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discovery of autocatalytic networks in abiotic
reactions†
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Markus Meringer i and Henderson James Cleaves, II *bf

A central question in origins of life research is how non-entailed chemical processes, which simply dissipate

chemical energy because they can do so due to immediate reaction kinetics and thermodynamics, enabled

the origin of highly-entailed ones, in which concatenated kinetically and thermodynamically favorable

processes enhanced some processes over others. Some degree of molecular complexity likely had to be

supplied by environmental processes to produce entailed self-replicating processes. The origin of

entailment, therefore, must connect to fundamental chemistry that builds molecular complexity. We

present here an open-source chemoinformatic workflow to model abiological chemistry to discover

such entailment. This pipeline automates generation of chemical reaction networks and their analysis to

discover novel compounds and autocatalytic processes. We demonstrate this pipeline's capabilities

against a well-studied model system by vetting it against experimental data. This workflow can enable

rapid identification of products of complex chemistries and their underlying synthetic relationships to

help identify autocatalysis, and potentially self-organization, in such systems. The algorithms used in this

study are open-source and reconfigurable by other user-developed workflows.
Introduction

Organic chemistry has evolved as a science by the development
of methods allowing for predictive application of high-yielding
bond-transformation techniques to produce desired products,1

generally focusing less on the side-products of such trans-
formations. Low-yield, diversity-generating, multi-step, single-
pot reactions have thus received less scrutiny, though these
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may include reactions of interest to elds including green,2

organic geo-,3 food,4 and prebiotic chemistry.5

Provided there are propagable reaction centers, relatively
simple organic compounds can seed complex one-pot reaction
networks to give rise to complex product mixtures, sometimes
producing thousands or millions of unique isomeric products.
Examples include Maillard chemistry (important in taste and
avor development in cooking, e.g., ref. 4), and the chemical
complexity observed in carbonaceous meteorites6 and other
chemistries which may have been important for the origins of
life (e.g., ref. 7).

The chemical diversity of the products of such complex
chemical reaction networks (CRNs) can contribute to their
emergent bulk properties. Due to the complexity of their
chemistry, reaction circuits (that is to say concatenated reac-
tions that lead to some dened outcome) that are not imme-
diately obvious may have an outsized impact on the overall
evolution and emergent properties of CRNs.8 For example, the
avor and aroma of cooked foods may derive from robust
underlying diversity-generating reactions among relatively
simple ingredients,4 the chemical complexity of source petro-
leum may affect the cost of its purication9 and the decompo-
sition of pharmaceuticals during storage may affect their
efficacy.10

It is unknown which compounds were important for the
origins of life, and it can be difficult for chemists to analyze the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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underlying chemistry of CRNs and their resulting products.11

Chemists are thus oen le with using the presence or absence
of specic compounds in prebiotic samples and simulants to
evaluate the importance of both the compounds themselves
and the processes which produce them.12,13

Computational modeling of CRNs gives rise to chemical
reaction network representations (CRNRs), which may allow
accurate prediction of which compounds are most likely
produced in CRNs, as well as minor and perhaps transient
products which heavily affect their course. CRNRs are a frame-
work for interpreting CRNs via their likely underlying chem-
istry, and can shed light on which compounds and processes
are crucial for CRN evolution.

Chemists typically learn generic “named” reaction mecha-
nisms that become their conceptual “toolkit” for predicting
reaction outcomes and planning syntheses.14 Over the last few
decades, computational methods have been developed to
Fig. 1 Theworkflow described in this paper. (A) First, templates for chemi
is internally treated as—with nodes representing atoms and edges repres
destroyed and those in R are created, keeping the core context K intact. T
Reactant molecules are loaded to enable (C) reaction network evolut
products. (D) Literature reports or agreement with experimental data are
analysis tools are used to evaluate the properties of the molecules prod

© 2022 The Author(s). Published by the Royal Society of Chemistry
heuristically predict reaction outcomes of CRNs, which has
made retrosynthetic analysis and reaction outcome prediction
increasingly amenable to computational automation.15,16

CRNs may efficiently produce one or a few major products,
with a variably complex coterie of side-products, or distribute
products among a complex mixture without there being an
easily identiable major product set. In many cases, a few
common heuristic reaction mechanisms may be able to explain
the majority of CRN observed chemical diversity. On another
axis, specic products, whether singular or multitudinous, may
dominate the overall properties of the product mixture, or be
involved in dynamical processes which are not detectable in
simple end-point product analyses. Some examples of these
possible outcomes include the phenomenon of “boar taint,” in
which highly sensorially detectable contaminants can ruin a-
vor perception at low detection thresholds,17 or the detection of
specic compounds such as adenine in HCN polymerizations,18
cal reactions are developed that act on the “graph” that amolecule itself
enting chemical bonds. In the reaction illustrated here, bonds in L are
he result of this transformation gives the product(s) of this reaction. (B)
ion, by applying the reaction rules to each successive generation of
used to vet network output. Finally, (E) cheminformatics and network
uced and the presence of autocatalytic processes.

Chem. Sci., 2022, 13, 4838–4853 | 4839
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in low yield has perhaps pushed the perceived importance of
HCN chemistry for the origins of life.19

Conversely, the synthesis of a key compound in low abun-
dance, if generated in the context of an amplifying or selective
reaction mechanism, may lead to the formation of large
amounts of non-obvious products that may be important for the
overall progression of complex reactions. An example of this is
Robinson's tropinone synthesis.20 Such phenomena in which
transient unstable compounds help establish and propagate
networks of rare, but self-amplifying reactions, may be crucial
for understanding the chemical origins of life.

Carbonaceous chondrite (CC) meteorites have been heavily
studied as examples abiological organic chemistry,21,22 and
contain both small, soluble, and easily identiable molecular
products as well as higher molecular weight products. Various
laboratory models have been proposed as approximations of the
processes which produced CC organics,22–26 but none of these
models are completely able to explain all of the measured
features of CC organics.

