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A reactivity model for oxidative addition to
palladium enables quantitative predictions for
catalytic cross-coupling reactionsy

Jingru Lu, Sofia Donnecke, Irina Paci®* and David C. Leitch (®*

Making accurate, quantitative predictions of chemical reactivity based on molecular structure is an unsolved
problem in chemical synthesis, particularly for complex molecules. We report an approach to reactivity
prediction for catalytic reactions based on quantitative structure-reactivity models for a key step
common to many catalytic mechanisms. We demonstrate this approach with a mechanistically based
model for the oxidative addition of (hetero)aryl electrophiles to palladium(0), which is a key step in
myriad catalytic processes. This model links simple molecular descriptors to relative rates of oxidative
addition for 79 substrates, including chloride, bromide and triflate leaving groups. Because oxidative
addition often controls the rate and/or selectivity of palladium-catalyzed reactions, this model can be
used to make quantitative predictions about catalytic reaction outcomes. Demonstrated applications
include a multivariate linear model for the initial rate of Sonogashira coupling reactions, and successful
site-selectivity predictions for Suzuki, Buchwald-Hartwig, and Stille reactions of multihalogenated

rsc.li/chemical-science

Introduction

The synthesis of structurally complex organic molecules relies
on forging new chemical bonds between diverse molecular
building blocks. Catalytic cross-coupling is one of the most
versatile and widely-used methods to link these molecular
fragments,* with applications ranging from the manufacture of
active pharmaceutical ingredients,” to the selective modifica-
tion of biomolecules,?® to the creation of new functional mate-
rials.* While much has been done to develop and understand
new cross-coupling reactions and catalysts, less is known about
how the specific molecular structures of complex building
blocks affect the likelihood of successful coupling.®” As a result,
time- and resource-intensive reaction screening and optimiza-
tion campaigns are often required for each new synthetic target.
These involve many iterations and can still result in failure to
find appropriate conditions for a given transformation,
impeding access to potentially promising new medicines and
materials.

Emerging approaches in reactivity prediction that combine
high-throughput experimentation®*** with molecular descriptor
sets"?* and multivariate statistical analysis including machine
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substrates relevant to the synthesis of pharmaceuticals and natural products.

learning®-** can accelerate the screening/optimization process
and increase success rates; however, predictions generated by
these approaches are often limited to the specific reaction
under investigation. Developing and refining the next genera-
tion of organic chemistry tools, including computer-aided
synthesis design, automated reaction optimization, and
predictive algorithms,* requires the development of general
and quantitative frameworks that rapidly link molecular struc-
ture to reactivity for many different reactants and catalysts.

Here, we describe an approach to predict outcomes for
multiple catalytic cross-coupling reactions by focusing on the
structure-reactivity relationships for one key mechanistic step
(Fig. 1). Specifically, we targeted oxidative addition, a funda-
mental organometallic transformation common to many cata-
Iytic reactions.’® Oxidative addition is particularly relevant to
palladium-catalyzed cross-coupling, where it is often the rate
and/or selectivity determining step®” (Fig. 1A). We hypothesized
that a quantitative structure-reactivity model for the oxidative
addition®** of aryl electrophiles to a catalytically-relevant Pd(0)
complex would enable predictions for palladium-catalyzed
cross-coupling reactions under a variety of conditions. We
assembled this model by correlating experimental relative rate
data (Fig. 1B) with easily-obtained molecular descriptors for
a diverse set of substrates, with an emphasis on incorporating
pharmaceutically-relevant heterocycles (Fig. 1C).

