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Thioether-enabled palladium-catalyzed
atroposelective C—H olefination for N-C and C-C
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Thioethers allowed for highly atroposelective C—H olefinations by a palladium/chiral phosphoric acid
catalytic system under ambient air. Both N-C and C-C axial chiral (hetero)biaryls were successfully
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constructed, leading to a broad range of axially chiral N-aryl indoles and biaryls with excellent

enantioselectivities up to 99% ee. Experimental and computational studies were conducted to unravel
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Introduction

Axially chiral compounds are ubiquitous structural motifs in
biologically active natural products,* privileged catalysts,> chiral
ligands® and material sciences.® In recent years, transition-
metal-catalyzed asymmetric C-H activation® has become an
efficient and powerful synthesis platform to construct diverse
axial chirality.*” Atroposelective ortho-C-H functionalization of
(hetero)biaryl precursors is one of the attractive approaches to
diversified chiral (hetero)biaryls.® Based on this approach,
numerous directing groups (DGs) have been identified to
provide the required steric congestion and reactivity (Scheme
1a).”** For example, isoquinolines and pyridines were employed
in rhodium-catalyzed C-H functionalization for axially chiral
biaryl compounds synthesis by Murai,® You,'* and Lassaletta.™
Pyridine N-oxides were applied to palladium-catalyzed asym-
metric C-H iodination by You.' Chiral sulfoxides as DGs were
elegantly utilized for diastereoselective C-H activation by
Wencel-Delord/Colobert.*> In contrast, phosphine-based DGs
enabled palladium-catalyzed C-H olefinations to prepare chiral
phosphineolefin compounds.*® The Shi group found free ami-
nes**? and quinolines* as efficient DGs for synthesizing
axially chiral biaryl compounds via palladium/chiral phos-
phoric acid (CPA) catalytic system. Likewise, Shi group devel-
oped the atroposelective C-H functionalizations of biaryl
aldehydes to prepare axially chiral aldehydes through chiral
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the walking mode for the atroposelective C—H olefination. A plausible chiral induction model for the
enantioselectivity-determining step was established by detailed DFT calculations.

transient directing groups (cTDGs) strategy.’® Despite these
significant advances in the synthesis of axially chiral
compounds, the exploration of other DGs and catalytic systems
to expand more structurally diverse axially chiral biaryls
continue to be in high demand.

N-C axial chirality is the key element of atropisomeric
natural products and chiral catalysts,’>"” and unexplored
compared with C-C axial chirality and remains a major chal-
lenge."® This is largely due to the increased distance between the
ortho-substituents next to the N-C chiral axis, leading to rela-
tively low rotational barrier and atropostability.”® Recent
representative contributions for the construction of N-C axially
chiral scaffolds hail from the Wencel-Delord/Colobert,** Xie,*®

a) Catalyzed construction of axially chiral biaryl enabled by different DGs
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Scheme 1 Atroposelective C—H activation for axial chirality.
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Shi,** among others.?” Asymmetric C-H functionalization of N-
aryl heterocycles or N-aryl amides is a useful synthetic strategy
to construct N-C axial chirality.”>*"***¢ However, this strategy
was thus far unfortunately restricted to the use of super-
stoichiometric amounts of cost-intensive silver salts, jeopard-
izing the inherent atom-economy of the C-H activation strategy.

Recently, aryl alkyl thioethers have been reported as DGs for
C-H functionalization.?® However, the use of thioethers as DGs
in asymmetric C-H activation has remained elusive.”* Within
our program on sustainable C-H activation,” we have now
unravelled a thioether-directed strategy for the enantioselective
synthesis of N-C and C-C axially chiral molecules with air as the
oxidant, thereby only giving H,O as the sole byproduct (Scheme
1b). Salient features of our findings include (a) thioether-
directed atroposelective C-H functionalization, (b) construc-
tion of N-C axially chiral scaffolds in the absence of toxic
oxidants, and (c) key mechanistic insights into the mode of
enantio-induction by DFT calculations.

Results and discussion

We first chose N-arylindoles 1a bearing a thiomethyl group as
the model substrate for the synthesis of N-C axially chiral
motifs (Schemes 2 and S1 in the ESIT). We selected Pd(OAc), as
the catalyst and air as the oxidant to test various chiral acids.
Several N-protected amino acids were first probed in the pres-
ence of ethyl acrylate (2a) in nBu,O at 65 °C for 24 h. L1-L3
afforded product 3a in moderate yield albeit without enantio-
selectivity control. Next, simple chiral phosphoric acid (CPA, L4)
was examined but no enantioinduction was detected. To our

Pd(OAc), (10 mol %)
ligand (15 mol %)
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nBu,0O, air (1 atm) /] N CO,Et
65°C,24h
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Scheme 2 Optimization of the N—-C atroposelective C—H olefination.
Reaction conditions: 1la (0.10 mmol), 2a (0.30 mmol), Pd(OAc),
(10 mol%), ligand (15 mol%), nBu,O (2.0 mL), 65 °C, under air (1 atm).
Yield was determined by 'H NMR. The ee value was determined by
HPLC analysis.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

delight, when H8-Binol CPA L5 bearing 9-anthracenyl substit-
uents was examined, product 3a was obtained in 60% yield with
87% ee. Further optimization of CPAs L6-L9 indicated that L8
was superior, leading to excellent enantiocontrol of 97% ee.
Overall, the optimized reaction conditions were viable with
ligand L8 under air in nBu,O at 65 °C.