High resolution Fourier Transform Ion Cyclotron Resonance
(FT-ICR) mass spectra offer snapshots of the molecular diversity
produced by CRNs (see Fig. 1D and ESI Fig. 1†), and provide
benchmarks for CRNRs. The products of CRNs are oen
extremely heterogeneous, and untargeted product identica-
tion is challenging given organic structural isomerism.27 In sil-
ico computed CRNRs generate analyzable approximations of
CRN mixtures and offer a way to collapse the possible isomer
space for product identication and reaction exploration in
CRNs.

It is difficult to understand the relational aspects of the
underlying chemistry in CRNs, for example to detect the
phenomenon of autocatalysis. Autocatalysis has attracted
considerable attention in the context of the origins of life.28 In
large CRNs, autocatalysis may be common but hard to detect
even using high-resolution MS due to isobaric product degen-
eracy.29 Autocatalysis can be engendered in various ways.30–32 In
the formose reaction,33,34 in which formaldehyde (HCHO),
reacted in the presence of glycolaldehyde (HOCH2CHO) under
basic conditions to form complex products, autocatalysis arises
because reaction products serve as reaction catalysts.34 Many
other examples of simple, generic autocatalytic reaction
sequences may exist, and in silico reaction modeling may be
able to help nd them.

We present here an open-source computational workow to
help identify CRN products and processes, including autoca-
talysis, and the prediction of their properties. To demonstrate
the potential power of this approach, we explore a well-studied
simple CRN, the aqueous alkaline degradation of glucose
(ADG). Glucose is among the most abundant biological mono-
mers, and is especially abundant in the biosphere in the form of
cellulose which is a major component of plant mass (wood,
leaves, etc.) and is continuously introduced into the environ-
ment in copious amounts by processes such as the seasonal
dropping of deciduous leaf litter and microbial biomass turn-
over. The large variety of glucose aging products which may
contribute to seawater dissolved organic matter (DOM) which
4840 | Chem. Sci., 2022, 13, 4838–4853
ultimately become incorporated in ubiquitous kerogen is thus
of fundamental interest.

Glucose is relatively stable at room temperature and low
humidity,35 but decomposes into a complex caramel mixture
rapidly when heated, or under basic conditions.36 Caramel can
be derived from various sugars (most typically from sucrose),
and has complex taste classications which underscore how its
properties depend on subtleties of reaction conditions.37 While
ADG is a simple test-bed for the development of this workow,
this workow can easily be adapted to other reaction chemis-
tries including those relevant for understanding geochemical
transformations of organic materials, the origins of complex
organics in astrochemical settings, and the origins of life.

Results and discussion

We modelled the degradation of glucose in silico using purely
open-source tools. To asses whether our simulation is capable
of explaining real world chemistry, we tested if it could explain
the species reported in a comprehensive study on the same by
ref. 36 and our own high-resolution mass spectra collected for
the purpose of this study. We found good agreement with
observations, which are described below. For modeling
purposes, the workow presented here uses MØD,38 which is
a graph theory-based chemical reaction modeling soware
package. In MØD, graphs provide a framework for representing
chemical reactions where molecules can be treated as nodes in
a graph, while the edges connecting them symbolise reactions.39

In the workow presented here, molecules are also given
another graph representation in which individual atoms are
abstracted as nodes and labelled edges indicate chemical bonds
between them. A detailed discussion of the methods can be
found in ESI Section 3,† but an overview of the pipeline is
presented here (see Fig. 1).

A set of reaction mechanisms was rst compiled, with each
mechanism written in GML format.40 Removal and addition of
edges within a graph (here, a molecule), mimics the effect of
breaking and creating chemical bonds—essentially creating
a new molecule. In the example shown in Fig. 1A, we show
a motif (or “reaction rule”) which dictates that the bonds in the
R graph are to be created and those in L are to be destroyed,
given that a common context K can be found in both species.
During the course of the reaction, K is the part of the molecule
that remains unaltered (see ESI Fig. 2, and ESI Section 3.1†).
The molecule(s) resulting from the graph transformation are
the product(s) of the reaction. A complete library of reaction
rules is applied to a set of initial reactants, giving rise to an
initial set of products, which became input as reactants for the
next generation of reactions. As the process is iterative, we shall
call this initial set of products “Generation 1”. This process can
be continued for any number of iterations (or generations)
decided by the user, which causes the network grow at each
step. Aer completion of all reaction iterations, the entire
network can be dumped into a format that can be processed
using other tools and further analysis such as comparison with
experimental data, computing molecular descriptors, and
searching for autocatalytic cycles within it (Fig. 1E). This
© 2022 The Author(s). Published by the Royal Society of Chemistry
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pipeline is open-source, written mostly in Python, and can be
easily accessed along with relevant documentation at https://
github.com/Reaction-Space-Explorer/reac-space-exp. Further,
extensive examples of loading chemicals and reaction rules
among other procedures can be found on the MØD documen-
tation pages at https://jakobandersen.github.io/mod/ which
also have an interactive playground for testing scripts without
requiring local installation.
Fig. 2 (A) The number of new products (blue triangles) and new rule ap
generation (red circles, right y-axis). The presented data are not cumula
produced by the ADG CRNR as a function of reaction generation. T
constitutional isomers generated in the CRNR. (C) The m/z 160–200 re
ments. Observed peaks that had a monoisotopic mass match with spec
generation of first appearance. Peaks were normalized separately in eac
more than one dot per bar is due to the close spacing of the exact mass
product of many ADG reactions, so it is not surprising that the spectra a
(diamonds).