As hypothesized, the resulting model can be applied to many
different cross-coupling reactions. It can predict catalytic rate
constants as a function of substrate structure even when
different catalysts/solvents are used, can correctly identify the
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(A) Simplified cross-coupling mechanism, highlighting oxidative addition as the rate and/or selectivity determining step. (B) Competition

experiment approach to determining relative rates of oxidative addition by quantifying ratios of Pd(i) products via 31p NMR spectroscopy. (C)
Relative reactivity scale for oxidative addition to Pd(PCys), for selected substrates; observed AGéa for 2-bromo-5-nitropyridine set to 0 kJ mol ™.
(D) Utility of reactivity model in predictions for cross-coupling in synthesis.

most reactive position(s) when multiple reaction sites are
available, and can also help to guide synthetic route planning
(Fig. 1D). Importantly from both a fundamental and practical
perspective, the predictive ability of this reactivity model
extends well beyond the specific molecular structures and
reaction conditions included in the initial data set. By revealing
how subtle changes to the reacting molecules affect a key step in
a catalytic mechanism, this model serves as a powerful predic-
tive tool for cross-coupling, and will enable more sophisticated
and accurate computer-aided retrosynthetic design. Finally, this
work demonstrates the potential of focusing reaction prediction
efforts on fundamental mechanistic steps in catalytic
mechanisms.**

3478 | Chem. Sci, 2022, 13, 3477-3488

Results and discussion
Development of the oxidative addition reactivity model

As the basis for a quantitative structure/reactivity model for
cross-coupling catalysis, we conducted a series of oxidative
addition competition experiments in THF using a library of 79
(hetero)aryl chlorides, bromides, and triflates, reacting with
Pd(PCy;), (Fig. 1B). Measuring the Pd(u) product ratio by *'P
NMR spectroscopy gives relative observed rate constants, and
the corresponding relative free energies of activation
(AG,), with 2-bromo-5-nitropyridine set to AGH, = 0.

As a check on these kinetic data, we constructed Hammett
plots for five sets of substrates, obtaining reaction constants

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Design and performance of a quantitative reactivity model for oxidative addition to Pd(0). (A) General mechanism for oxidative addition to
L,Pd(0), with t-complex intermediate preceding either Pd insertion into C—X bond, or an SyAr-like displacement of X. (B) Molecular descriptors
used to model oxidative addition reactivity as a function of substrate structure. (C) Multivariate linear regression model of AGé, for 70 Ar—Cl and
Ar—Br substrates in THF, including all data points in regression analysis. (D) Representative multivariate linear regression model generated using
a 60/40 training/test split. (E) Univariate plot of IBSlc_y versus AGHa for Ar—=Cl, Ar—Br, and Ar-OTf, revealing that bond strength is poorly
correlated to AGha within each leaving group set. (F) Unified linear regression model of AGh, for Ar=Cl, Ar—Br, and Ar—OTf substrates in THF,
including all data points in regression analysis. MAE = mean absolute error. Colour-coding on R?, @2, and MAE values corresponds to the

matching data subset, values in black are for all data.

consistent with previous reports (Fig. S31-S377). From these
data, we have constructed a unified reactivity scale that spans
more than 7 orders of magnitude in rate (Fig. 1D), containing
substrates with a wide variety of steric and electronic parame-
ters, as well as the three aforementioned leaving groups. We
also ruled out the possibility of reversible oxidative addition
leading to thermodynamic product ratios by mixing equimolar
amounts of six separate pairs of oxidative addition products, all
of which retained their 1 : 1 mole ratio even after extended time
(Table S3t). Finally, we isolated and characterized six new

© 2022 The Author(s). Published by the Royal Society of Chemistry

representative Pd(u) oxidative addition complexes to confirm
their structures as trans-Pd(PCy;),(Ar)(X) (compounds S1-S6,
Fig. S7-S30%).

