO
ACg.&é\L 2 AcO Ph
o)
AcO AcO
BF3eEt,0 (1.20 equiv) AcO
3a (¢}
DCM (0.10 M) B20 Q
0°C,2h BzO
BzO,

14a, 74% (o/B = 7.0:1)
13a

“ See ESI for Experimental details. Isolated yield and diastereomeric ratio are indicated below each entry.
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Fig. 2 Mechanistic studies and proposed mechanism. See ESIf for Experimental details.

the excited palladium species more efficiently than silyl enol
ether 2a (Fig. 2A). The radical-trapping experiment using
2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as the scavenger
significantly inhibited the reaction, and the radical clock reac-
tion gave the desired product with a ring-opening (3s), implying
the reaction proceeds through a radical pathway (Fig. 2B).
However, radical chain propagation is unlikely as the quantum
yield of the reaction was found to be 0.009 (Fig. S9 in the ESIT).
When the 1,2-trans- and 1,2-cis 2-iodo-sugar (15a and 16a,
respectively) were subjected to the reaction conditions, they
both formed the desired product (3a) with similar yields and
stereoselectivity as produced by the parent reaction (Fig. 2C vs.
Table 1, entry 1) and without the formation of C1-ketonylated
side products. These results suggest that the reaction
proceeds through a common deoxypyranosan-2-yl radical
intermediate (IIT), and the reverse acetoxy migration is slower
than the addition of radical III to silyl enol ethers. Furthermore,
crossover experiments using substrates 1a and 1k afforded only
the non-crossover products 3a and 4k, suggesting that the 1,2-
SCS probably takes place through an in-cage or a concerted

6280 | Chem. Sci, 2022, 13, 6276-6282

mechanism (Fig. 2D). DFT calculations showed that the addi-
tion of C2-radical III to the silyl enol ether via transition state
TS1-ax to form IV-ax is more favorable than the formation of the
equatorial isomer IV-eq via TS1-eq (Fig. S11 in the ESIf}).
Combining the insights gained from these experiments and
published reports,’** a plausible mechanism is shown in
Fig. 2E. The photoexcited species [Pd°]* abstracts a bromine
atom from 1-bromosugar 1, forming a [Pd'|Br complex and 1-
glycosyl radical intermediate II. This radical intermediate then
undergoes a 1,2-SCS pathway through a conformational change
(ITa) followed by concerted [2,3]-acyloxy migration (IIb) under
the standard reaction conditions, generating deoxypyranosan-2-
yl radical III. Although the C2-radical is more reactive than the
C1-radical, the formation of an anomeric C-O bond lowers the
molecular energy of Il and drives the migration.”® C2-radical
species III adds to silyl enol ether 2, furnishing intermediate
IV. Pd-catalyzed B-hydride elimination or palladoradical H-atom
abstraction liberates H[Pd"]Br and silyl enol ether V, which
upon hydrolysis affords the desired product 3. Meanwhile, base-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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assisted H-Br reductive elimination of H[Pd"|Br regenerates the
ground state [Pd’] catalyst, closing the catalytic cycle.*®

Conclusions

In summary, we have developed a one-step synthesis of valuable
C2-ketonylsugars from readily available 1-bromosugars and silyl
enol ethers via a 1,2-SCS process catalyzed by excited-state
palladium. The reaction features a broad substrate scope,
tolerates a wide range of functional groups, and is amenable to
late-stage modification of disaccharides, natural product- and
drug-glycoconjugates. Preliminary experimental and computa-
tional mechanistic studies suggest a non-chain radical mecha-
nism involving photoexcited Pd-complexes, a 1,2-SCS process,
and a Mizoroki-Heck reaction. The catalytic 1,2-SCS process via
a [2,3]-acyloxy migration could (i) offer a general catalytic
strategy for the site-selective functionalization of carbohydrates
to access a wide array of unexplored carbohydrate mimetics and
(ii) guide the design and development of new transformations
in organic synthesis.
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