© 2022 The Author(s). Published by the Royal Society of Chemistry
To show the application of this workow, we examined the
reaction of water and glucose as initial reactants and allowed all
mechanisms dened in our reaction rule set to operate. This
rule set was selected based on our chemical intuition and
literature precedent (see ESI Section 3.2† for details). We iter-
ated the reaction for a total of ve generations. As this process
was elaborated, the rules for reaction network expansion
allowed any potential reaction to occur as soon as potential
plications (blue stars) on the left y-axis, and the computation time per
tive. (B) Lollipop plot of the mass distribution and isomer redundancy
he Y-axis scale shows the cumulative frequency of unique isobaric
gions of the ESI-FT-ICR mass spectra of wet and (D) dry ADG experi-
ies produced in the ADG CRNR (up to 4 decimal places) annotated by
h spectrum within the shown mass range. The apparent presence of
es of products in some mass regions. Water is an early and significant
re similar. The comparison algorithm also matches 13C isotopologues

Chem. Sci., 2022, 13, 4838–4853 | 4841
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substrates were produced. Fig. 2A shows the numbers of prod-
ucts, rule applications and computation times as a function of
generation (see also ESI Table 1†).

We quickly found that some rules in our set caused a sharp
growth in computing time. The computing resources required
can quickly become a bottleneck, even aer imposing a cutoff of
200 amu on the maximum allowed product mass, it was possible
to expand the network practically to only ve generations using
desktop computational resources (see Methods†). The h
generation produced 40 512 products—with a cumulative total of
48 401 unique products across all generations. Since this
computed model is only an approximation of real chemistry,
following41 we refer to this network as a CRNR. Fig. 2B shows the
mass distribution and frequency of isobaric isomers generated in
this CRNR.

It is clear from Fig. 2A that computation time increases
roughly exponentially for each generation, though this only
became ponderous in generation ve. Extrapolating these values
using least squares ts suggests 6th and 7th generations would
take months to years using our employed computational
resources, and would produce �3.2 � 105 and �2.3 � 106

structures, respectively. These values are expected to change with
the upper mass limit described previously, an effect we illustrate
Fig. 3 (A) A comprehensive representation of the ADG CRNR after fi

appearance. Node size is proportional to the in-degree of compounds. (B
light-green. (C) A comprehensive visualization of the computed network a
Representation of plot (C) for the compounds detected in ref. 36. Experim
CRN, but there is also some clustering of the identified compounds in re
CRN also cluster. Zoomed insets in (A and C) show the fine scale structur
by-products which may contribute to the CRN's overall compositional d

4842 | Chem. Sci., 2022, 13, 4838–4853
in ESI Fig. 4† by varying the maximum mass limit from 200 to
300 amu. Certainly, at some point all possible structures #200
amu reachable using these rules would be computed, and
correspondingly the differential number of output products and
computation time would decrease to zero. Graphical represen-
tations of the overall ADG CRNR output, including its connec-
tivity aer ve generations is shown in Fig. 3.

A metric that quanties the connectivity of a node in a graph
is its node degree. Compounds generated earlier in networks
generally have both higher in- and out-node degrees (see ESI
Fig. 4A and B†). This is mainly due to their early formation
during CRNR synthesis. Novel h generation compounds can't
have out-degrees in this computation, and oen have low in-
degree scores. Related to this point, the majority of
compounds in the CRNR, including most produced in early
generations, have low in- or out-degree (see ESI Fig. 4A and B†).
In other words, relatively few reactions have produced or
consumed them. Reaction efficiency distributed over so many
compounds may generate only extremely trace yields of output
species in real world chemistry aer a lengthy series of reac-
tions. Indeed, this underscores the point that many analyses of
complex diversity generating reactions are likely myopic due to
analytical limitations.
ve generations with compounds colored by their first generation of
) Compounds detected in ref. 36 produced in this CRNR are shown in
fter five generations colored by the out-degree of each compound. (D)
entally verified compounds are a small subset of those predicted by the
gions of the CRN where high in- and out-degree compounds from the
e of the ADG CRNR, demonstrating the large number of potential CRN
iversity.

© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc00256f


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
1/

9/
20

25
 1

:1
2:

37
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
It can be seen in Fig. 3 that highly connected compounds
generally cluster together. Some of these highly connected
compounds correspond to the compounds identied in ref. 36.
One might expect that compounds which are produced in early
generations with high in-degree and low out-degree would be
abundant products but in practice, kinetics and thermody-
namics undoubtedly combine to sculpt observed product
abundances over time. However, there is no signicant differ-
ence in the average in- and out-degrees of molecules that have
been identied analytically (discussed later) and the rest of the
network (see ESI Fig. 5†). Although part of the point of this work
is to help identify minor species in complex reactions, the rst-
order CRNR only identies plausible network products. This
methodology makes no claim as to the relative product abun-
dances at any point in the course of reactions. ESI Fig. 6† shows
the prominence of each codied reaction distributed across the
network; it can readily be appreciated that kinetic weighting of
the rules would affect the ultimate abundance of network
products.

Experimental validation

Given the centrality of glucose in biochemistry, its abundance
in biomass in the form of compounds such as starch and
cellulose (e.g., ref. 42), and the economic importance of using
such abundant by-products of agriculture (e.g., corn-stover43),
there is considerable interest in understanding how to convert
glucose to other economically useful compounds (e.g., lactic
acid44). We tested the validity of our ADG CRNR simulation by
matching our model's output against the compounds identied
in a previous comprehensive GC-MS analysis of this reaction36

(see ESI Section 3.5† for details). In addition, using our own ESI-
FT-ICR measurements of the laboratory degradation of glucose
done for this study, we sought to explain peaks in the mass
spectrometry with our CRNR. Electrospray ionization (ESI) is
not necessarily superior to GC-MS, but it may allow the detec-
tion of higher MW underivatized polar compounds, as it is not
affected by chromatographic effects. To this end, we reacted two
samples of D(+)-glucose ($99.5%, Aldrich), under either drying
or aqueous solution conditions. Details of sample preparation,
mass calibration and data processing methods are provided in
ESI Section 3.7.†

Matching with literature data

In just ve generations, 73% of the entire suite of compounds
with reported molecular structure by ref. 36 could be matched.
We used an approach similar in nature to retrosynthetic anal-
ysis to demonstrate that 47 of 49 (�96%) of the test set targets
are accounted for within nine generations (see ESI Section 3.6†
for details). We present the complete list of matched
compounds annotated by their generation of appearance in ESI
Fig. 8†. This correspondence between our model and observa-
tions illustrates that these simulation methods can predict
detected compounds.