Using the mechanistic features of oxidative addition to Pd(0)
as a guide, we considered molecular descriptors that would
provide mechanistically meaningful correlations between
substrate structures and oxidative addition reactivity (Fig. 2A4).*
Mechanisms for aryl halide oxidative addition to Pd(0) have
been extensively studied both computationally*>**** and

experimentally,”**° and are generally proposed to proceed via

Chem. Sci., 2022, 13, 3477-3488 | 3479
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Table 1 Identified outliers in oxidative addition regression model for
Cl, Br, and OTf substrates (Fig. 2F)

Me N._Cl F._N.__Cl Me. N.__Cl
~ - ~

@[ ) g U
NC Br F S

AGh, (K mol ™)

Observed 32.92 29.76 29.12 16.57
Predicted 26.74 23.29 22.67 24.59
Residual 6.18 6.37 6.45 —8.02

initial coordination of the aromatic m-system to Pd. Two
bonding extremes can be envisioned for the w-complex inter-
mediate, where the degree of polarization of the coordinated
C=C or C=N bond in the substrate influences partial charge
distribution in the m-complex. From this intermediate, two
types of oxidative addition transition state have been proposed:
a 3-centered, relatively non-polar transition state involving
simultaneous Pd-C and Pd-X bond formation, and a polarized
transition state with C-X heterolytic bond cleavage occurring
alongside Pd-C bond formation; this latter pathway resembles
the proposed mechanism for nucleophilic aromatic substitu-
tion (SyAr).*** While other coordination modes between the
(hetero)aryl substrate and Pd are possible, we restricted our
analysis to the w-complex intermediates that would immedi-
ately precede oxidative addition.

Based on the structural and electronic features of these
transition states, we built our reactivity model for oxidative
addition from a combination of average molecular electrostatic
potentials (ESP) as electronic descriptors for specific atoms in
the substrate,***°>* A-values as steric descriptors,® and the
intrinsic bond strength index (IBSI) as a bond energy descriptor
(Fig. 2B).** Importantly, all of these descriptors are directly
calculated from electronic wavefunctions (obtained from
density functional theory calculations), or are tabulated in the
literature. An initial multivariate linear regression analysis*”*’
of the descriptor sets for the Ar-Cl and Ar-Br substrates versus
relative AGH, (k] mol ™) reveals a strong correlation across the
halide substrate library (Fig. 2C).

This model incorporates two ESP values: one for the carbon
undergoing substitution (ESP;), and a second for an atom
adjacent to the reactive site (ESP,). For 2-halopyridines, ESP,
corresponds to the nitrogen atom. For substrates where the
adjacent atoms are inequivalent carbons, which would lead to
two possible m-coordination sites prior to oxidative addition,
ESP, is the value that leads to the smaller predicted AGE, (ie
the faster oxidative addition); either the smaller positive value,
or the larger negative value. The model also incorporates two
substituent A-values for groups R; and R, to account for steric
effects on the oxidative addition rate. While the steric effect of
groups ortho to the reactive C-X bond is intuitive, the effect of R,
for 2-halopyridine substrates is not initially obvious; however,
our experimental results reveal the steric influence of R, is
approximately equal to that of R; throughout the 2-halopyridine
substrate set. As these two terms have very similar coefficients
when treated separately during linear regression (Table S8t), we

3480 | Chem. Sci, 2022, 13, 3477-3488
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opted to use the sum (A4; + 4,) as a single descriptor. Finally,
including the IBSI is necessary to create a model applicable to
both (hetero)aryl chlorides and bromides.

We evaluated the robustness of this linear model by regres-
sion analysis of five random training (60%) and test (40%) sets,
and comparing the mean absolute errors (MAE) and predictive
squared correlation coefficients (Q*);® one example is shown in
Fig. 2D (remainder in Fig. S60-S637). All of these analyses give
similar linear equations, and excellent agreement between
predicted and experimental values in the test sets. We also
evaluated alternative models (Table S9%), and partitioned the
data into targeted training and test sets to evaluate out-of-
sample prediction accuracy (Fig. S64-S677). The out-of-sample
predictions are in excellent agreement with the observed AGH,.