With the optimized reaction conditions in hand, we next
explored the generality of the palladium-catalyzed N-C atropo-
selective olefination (Scheme 3). A broad range of alkenes 2
provided the desired products 3a-3n with excellent enantiose-
lectivity up to 99% ee. Acrylates with different groups were well
compatible with the catalytic system (Scheme 3, 3a-3g).
Specially, benzyl acrylate (2f) afforded the desired olefinated
products 3f with 99% ee. Acrylamide provided the desired ole-
finated product heterobiaryl 3h in 67% yield with 90% ee. The
absolute configuration of 3h was unanimously assigned by
single-crystal X-ray diffraction analysis (CCDC 21446887),
featuring a R configuration. Styrenes were also suitable partners
for this transformation under 1 atm of oxygen. The reaction of
4-methoxystyrene proceeded to give the olefinated products 3i
in 58% yield with 97% ee. Electron-deficient CF;-substituted
styrene delivered product 3j with slightly reduced enantiocon-
trol of 89% ee. Next, a variety of N-arylindoles 1k-1n were tested.
Thioether DG bearing benzyl substituent was well compatible
with this transformation (3k). Indole 11 with an electron-
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Scheme 3 N-C atroposelective C—H olefination of N-aryl indoles.
¢ Under oxygen atmosphere.
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donating methoxy group provided the corresponding olefinated
product 31 with 91% ee. The fluoro- and chloro-substituted
indoles (Im and 1n) were likewise tolerated in the N-C
atropo-selective alkenylation with excellent enantioselectivity
(3m, 98% ee; 3n, 96% ee).

To further illustrate the diversity of the thioether-directed
atroposelective C-H activation,?® the construction of C-C axial
chirality was next explored (Scheme 4). Various acrylates were
well-tolerated with high enantiocontrol (5a-5g, 87-98% ee).
When the aerobic olefination was performed on gram scale, the
product 5¢ was obtained in 86% yield and 98% ee. Acrylamide
2h provided the desired olefinated product 5h in 53% yield with
90% ee. In addition, the olefination with vinylphosphonate
proceeded efficiently to give the product 5i with excellent
enantiocontrol (99% ee). High enantioselectivity (5j, 94% ee)
was obtained when 4-methoxystyrene was employed as the
olefination reagent. Next, we investigated the scope of biaryl
thioethers. Biaryls with substituents on the naphthalene were
well tolerated, giving the desired products (5k, 96% ee; 51, 95%
ee). The absolute configuration of compound 5k was assigned
by single-crystal X-ray diffraction analysis (CCDC 21306997),
featuring a R configuration. In addition, substituted biaryls
proved also feasible with enantioselectivity and furnished the
corresponding products 5m-50 with high ee. Substrates
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Scheme 4 C-C atroposelective C—H olefination of biaryls. # Pd(OAc),
(7.5 mol%), L8 (12 mol%). ® Under oxygen atmosphere.
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Scheme 5 Key mechanistic findings.

containing methoxy at the ortho- and para-position likewise
gave the desired product 50 in 63% yield with 95% ee. Thioether
DGs bearing benzyl substituents was found compatible (5p,
60% yield, 92% ee). Interestingly, substrate with an acrylate
substituent provided the desired intramolecular olefinated
product 5q with the coumarin scaffold in good enantiose-
lectivity. This approach set the stage for the synthesis of
coumarin scaffolds with axial chirality.

In order to shed light on the operative catalysis of this
atroposelective C-H olefination, the kinetic isotope effect (KIE)
experiment was performed by parallel reactions of substrates
1a-D and 1a with 2a (Scheme 5a). The KIE of ky/kp = 1.2 was
indicative of C-H activation not being the rate-determining
step. Next, the reaction of substrates 1la and 2a under
a nitrogen atmosphere provided product 3a with a low yield of
<10%, highlighting that catalytic turnover did not occur
(Scheme 5b). The reaction under an atmosphere of isotopically-
labeled "0, atmosphere led to the selective formation of H,'®0,
which was trapped by P,Os to afford the ‘*O-containing phos-
phoric acid (Scheme 5c). These control experiments clearly
showed that oxygen in the air was the oxidant for this aerobic
transformation.