However, this analysis does not explain the abundance of the
matched compounds, or the non-detection of CRNR
compounds. The CRNR produces many more compounds than
© 2022 The Author(s). Published by the Royal Society of Chemistry
have been detected analytically. There are two main explana-
tions for this. First, using GC-MS analysis, some compounds
cannot be identied due to the lack of reference standards or
mass spectral library matches. Some compounds perhaps do
not derivatize well, some may bind irreversibly to chromato-
graphic columns or chromatograph poorly, and many minor
compounds could be present in abundances below analytical
detection limits. Indeed, several unknown compound peaks
were noted in ref. 36, and summation of the product yields
provided in Tables 1 and 2† of reference36 gives a carbon
recovery of �60% in the form of identied compounds,
including scores of compounds identied in #1% yield. The
four most abundant compounds identied, accounting for
�25% of the recovered yield, include lactic acid, 2,4-dihydroxy
butanoic acid, 2-C-methyl-glyceric acid and formic acid. The
rst three are produced here in generation 3, the fourth in
generation 4.

Second, the CRNR allows for reactions which may be kinet-
ically or thermodynamically inhibited, and thus may over-
represent their importance. In the ADG reaction, and likely in
various similar reactions, some subset of the analytes can be
easily assigned to structures, though mass balance calculations
suggest these analyses miss a large number of products (e.g.,
ref. 36).
Overlap with mass spectrometry

Even though GC-MS analysis can be extremely informative for
analyzing low-MW fractions of complex organic mixtures,
higher MW fractions may require additional analysis. High-
resolution MS coupled with ESI offers an orthogonal way to
characterize ADG reaction products. The FT-ICR-MS methods
used here have a low-end MW cutoff of �150 amu, and our
computational methods imposed an upper MW limit of 200
amu for their practical exploration due to computational
resource limitations. Given these limitations, it was of interest
to examine the general concordancy of the ADG CRNR output by
comparing it to FT-ICR-MS data.

For a more informative representation, we created Kendrick
mass defect (KMD) and van Krevelen diagrams to see if the
model's products have a similar elemental composition as that
measured using mass spectrometry. Kendrick plots are used for
the identication of chemically related compounds in high
resolution MS, and produce easily visualizable graphical
representations of complex organic mixtures45 by placing the
one-dimensional MS peaks in a two-dimensional display. Each
mass peak having a unique composition has its own Kendrick
mass defect, which allows peaks to be resolved separately (see
ref. 46 for a discussion, and see ref. 47 for an application of
these techniques to prebiotic chemistry).

Fig. 4A shows an overlay of the ADG CRNR with experimental
negative ionization mode FT-ICR-MS data adjusted to corre-
spond toM–H educt masses.‡ The CRNR data have no kinetic or
thermodynamic weighting, but the general trends of the
modeled and measured data show good correspondence. The
CRNR output widens to include compounds either not
measured or not measurable in the experimental data. This may
Chem. Sci., 2022, 13, 4838–4853 | 4843
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Fig. 4 Modeled negative ionization mode Kendrick plot of the ADG CRNR (open gray circles) overlaid on measured “wet” ADG products as
measured using negative mode ESI-FT-ICR-MS (dots colored by first generation of appearance in the CRNR). (A) The ADG CRNR extends from
m/z 14 to 200while the FT-ICR-MS data extends fromm/z�150 to 750. (B) A zoomed view of the area in the red box in (A) in which the overlap of
the CRNR and measured data is more clearly evident (where colored dots fall inside gray circles). (C) A van Krevelen diagram of the computed
ADG products overlaid with data from the “wet” ADG experiment; (D) as in C but after truncating the dataset with the upper mass limit imposed in
the simulation (200 amu), which makes the correspondence between computer and laboratory experiments more apparent. Experimental
details can be found in ESI Section 3.7.†
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partly be due to their low molecular weight and potentially low
abundance. There is considerable overlap of the modeled and
measured data in the �175–200 amu regime where the two
datasets are directly comparable (Fig. 4B).

The extent of overlap can be quantied by counting the
number of overlapping data points. For simplicity, we have
excluded the consideration of 13C isotopologues in this plot.
Thus, in the narrow regime depicted in Fig. 4B, 19 out of 30
4844 | Chem. Sci., 2022, 13, 4838–4853
points (63.3%) from the MS data are reproduced by the model.
This strongly suggests that the CRNR accurately reects the
mass transformations of real ADG chemistry. There are two
primary reasons the model may not be able to recover all
compounds observed by MS analysis. First, the simulation may
not been able to explore the chemical space exhaustively in just
ve generations. Second, the selected set of reaction rules was
based on our own chemical intuition and may not be complete.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Computed cLog P values as a function of molecular mass,
colored by the generation in which the species are first produced. The
network produces more and more hydrophobic species as it evolves.
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That is to say, some of the chemical space may not be reachable
using these rules. One benet of these methods, however, is
that the user can readily add and select their own reaction rules.
Another way of characterizing bulk composition is the use of
van Krevelen diagrams, in which atomic ratios resolve species.
In Fig. 4C, it can be seen that as the CRNR evolves, an over-
density of products tends to shi near the origin of the H/C–O/C
plane. This likely indicates the effect of sequential H2O loss.48

The experimental data closest to the origin with H/C < 0.7, and
O/C < 0.3 likely represent polycyclic aromatic hydrocarbons
(PAHs) and other condensed aromatics, which the ADG CRNR
does not produce over the number of reaction generations
modeled here.

Molecules produced in the ADG CRNR closest to this group
of aromatics are shown in ESI Fig. 10.† This group includes o-
and p-benzoquinone, which are known to easily engage in both
one and two electron redox reactions. The dense experimental
cluster centered around H/C � 1.2 and O/C � 0.3 likely corre-
spond to so-called CRAM (Carboxyl-Rich Alicyclic Molecules),49

which are produced in the later generations of the ADG CRNR.
The effect of experimental conditions on the ADG reaction
product suite can be seen in ESI Fig. 9,† in which van Krevelen
diagrams of the wet and dry samples are compared.