Our initial attempts to incorporate aryl triflate electrophiles
into this model using the aforementioned descriptor set were
unsuccessful, leading to poor correlations and inaccurate
predictions. We attribute this to C-X bond strength being an
insufficient descriptor to differentiate between the reactivity of
various leaving groups. Bond strength arguments, often using
calculated BDEs, are used to rationalize relative oxidative
addition reactivity for different substrates, such as for site
selectivity in multihalogenated systems.**"** In our initial model
(Fig. 2C and D), the IBSI term is essentially a step function: there
are relatively narrow value distributions within the Ar-Br or Ar-
Cl data sets, but a large gap between those data sets that reflects
the weaker C-Br bond. Plotting a univariate correlation between
IBSI. x and AGH, for all three electrophile classes reveals
a similarly tiered structure (Fig. 2E). Strikingly, there is zero
correlation between IBSI and AG%A, either within each electro-
phile class or across the entire data set. Furthermore, the rela-
tive ordering of bond strength (C-O > C-Cl > C-Br) is
inconsistent with the fact that aryl triflates react faster than
identically-substituted aryl bromides with Pd(PCys), (kphors/
kpnpr ~100). Clearly, bond strength on its own is a poor
predictor of oxidative addition reactivity when comparing two
substrates with either the same® or different leaving groups.

To account for additional transition state stabilization by the
leaving group itself, which builds up negative charge as the C-X
bond is broken (Fig. 2A), we used a simple descriptor of anion
stability: the pK, of the leaving group's conjugate acid. Adding
the pK, values for HOTf, HBr, and HCI (—11.3, —4.4, and 0.2
respectively, previously measured in DCE as a non-polar
solvent®) results in a unified predictive model (Fig. 2F). Both
IBSIc x and pK, are required as descriptors, with the unified
model re-weighting the IBSI term down by a factor of 2. Notably,
the relative contributions of the ESP and A-value terms remain
essentially constant.

This model provides, for the first time, a reliable method to
quantitatively evaluate the relative reactivity of a hypothetical
multisubstituted (hetero)aryl triflate, bromide, or chloride
toward oxidative addition with a Pd(0) complex without the
need to calculate transition state energies. We again performed
cross-validation with a set of five random 60/40 training/test
data partitions, which give excellent agreement between
experimental and predicted values (Fig. S69-S731). Of the 79
substrates, there are only four examples identified as prediction

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table2 Linear regression coefficients and % contribution to predicted
AGHn for min/max scaled descriptors

Model  ESP, ESP, (A; +4,) IBSI pKa Int

Fig. 2C  —48.36 20.97 7.037 19.25 — 30.28
51% 22% 7% 20% — —

Fig. 2F  —51.65 23.68 6.924 19.14 21.81 16.94
42% 19% 6% 16% 18%  —

outliers (standardized residual =2, Table 1). There are no
obvious features of these outliers that would point to systematic
prediction errors for a particular substructure; there are several
similar examples (bromobenzenes, fluoropyridines, and
pyrimidines) that are predicted accurately.

Finally, to examine the relative contribution of each
descriptor to the predicted AGH, of the two models (Fig. 2C and
F), we applied a min/max scaling to the descriptor values prior
to multivariate regression. The coefficients of the normalized
models and their relative contributions are shown in Table 2. In
both models, ESP; is the most consequential descriptor, fol-
lowed by ESP, at roughly half the weighting. In contrast, steric
effects account for <10% of the predicted AGh,. The C-X bond
strength as reported by the IBSI descriptor is also a relatively
small contributor (16-20%), consistent with the observation of
its poor correlation to AGh, when X remains constant (Fig. 2E).
In fact, the pK, of HX is just as consequential for predicting
AGb, as the IBSI in the model from Fig. 2F (X = Cl, Br, OT).

Mechanistic aspects of oxidative addition linked to molecular
descriptors.