To gain insights into the N-C atroposelective C-H alkenyla-
tion, the reaction mechanism was probed by means of DFT
calculations.” Free energy changes for the generation of R-
configuration and S-configuration product are depicted in Fig. 1
and 2. Starting from the complexation of L8 to Pd(OAc), and the
coordination of 1a, intermediate int1-R is formed. Subse-
quently, int1-R undergoes a facile C-H activation step to form
the arylpalladium species int3-R. This relatively low C-H acti-
vation barrier is consistent with the experimental KIE of 1.2
(Scheme 5a). The alkene coordination and the following inser-
tion through TS5-R generates the alkylpalladium intermediate
int6-R. Then, int6-R undergoes a B-hydride elimination to form
a palladium hydride species int8-R, leading to the reduced
palladium(0) complex int10-R with product coordination. Based
on the most favorable pathway for the palladium-catalyzed N-C
atroposelective C-H alkenylation, the rate-determining step is
the B-hydride elimination, with a barrier of 21.6 kcal mol ™. As

© 2022 The Author(s). Published by the Royal Society of Chemistry
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AG(kcallimol), »-B97XD/6-311+G(d,p)-SDD-SMD(dibutylether)/B3LYP-D3(BJ)/6-31G(d)-LANL2DZ
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|<— C-H activation —>|-7 olefin insertion |I= B-hydride elimination I

Fig. 1 DFT-computed free energy profile of palladium-catalyzed N-C atroposelective C—H alkenylation for R-enantiomer. Computational
methods: w-B97XD/6-311+G(d,p)-SDD-SMD(dibutylether)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ.

for the S-enantiomer, the initial C-H activation step is also for the R-enantiomer. Likewise, we also confirmed that the
facile. However, the olefin insertion step requires a barrier of racemization of the axial chirality of the alkylpalladium inter-
24.5 keal mol ™', which is significantly higher than the barrier ~mediate int6-R is not feasible after the olefin insertion step

AG(kcal/mol), ©-BI7XD/6-311+G(d,p)-SDD-SMD(dibutylether)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ

o)\ N Pd 4 %
/ ] o -
int1-S S 0—P—0 Me N Ny S o=¢_
N, 7 I ’ e / o
Pd s\Pd/o\P,OD COLEt N P
Z y . (: }_l"—\
\ »\Me NI ~o7 Mo int8-S CO,Et
HO CO,Et )
int10-S
int6-S

[<®«—————— C-H activation —+7 olefin insertion =J]= B-hydride elimination 44

Fig. 2 DFT-computed free energy profile of palladium-catalyzed N-C atroposelective C—H alkenylation for S-enantiomer. Computational
methods: w-B97XD/6-311+G(d,p)-SDD-SMD(dibutylether)//B3LYP-D3(BJ)/6-31G(d)-LANL2DZ.
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Fig. 3 DFT computed transition states involved in the enantiose-
lectivity-determining step (olefin migratory insertion). In the transition
state structures, non-participating hydrogens are removed for clarity.

(Fig. S3 in ESIT). Thereby, the olefin insertion is identified as the
enantioselectivity-determining step.

To reveal the exact origins of enantioselectivity, we directed
our attention to the nature of the migratory insertion transition
states. Fig. 3 displays the optimized structures and relative free
energies of the two competing enantioselectivity-determining
transition states TS5-R and TS5-S. Thus, when comparing the
two competitive transition states, the sterically demanding L8
occupies the first and fourth quadrants. The substrate 1a is in
similar positions in the two transition states (second quadrant).
The olefin 2a (highlighted in green), however, is positioned in
different quadrants. In the favoured transition state TS5-R, the
ester group is in the third quadrant, which is distant from the
bulky L8. In the disfavoured transition state TS5-S, the same
ester group is positioned in the fourth quadrant, which leads to
steric repulsions with the sterically congested ligand L8, being
responsible for the destabilization of such transition state.

To evaluate the atropostability of the N-C axially chiral and
the C-C axially chiral compounds, the rotational barriers and
half-lifes for racemization of 3a and 5a were determined as
depicted in Scheme 6. The results suggest that the C-C axially
chiral compound 5a is more atropostable than N-C axially
chiral compound 3a.

;; SMe I SMe
N X COEt
gy QU

3a 5a

AG” = 34.0 kcal/mol
ty,= 15 years

AG” = 39.5 kcal/mol
t1, = 51333 years

Scheme 6 Calculated rotational barriers for the racemization of
products 3a and 5a and the corresponding half-life at 65 °C.
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Scheme 7 Atroposelective palladium-catalyzed C—H alkynylation.

Encouraged by our results, we wondered whether the
thioether-directed palladium-catalyzed atroposelective C-H
functionalization might enable C-H alkynylation to prepare
chiral molecules containing an alkynyl moiety. To our delight,
and otherwise identical reaction conditions as the atropose-
lective C-H olefination, the reaction of biaryl substrate 4a and
TIPS protected alkynyl bromide 6 afforded product 7a in 52%
yield with moderate enantioselectivity (71% ee, Scheme 7).

Conclusion

In summary, we have reported on thioether-enabled atropose-
lective C-H olefination via a palladium/chiral phosphoric acid
catalytic system. Both N-C and C-C axial chiralities were
successfully established, leading to a broad range of axially
chiral N-aryl indoles and biaryls with excellent enantioselectiv-
ities up to 99% ee. Notably, the catalytic system used air as the
terminal oxidant instead of environmentally-unfriendly and
expensive silver salts. Experimental and computational studies
were conducted to illuminate the mechanism, which involves
C-H activation, olefin insertion, and B-hydride elimination. The
chiral induction mode of the enantioselectivity-determining
step was identified by detailed DFT calculations.
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