It is apparent there are numerous CRNR values which do not
match the measured data, and the network attributes which
differentiate the corresponding and non-corresponding values
are places where more rened analysis (for example by auto-
mated evaluation of which reactions or reaction sequences
produce non-matching data points) could be of predictive value.
Further measurements using MS techniques sensitive to lower
mass ranges would provide constraints for CRNR development.

The trajectory of the ADG CRNR as analyzed using Kendrick
plots thus matches laboratory measurements well where good
data exists, and tracks the general trend of mass measurements
of higher MW products, especially for the earlier generation
products, though it also overpredicts in some respects, which
are good places for future renement of the techniques
described here. As for the Kendrick plot, for the van Krevelen
diagram (Fig. 4C), there is a signicant amount of real data from
masses outside the simulation range, but the matched data
makes predictions about the nature of these compounds. For
example, the branch in the data extending horizontally from (H/
C ¼ 2, O/C ¼ 1) is mainly matched by polyhydroxy acids in
the CRNR.
Chemical descriptor evaluation of ADG CRNR

It is useful to be able to quantitatively estimate the physical and
chemical properties of the large number of molecules generated
in large network such as the one considered here. Molecular
descriptors provide such quantitative metrics, and can help
explore how certain phenomena emerge with the growth of the
network. Descriptors and their calculation methods are
provided in ESI Section 3.8.† These methods also allow rapid
computation of chemical descriptors for compounds that have
not yet been identied in experimental CRNs, potentially
© 2022 The Author(s). Published by the Royal Society of Chemistry
leading to the a priori identication of emergent chemical
behaviors which can be connected to autocatalysis.

Fig. 5 shows the computed evolution of cLog P properties in
the CRNR, which may predict how the products could be ex-
pected to behave in terms of their solubility. It is evident that
the CRNR produces increasingly hydrophobic compounds
which may eventually lead to phase separation.

Fig. 4C shows that the atomic ratios of elements in the ADG
CRNR products change markedly during the reaction, causing
their cLog P Fig. 5 properties to evolve to be both higher and
lower than that of glucose, though the products generally tend
to be predicted to be more hydrophobic, as glucose is already at
a very high O/C ratio and very water-soluble. This maturation
effect has been shown to produce interesting self-organizational
properties in glucose-ammonia reactions,50 and has been noted
recently in experimental molecular cloud analog maturation
experiments.51

This suggests that the production of new phase-forming
materials is a common property of CRNs simply due to the
ways CRNs enable changes in the overall properties of product
molecules. Such descriptors can be combined with other user-
dened ones to identify autocatalytic reaction motifs which
can give rise to connected emergent properties besides novel
phase generation.
Consideration of enantiomers

All contemporary biology is highly chiral, as biology almost
exclusively constructs itself using L-amino acids and D-sugars.
The vast majority of possible organic compounds are them-
selves chiral,52,53 which is a simple attribute of the coordination
number of organic compounds. It has been proposed that large
chemical networks are likely to undergo spontaneous symmetry
Chem. Sci., 2022, 13, 4838–4853 | 4845
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breaking toward homochiral states.54 The computed ADG
network starts from a single organic compound with four chiral
centers, which are known to interconvert during the trans-
formations modeled here. This network does not track or favor
one stereoisomer over another. Most measurements, to the
extent they exist, suggest racemization is rapid in these kinds of
transformations. The extent to which a few catalysts might
control and favor the development of homochirality in networks
becomes a tangible question using these methods. For example,
though it might be moderately computationally challenging, it
would be possible to explore at which points in these networks
enantioselective catalysts would ip nodes to cohesive
chiralities.

The methods used here do not explicitly take stereochem-
istry into account; stereoisomers are attened into constitu-
tional isomers in this workow. Most of the reactions modeled
here would generate a mix of stereoisomer products. Fig. 6
shows the reaction connectivity of the 333 501 computed
stereoisomers generated from the 48 403 unique attened
initial ADG CRNR product structures aer ve reaction gener-
ations (see ESI Section 3.8† for details).

Fig. 6 suggests that most chirally redundant compounds
appear in the periphery of the network, chirality likely scales
with MW (see ESI Fig. 11†), and there is likely considerable
correlation between the number of stereoisomers across
generations.

This model ignores two important points, rst that kinetic
effects may favor one enantiomer over another, and second that
there may be stereochemical feedback in reaction networks
which are not explicit in the rules used to generate the modeled
Fig. 6 The number of potential stereoisomers as a function of reac-
tion generation (left color scale) for the computed ADG network. Node
size is linearly proportional to stereoisomer number (bottom size
scale). A circle pack layout in Gephi55 with generational hierarchy as an
attribute has been made.

4846 | Chem. Sci., 2022, 13, 4838–4853
network. If such effects are common, it should be a common
phenomenon that CRNs should be capable of amplifying
enantiomeric excesses, albeit perhaps randomly according to
stochastic seeding and as determined by kinetic and network
effects, which are not necessarily as yet computationally
predictable (e.g., ref. 54), similar to spin-glass models.56 Given
the importance placed on understanding the onset of homo-
chirality in the origins of life community, such potential effects
should be a prime target for rening this kind of modeling.

It has been suggested that modern metabolism, which is
mainly mediated by enzymatic catalysis, has its roots in non- or
semi-enzymatic processes.57 The ADG CRNR reveals a myriad of
ux possibilities for organic compounds starting with a rela-
tively simple input compound. Glucose is not formally deter-
mined with respect to its stereochemistry in this model, but one
could expect that starting with the L-enantiomer of glucose, or
any one of the 16 stereoisomers of hexose, essentially the same
stereochemically attened network would be obtained.