The predictive power of this reactivity model is a direct result of
its mechanistic foundation. ESP, is related to the electrophi-
licity of the carbon undergoing oxidative addition, reflecting the
degree of partial positive charge in the 7w-complex intermediate
and transition state: a larger positive ESP; leads to a smaller
AGH, and thus faster oxidative addition. In contrast, ESP,
reflects the degree of negative charge on the adjacent atom (C or
N), where a larger negative ESP, leads to a faster oxidative
addition. Considered together, these ESP terms indicate that
a more polarized C=C or C=N bond in the substrate leads to
faster oxidative addition. It follows from this analysis that the
ESP at Pd in the intermediate and/or transition state should also
affect the oxidative addition rate, with a larger positive ESPpq
correlating with faster oxidative addition. We have confirmed
this by determining ESPpq for a set of 11 calculated ww-complex
intermediates and 6 transition states (Fig. S40-S56+). Remark-
ably, there is a linear correlation between ESPpq for the -
complexes and AGé, (Fig. 3A and S571), revealing the signifi-
cant effect that substrate—catalyst bonding has on the electronic
structure, and therefore reactivity, of Pd.

Analyzing how the substrate binds to the catalyst also sheds
light on the observed equal weights of the steric A-values for R
and R? in affecting AGH, for the 2-halopyridine substrate series.
Larger substituents in these positions destabilize the w-complex
intermediate and oxidative addition transition state through

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Electronic and steric features of oxidative addition. (A) ESPpq for
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reveal how steric strain induced by R and R? (here, —CFs groups) in 2-
halopyridines affect oxidative addition reactivity in equal proportions.

steric repulsion between the bound substrate and the ancillary
phosphine ligands. Because the Pd center coordinates to the
C=N bond, substituents adjacent to either C or N will occupy
roughly equivalent positions with respect to the phosphines.
Comparing the calculated structures of the m-complex inter-
mediates for 2-chloropyridine to its 3- and 6-trifluoromethyl
substituted analogues illustrates this feature of the substrate-
catalyst interaction (Fig. 3B). Importantly, this mechanistic
insight into equal steric effects for R and R* flows directly from
our quantitative reactivity model.

Case study #1: predicting reaction rates

To test our hypothesis that the oxidative addition model is
applicable to predicting outcomes for cross-coupling catalysis,
we applied AGh, predictions in three case studies. The first test
case involves modeling the initial rates of Sonogashira coupling
reactions, drawn from published data sets containing 410
individual rates (29 substrates and 17 catalysts, Fig. 4A).*** We
first predicted AGH, for each of the 29 aryl bromides in the data
sets, using the equation from Fig. 2C (the simpler model when
considering only halide-based electrophiles); while 9 of these
substrates are included in our experimental oxidative addition
data set, the other 20 are out-of-sample predictions.
Remarkably, the predicted AGh, values are linearly-
correlated with the corresponding In & values for all 17 inves-
tigated phosphine ligands (Fig. S74 and S75t). Correlations for
three of these ligands - P(nBu)s, PCys, and P(tBu); - are shown
in Fig. 4B. These correlations hold despite the fact that the
Sonogashira reactions are conducted under different conditions

Chem. Sci., 2022, 13, 3477-3488 | 3481
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Fig. 4 Translating oxidative addition predictions to quantitative models of catalytic reactivity. (A) General reaction scheme and chemical space
explored for 410 Sonogashira reactions, with two distinct substrate sets; initial rates determined previously.5*% (B) Univariate linear correlations
between predicted AGha for oxidative addition to Pd(PCys), and In k for Sonogashira coupling with three phosphines; out-of-model substrates
are Ar—Br molecules not included in AGha training set. (C) Unified three-descriptor model for predicting In k for the entire set of 410 reactions
(29 substrates, 17 ligands), with data partitioned into training (60% of set #1), test (40% of set #1), and external validation (set #2); two external
outlier points (red) are not included in the external validation statistics. (D) Subset of the model with 13 “small” phosphines (% Vpur <75). (E) Subset
of the model with 4 “large” phosphines (% V. >75); two external outlier points (red) are not included in the external validation statistics. MAE =
mean absolute error. Colour-coding on R?, Q% and MAE values corresponds to the matching data subset.