Various organic compounds in carbonaceous meteorites
have been shown to display enantiomeric excesses, including
amino acids,58–61 and hydroxy acids.62–64 The enantiomeric
excesses of sugar-derived compounds in the Murchison mete-
orite have also been found to have a systematic enantiomeric
excess which appears to propagate across these species with
increasing MW.65 Mechanisms have been suggested for how
such enantio enrichments can be achieved (e.g., ref. 66), but the
methods presented here may offer novel ways of identifying
amplifying mechanisms of observed enantio enrichments,
which may have implications for biases which become “locked
in” during the origins of life.
Detection of autocatalytic motifs

There are two fundamentally different types of catalytic reaction
networks. In the rst type, there are no formal catalysts, and the
closure of the reaction cycle is the catalyst.67 The analysis here
easily nds such cycles. The second type of catalytic reaction
network involves compounds which are best thought of as non-
covalent shape-recognizing catalysts, models considering such
networks have considerable history (e.g., ref. 68). In principle
such feedback mechanisms could be measured and formalized,
this is a “holy grail” in this research domain (e.g., ref. 69), the
methods presented here are a step in this direction as they
present a prescreened set of compounds connected by plausible
reactions.

We explored two methods to detect autocatalytic reaction
motifs. The rst used an “imperative” approach (see below), the
second used a “declarative” approach, in which the pattern to
be searched for was dened beforehand, and then a query
engine produced its own solution to nd the pattern (see ESI
Section 3.10†).

A benet of the imperative approach is that since it can be
programmed in Python, it helps the pipeline t together, since
the declarative approach relies on the user having Neo4j (a
graph query database) implemented, though Neo4j is also open-
source. The declarative approach has the benet that the
network can be cached in the Neo4j database so that the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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network can be built up over time, and the whole database does
not necessarily need to be read into RAM for calculations. This
method may be preferable where scale/computation time is an
issue, or where researchers build up reaction network databases
that need to be kept on hand for reference, or the search pattern
to be matched becomes very complex. Within a declarative
pattern match query one can also dene the catalytic molecule,
e.g. by adding a clause in the pattern to lter by SMILES
representation. The benet of this graph query language is that
it is not necessary to dig into graph algorithm code to modify
the patterns returned: the user needs only modify the query,
and Neo4j nds a solution to match the pattern the query
describes.

The imperative approach uses the Ford–Fulkerson algo-
rithm,71 performing a similar task as the declarative approach.
The user can here choose which node is the catalytic node (e.g.,
the node from which one edge leaves and two edges arrive). The
program then returns all dened autocatalytic motifs in which
this node is catalytic. This program took about 4 hours using
our computational resources to search for all such cycles among
the computed ADG CRNR and consumed�8 GB of RAM in each
task. �15 000 autocatalytic reaction cycles were found in the
generation 5 ADG network looking for autocatalytic cycles using
glucose as a starting or catalytic molecule. Many cycles of
different lengths were returned and the distribution of returned
cycle sizes had amaximum around a certain cycle size, although
this may have been affected by the fact that only 5 generations
of reaction expansion were generated and explored.

The Neo4J dened search pattern doesn't guarantee
a pathway identied as topologically autocatalytic is energeti-
cally favorable, since the reactions derived from reaction
expansion do not specically encode energetic information. To
address this problem, we merged computed thermochemical
information derived from the eQuilibrator API70 (see ESI Section
3.9† for details) onto the CRNR nodes so that network queries
could constrain energetic favorability. For example, sorting the
pattern match results by the minimum aggregated energy
across the reactions in the ring path and returning the lowest
energy paths should yield the most energetically favorable
reaction motifs.

Using the imperative approach possible autocatalytic cycles
in which all reactions were spontaneous according to thermo-
chemical calculations carried out under basic conditions (e.g.,
for which the free energy for each reaction, DrG0, is negative at
pH 10, Fig. 7) were extracted from the ADG CRNR. By restricting
the search for spontaneous cycles, there is a considerable
reduction in the number of cycles. The percentage of cycles with
spontaneous reactions with respect to the total number of cycles
found by the algorithm are: hexonic acid (16.6% of 16 902),
2,3,4-trihydroxybutanoic (0.6% of 16 900), tetrose (0.3% of
16 900) and pyruvic acid (0.1% of 16 902). The similarity in the
number of total reactions in each case is coincidental.

Some recently discovered reaction sequences of prebiotic
interest, e.g. the rTCA analogue studied in Stubbs et al.,72 could
not be discovered in this network, since they contain compo-
nents with masses >200 amu (namely citroylformate, isocitroyl
formate and aconitoylformate). This is notable as the apparent
© 2022 The Author(s). Published by the Royal Society of Chemistry
abundance of autocatalytic cycles containing only molecules of
MW < 200 in the ADG CRNR which may be able to accomplish
similar chemistries as other cycles which have been studied in
vitro points to there being many other interesting cycles le to
investigate, and also because there may be many nascent cycles
whose roots are discovered by this analysis but which would
require further iterations for full elucidation using these
methods.

Various studies suggesting methods for exploring chemical
space, and more particularly in prebiotic chemistry,41 using
CRNRs have been published (e.g., ref. 73), including a recent
report using methods based on scraping chemical databases for
reactions known to occur under what the authors considered
plausible prebiotic conditions.16 There is a wide variety of
reaction conditions to explore, and thus the chemical space of
simple reactions may be complex and require deeper automated
exploration and analysis.74 Orgel75 pointed out that the kinetics
which allow chemists to explore prebiotic chemistry are
possibly skewed more by the lengths of graduate and post-
doctoral fellowships than anything inherent to chemistry,
a notion reiterated and explored more deeply in ref. 76. Thus,
scraping the “prebiotic chemistry literature” likely over-explores
a small area of chemical reaction space, which is itself overly
focused on producing species present in modern biological
chemical space due to biases researchers introduce into how
they conceive life may have started.

The reaction mechanisms applied here were hand-selected,
but they are extremely general, and were applied liberally with
a single lter: are such reactions known to occur under basic
conditions? If so, they were incorporated in the network, even
though their kinetics are not parameterized explicitly. Accord-
ing to this logic, this creates a reaction landscape that can be
bootstrapped and explored according to criteria outlined for
example in ref. 16 and 76.

This workow may be considered overly permissive, but it
allows for reaction mechanisms to produce compounds which
have not been identied or looked for because they are easily
related to modern biochemistry, which side-steps an important
criticism (e.g., ref. 27, 77 and 78) of such methods and enables
exploration of chemical landscapes which lead in less obvious
ways to modern reaction cycles involving known compounds,
and allows for discovery of novel compounds and reaction
motifs and ways to generate phase separation, the development
of information transfer systems, and autocatalysis in ways
consistent with Ganti's chemoton model,69,79 e.g., in which the
development of chemical properties is related to the develop-
ment of systemic chemical network properties.

Emergent catalysis could become a mechanism for rein-
forcing chemical transformation pathways as permitted by
chemical kinetics and thermodynamics. We explored here the
possibility that the ADG CRNR offers a simple way to explore
how CRNs may switch between major modes of ow, which can
be expanded to other CRNs such as those including other heavy
atoms such as N and S, as well as environmental inuences
including transition metals and photochemistry. Discovering
structurally-based catalysis is presently complicated, as it
depends on knowing how compounds interact and stabilize
Chem. Sci., 2022, 13, 4838–4853 | 4847

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc00256f


Fig. 7 Exemplary autocatalytic motifs found in the ADG CRNR identified as autocatalytic and thermodynamically favorable. Panels (A) through
(D) show the frequency distributions of topologically identified autocatalytic cycles as a function of cycle length (top left in each panel), as defined
in the methods section by implementation of the imperative search strategy. In the upper right of each panel, the distributions of thermody-
namically favorable autocatalytic cycles among the topologically identified sets as determined using eQuilibrator70 as a function of cycle length
are shown, and exemplary cycles are shown below. (A) Two identified autocatalytic motifs using hexonic acid (produced in generation 1 from the
ADG of glucose) as the “catalytic molecule.” The cycle on the left only requires glucose as a feedstock once hexonic acid is produced. (B) An
identified autocatalytic motif using 2,3,4-trihydroxybutanoic acid as the “catalytic molecule.” This cycle is fed by glucose (provided in G0), tetrose
(produced in G1) and 2-hydroxy-3-oxo-4-pentenal (produced in G4). (C) Autocatalytic motifs found which use tetrose as catalyst. The motif on
the left requires glycolaldehyde (produced in G1 from glucose) and 2,3-dihydroxybutanedial (produced in G2 from glucose) as feedstocks; the
motif on the right is fed by glycolaldehyde and glyoxal (produced in G2). (D) An autocatalytic motif using pyruvic acid (produced in G3) as the
catalytic molecule. This cycle is fed by 3-hydroxypropanal (produced in G3), glucose (initial feedstock), glycolaldehyde, methylglyoxal (produced
in G2) and formaldehyde (produced in G2).

4848 | Chem. Sci., 2022, 13, 4838–4853 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Water is the most connected component over the five reaction network generations explored here with respect to both in and out-
degree. (Top) The remaining highest connected in-degree ADG node molecules are hexonic acid, formaldehyde, hexitol, acetaldehyde, gly-
colaldehyde, CO2, glyoxal, methylglyoxal and acetol. (Bottom) The remaining highest connected out-degree ADG node molecules are the input
molecule open-chain glucose, formaldehyde, acetaldehyde, CO2, glycolaldehyde, acrolein, acetone, methylglyoxal and crotonaldehyde.
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transition states. This is undoubtedly a key aspect of how
autocatalytic reactions may have led to the origins of life. In
contrast, it may be relatively simple to nd network autocata-
lytic reactions, as dened in for example (ref. 31, 67 and 80) and
these may already imbue CRNs with emergent properties,
for example by generating compounds capable of forming
new phases (e.g., ref. 50 and 81), which may further help
organize CRNs.

Water is the most connected component over the ve reac-
tion network generations explored here, followed by input open-
chain glucose, formaldehyde, acetaldehyde, hexanoic acid,
hexitol, acrolein, crotonaldehyde and CO2 (see Fig. 8). This
suggests, as might be expected, there is considerable overlap
between sugar degradation and formose chemistry, and also
among both of these chemistries and fermentative metabolism,
although the latter is considerably more cannelized.82 Further-
more, water is also the most connected component in terrestrial
biological metabolism.83 We do not necessarily ascribe a great
deal of meaning to this, though it may be unlikely that there
exist any other solvents (HCONH2, N2, H2, CO2, CH4, etc.) which
can exist under any planetary combinations of pressure and
temperature which so easily exchange mass with the reaction
networks they solubilize. This may be a unique aspect of
aqueous chemistry with respect to enabling living systems.

Comparison with biological databases

The ADG CRNR contains tens of thousands of compounds
produced aer only a few generations. To assess the extent to
which ADG CRNR products exist in biology, we compared the
© 2022 The Author(s). Published by the Royal Society of Chemistry
ADG CRNR with two well-known databases of biological mole-
cules: the Human Metabolites Database (HMDB84), the Kyoto
Encyclopedia of Genes and Genomes (KEGG85), and the E. coli
Metabolome Database (ECMDB86). Since SMILES representa-
tions of molecules can be written in several ways, to make direct
comparison between the CRNR output and the databases, both
sets were converted to canonical SMILES representations. To
make accurate dataset-to-dataset comparisons, the HMDB,
KEGG and ECMDB matches were limited to compounds of
#200 amu containing only CHO.