(higher temperature, different solvent) than our oxidative
addition experiments, and the fact that our predicted AGh, is
derived from a model using only PCy;. We suspect that this
aspect of the model's usefulness stems from a consistency in
the relative reactivity of the aryl halide substrates under
different conditions, even if the absolute reaction rates differ.
Thus, AG5, can be applied to quantitatively predict the outcome
of catalytic reactions for out-of-sample substrates, out-of-
sample reaction conditions, and even out-of-sample catalysts.
We then expanded the application of AGh, by combining it
with descriptors for the 17 free phosphines to assemble a single
and unified linear model to accurately predict In % for the entire
410 Sonogashira reaction data set. Two descriptors were calcu-
lated for the free phosphines - the average ESP at phosphorus,
and the percent buried volume (% V) at phosphorus® - which
were combined with AG), in a multivariate regression analysis.

3482 | Chem. Sci, 2022, 13, 3477-3488

As shown in Fig. 4C, we obtain excellent linear fit and predictive
power with initial rates spanning 10 orders of magnitude. These
phosphine descriptors outperform the analogous descriptors
calculated for the corresponding mono or bis(phosphine) Pd(0)
complexes (Fig. S79 and S80%). The training and test sets used to
build this model are from a random 60/40 split of substrate set
#1, which focuses on electronic effects (Fig. 4A).

To challenge the model, we reserved substrate set #2, which
focuses on steric effects, as an external validation set. Despite
the fact that the Sonogashira rate prediction model training set
(substrate set #1, blue and green points in Fig. 4C) contains no
substrates with ortho-substituents, and therefore no informa-
tion about steric effects on reaction rate, the model is still able
to predict In k for substrate set #2 with a mean absolute error of
0.732 (Q* = 0.7996). Only two reactions are identified as
significant outliers: 2,4,6-triisopropylphenylbromide with

© 2022 The Author(s). Published by the Royal Society of Chemistry
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P(¢tBu); and PAd,(¢tBu) (the most sterically-hindered substrate
with the two largest ligands), which are much slower than the
model predicts.

The ability to predict In k for Sonogashira reactions of an
out-of-sample substrate class stems directly from the generality
of the predicted AG(I)A from our oxidative addition reactivity
model. The substrate molecular properties - electronics, sterics,
and C-X bond strengths - are all encoded within the predicted
AGH, values by virtue of the structurally diverse oxidative
addition training set. Thus, applying AGh, as a single descriptor
takes all of these molecular features into account, enabling
accurate catalytic reactivity predictions even if the available
training data is not as comprehensive.

Improved prediction accuracy can be achieved by separating
the 410-member data set into two subsets based on phosphine
ligand size. One set includes reactions using 13 phosphines
with a % Vpyr <75, and the other includes the 4 largest phos-
phines (% Vuur >75). For the small phosphine set, a slight
reweighting of the three descriptors leads to smaller MAEs for
training, test, and external data sets (Fig. 4D). For the large
phosphines, we used a 70/30 training/test split due to the
smaller number of data points. We also found that a simpler,
two-descriptor model is superior for this subset, with only
AGE, and %V, needed to make accurate predictions (Fig. 4E).
This partition into small and large phosphine sets is consistent
with prior studies that describe a change in mechanism, where
oxidative addition occurs from either bis(phosphine) or
mono(phosphine) Pd(0) intermediates.'”**%” Notably, our pre-
dicted AG}, is effective in both cases. This case study not only
demonstrates how AGh, can be used to predict how substitu-
tion patterns on the electrophile will affect the kinetic behavior
of a coupling reaction, but also how AGh, can be used in
concert with catalyst-based descriptors to develop models that
account for both substrate and catalyst effects on rate.

Case study #2: predicting site selectivity

The second case study tests the use of AGh, in predicting site
selectivity for cross-coupling when multiple reactive positions
are present (Fig. 5). Previous approaches to this problem have
involved spectroscopic descriptors,®® the distortion-interaction
transition state model,*> and qualitative arguments based on
empirical observations.*”* This latter method is most suitable
for synthetic planning efforts, but it is largely applied “by
analogy” to known systems, and it is not quantitative. Thus,
formulating rapid but accurate predictions for the likely
coupling site of structurally-complex multihalogenated
substrates would be greatly beneficial for synthetic planning.
Because all of the descriptors in the AGh, prediction model
are local rather than global, one can calculate distinct
AGE, values for each reactive site in a molecule, with the pre-
dicted major site corresponding to the lowest AGh,. Assessing
a series of multihalogenated heterocycles with reported exper-
imental selectivities for Suzuki-Miyaura® and Buchwald-Hart-
wig®7* coupling reveals that these AG#, predictions correctly
identify the major site of reactivity across a diverse range of
substrates, including many heterocycle classes (isoquinolines,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Predicted and reported selectivities for multihalogenated
heterocycles in Suzuki—Miyaura and Buchwald—-Hartwig cross-coupling
reactions (examples of Buchwald—Hartwig substrates denoted with
"BH"). Coloured labels on the heterocycles correspond to predicted
major site (blue), predicted minor site (red, along with percentage of
exceptions as reported in ref. 60), and observed site (purple sphere). The
magnitude of AAGHA between the two sites is given in green.

diazines, and several 5-membered heterocycles) not included in

our initial training set (Fig. 5). These predictions also correctly
identify when a C-Cl position is more reactive than a C-Br
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position in the same molecule, and vice versa. The model is, of
course, not without limitations: predictions for two isothiazole
substrates are not accurate, pointing to C3 as the preferred site
over the correct C5 position.

In addition to identifying the major site of reactivity, the
predictions are also quantitative (Fig. 6). A large difference
between the AGH, for each site (AAGS,) indicates very high
predicted selectivity for one site over another, while a small
AAG#, indicates likely poor selectivity. Two specific examples of
this are given in Fig. 6A. For Suzuki-Miyaura coupling of methyl
2,6-dichloronicotinate, our model predicts AAGhH, =
5.4 k] mol™*, favoring C6 by ~7:1 at 65 °C. The observed
selectivity using Pd(PPh;), as a catalyst at 65 °Cis 5 : 1 C6 to C3
(AAG* = 4.5 k] mol~*).”* For 3,6-dichloro-4-methoxypyridazine,
our model predicts AAGh, = 0.7 k] mol™", favoring C6 by
~1.3 :1 at 100 °C (though this difference is smaller than the
model MAE). The observed selectivity using Pd(PPh 3), as
a catalyst at 100 °C is 3 : 1 C6 to C3, (AAG* = 3.4 kJ mol ).
These predictions are also amenable to Buchwald-Hartwig
coupling reactions: the predicted selectivity for 2,4-dichlor-
opyridine is AAG5, = 10.0 k] mol ™, favoring C2 by 25: 1 at
100 °C; a set of Buchwald-Hartwig aminations using a Xant-
phos-based catalyst proceed with C2 : C4 selectivity of 20 : 1 to
50 : 1 (AAG* = 9.3-12.1 kJ mol " at 100 °C).”®

Site selectivity is known to be influenced by reaction condi-
tions, such as catalyst and solvent.*”**”® Our prediction model is
based on a simple monodentate phosphine using non-polar
reaction solvents, which represents a standard combination
used in synthetic applications. To illustrate how our model
could guide the development of chemo/regiodivergent coupling
reactions, we have applied predictions to substrates known to
have tunable selectivity (Fig. 6B). First, 3,5- dichloropyridazine is
predicted to have good selectivity for C3 over C5 (AAGhy =
10.6 k] mol™'), consistent with the observed selectivity using
simple ligands (PPhjs, dppf); therefore, inverting this selectivity
should require extensive catalyst/solvent screening. Researchers
at Merck took this exact approach, discovering that the large
QPhos ligand gives high C5 selectivity.””