The overlap of this network with biological metabolic
transformations is small (see ESI Fig. 13†), thus although
arguments have been made that ADG may mirror the ontogeny
of aspects of glycolysis, the same could be said of many sugars,
thus this sort of retrograde inspection may be suspect, except
with regard to considerations such as the relatively low reac-
tivity barriers of sugars87 in general, or glucose's tendency to
form a cyclic hemiacetal.88

Reduction of isobaric isomer search space

This analysis can assist in the identication of compounds in
complex mixtures. Identifying compounds in complex mixtures
solely using 1DMS data can be complicated by the large number
of potential isobaric isomers for any given m/z value. Reaction
network modeling allows for an extreme reduction in the
unknown product search space. Our model's agreement with
the FT-ICR-MS data presented here does not guarantee the
unequivocal identication of unique species, but it reduces the
chemical search space by several orders of magnitude.
Chem. Sci., 2022, 13, 4838–4853 | 4849
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Fig. 9 (A) Comparison of the number of uniquemolecular graphs as a function of nominal mass obtained by MolGen, the Beilstein database, the
NIST MS database (data adapted from ref. 90) and the computed ADG CRNR from this study. (B) Coverage of the molecular graph space by the
ADG network (filled asterisks), the Beilstein database (filled crosses) and the NIST MS database (open diamonds) relative to the cumulative isomer
spaces computed by MolGen.
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Fig. 9 shows the number of unique molecular graphs per
nominal mass produced by this ADG CRNR compared to those
present in repositories, including the Beilstein and NIST MS
databases,89 as well as the number expected to be theoretically
possible. For consistent comparison, numbers were limited to
CHO-containing molecules, based on Appendix D of ref. 90.
Fig. 9 highlights the utility of the methods presented here to MS
analysis of complex mixtures. Although the reference data pre-
sented in Fig. 9 is now �16 years old, it is apparent that not all
of the compounds that could exist, whose numerosity grows
exponentially with increasing MW, have been synthesized in
laboratories or detected in nature. Second, MS databases
generally contain fewer compounds than are known to exist (see
the cross and diamond data points in Fig. 9A). Importantly, the
number of unique molecular graphs generated by the ADG
network is much smaller compared to that computed to
possibly exist by several orders of magnitude for a given
nominal mass over the mass range of 16–150 amu, but also
fewer in number compared to known compounds in databases
by more than an order of magnitude over this mass range, then
exceeding this above �128 amu. This suggests present MS
libraries are ill-equipped for the characterization of novel
compounds beyond 128 amu. The trends in these data suggest
that these discrepancies grow with increasing mass, and thus
compound identication incorporating reaction network
generators could both increase the accuracy of compound
identication in complex mixtures and speed the search time by
many orders of magnitude. A major contribution of this work to
understanding the composition of complex mixtures is thus the
extreme compression of the search space which needs to be
explored to understand the generative relationships of
compounds and mass features in complex mixtures.
4850 | Chem. Sci., 2022, 13, 4838–4853
Dissipative structures and reaction networks

The ADG CRNR explored here allows exploration of the poten-
tial frequency of autocatalytic cycles within CRNs. Autocatalytic
reaction motifs and nonlinear chemical dynamics are essential
for the appearance of processes far from thermodynamic
equilibrium and the dissipation of entropy in chemical
systems.91 It should be possible to use numerical methods to
predict which autocatalytic motifs most deterministically steer
CRNs to produce specic outcomes. These motifs could indi-
cate oscillatory chemical processes or the formation of dissi-
pative reaction pathways. Such dissipative pathways could have
played an important role in the evolution of life and its ability to
complexify and self-organize.92 The irreversibility highlighted by
a considerable number of rules in our MØD-derived model (e.g.,
reactions with high free energy changes, elimination, elimina-
tion + enol_keto, Cannizaro, unsaturated acid decarboxylation),
and the nonlinearity of most reactions suggest there may be
directionality in the progression of the ADG reaction. Irrevers-
ibility, combined with uctuations, are what Prigogine and
collaborators have shown are the main characteristics of the
evolution and self-organization of dynamic chemical
systems.93,94
Conclusions

We present here an open-access user-modiable workow for
exploring the chemistry of CRNs to identify real reaction prod-
ucts and processes. The presented methods can be used to
identify formally autocatalytic cycles, ows which are thermo-
dynamically favorable,95 as well as products with novel proper-
ties, including those enabling phase separation.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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There is room for algorithm improvement and renement in
this pipeline. As this workow is open source, this process is
modiable. Improvements could involve including new reac-
tion rules,96 or the use of machine learning to generate reaction
rules,97 and ltering generated CRNs for tautomers.

Regardless of which processes explain the origins of the
organics observed in CRNs, it is not clear which organics they
contain were important for the origins of life.13 There are also
likely nuanced differences in the course and outcome of CRNs
that depend on kinetics dependent on reaction conditions.98

Nevertheless, most origins of life models focus on autocatalytic
reactions, regardless of whether these depend on specic
ribozymes99,100 or collections of small molecules.77 Such models
diverge in their assumptions of the required complexity of the
molecules assumed to have been involved versus the complexity
of the processes involved.101 This workow offers a simple way
to parse complex data collected in this context. We are presently
using this workow to explore other CRNs which are more easily
relatable to the origins of life.

Data availability

The data underlying this study are available in the published
article and its ESI† or are publicly available through the Open
Science Framework at https://osf.io/jrhvs/?
view_only=b383facf13f44cac915f1d97ebb80dcc. This model's
code is available open-source on GitHub, along with supporting
documentation at https://github.com/Reaction-Space-Explorer/
reac-space-exp.
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and B. A. Grzybowski, Science, 2020, 369, eaaw1955.

17 M. Bonneau, Livest. Prod. Sci., 1982, 9(6), 687–705.
18 J. Oro and A. P. Kimball, Arch. Biochem. Biophys., 1961, 94,

217–227.
19 A. Eschenmoser and E. Loewenthal, Chem. Soc. Rev., 1992,

21, 1–16.
20 R. Robinson, J. Chem. Soc., Trans., 1917, 111, 762–768.
21 S. Pizzarello and E. Shock, Cold Spring Harbor Perspect. Biol.,

2010, 2, a002105.
22 Y. Kebukawa, A. L. D. Kilcoyne and G. D. Cody, Astrophys. J.,

2013, 771, 19.
23 Y. Wolman, W. J. Haverland and S. L. Miller, Proc. Natl.

Acad. Sci. U. S. A., 1972, 69, 809–811.
24 E. Anders, R. Hayatsu and M. H. Studier, Science, 1973, 182,

781–790.
25 M. Ruiz-Bermejo, J. L. de la Fuente, C. Pérez-Fernández and
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