Second, the predicted AAG$, for 2-chloro-5-bromopyridine
is 0.2 k] mol ', indicating effectively no selectivity; we
confirmed this by oxidative addition of this substrate with
Pd(PCy3),, which gives a 1: 1 mixture of C2 and C5 products.
Thus, our prediction indicates achieving selectivity one way or
the other will require more complex systems. Consistent with
this, two previous studies reveal ligand-controlled reactivity at
either C2 or C5, with high C2 selectivity requiring extensive
screening and catalyst parameterization, and use of an uncon-
ventional diaminophosphine (dmapf).**”®

Finally, we predict that 2,4-dibromopyridine should be
selective for C2 (AAGHs = 8.0 k] mol !, C2 : C4 ~25 : 1 at 25 °C),
which is exactly what is observed experimentally using homo-
geneous Pd catalysis.” A recent report revealed that heteroge-
neous, nanoparticle-based Pd catalysis is capable of inverting
the selectivity to ~1:7 C2:C4.*° As for the examples above,
overriding the predicted selectivity requires a dramatically
different catalyst system.

3484 | Chem. Sci, 2022, 13, 3477-3488
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Fig. 6 (A) Quantitative selectivity predictions for dihalogenated
heterocycles with small-to-medium AAGE, between two sites, and
observed product ratios. (B) Predictions for substrates with observed
tunable selectivity, demonstrating that “simple” catalysts are quanti-
tatively consistent with predicted selectivities; overriding predicted
reactivity requires targeted screening and/or catalyst design. Coloured
labels on the heterocycles correspond to predicted major site (blue),
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ported in ref. 60), and observed site (purple sphere). The magnitude of
AAGH, between the two sites is given in green.
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Fig. 7 Retrospective analysis of applying AGéa predictions to synthesis design: dragmacidin D. (A) Retrosynthesis of core structure, involving
selective fragment coupling to a dihalogenated pyrazine. (B) Approach involving differential halogenation, tosylate protecting group on indole 1,
and switch from 5-chloro to 5-bromopyrazine intermediates for selective coupling.®* (C) Approach involving regioselective coupling to
dibromopyrazine, TBS protecting group on indole 1, and regioselective Stille coupling.®?

Case study #3: retrospective synthesis planning

As a final case study, we have retrospectively applied AGh, pre-
dictions to two reported synthesis toward dragmacidin D
(Fig. 7).5% The general sequence relies on two regioselective
cross-coupling reactions to a dihalogenated pyrazine core
(Fig. 7A). Among the key design questions are how to achieve
selective, sequential couplings, and how to ensure compatibility
with the existing Ar-Br in indole 1 (which is present in the
natural product).®

Two approaches to this problem have been reported. En
route to the first completed synthesis of dragmacidin D, Garg,
Sarpong, and Stoltz (Fig. 7B)** conducted model studies using 2-
iodo-5-chloro-3-methoxypyrazine to maximize site-selectivity,
though they observed that the nature of the protecting group
on the indole also has a significant effect on reactivity. With an
N-Ts protecting group, bis(arylation) is readily achieved at
elevated temperature, whereas with N-TIPS, the intermediate
pyrazine is deactivated, preventing a second coupling. The
remote electronic effect of the N-Ts group, which activates the
C5 pyrazine position, is described as a fortuitous discovery.

© 2022 The Author(s). Published by the Royal Society of Chemistry

Applying our AGH, predictions to these intermediates clearly
reveals not only the existence but the magnitude of this effect,
leading to ~5-fold higher predicted reactivity between N-Ts and
N-TIPS substrates. Thus, a subtle but important reactivity
difference could be anticipated based on predicted AG#, prior
to experimental work, and help guide protecting group
selection.

The second coupling required a switch to the 2-iodo-5-
bromo-3-methoxypyrazine to maximize site-selectivity, which
again could be predicted based on our model. The AAGH, for
the two Ar-Br positions in the pyrazine-indole intermediate
used in the synthesis is 23.2 k] mol ', consistent with the
observed high selectivity. Hypothetical use of the corresponding
5-chloropyrazine intermediate gives a predicted AAGH, of
<5 k] mol ™" (~6 : 1 at 50 °C), which while still selective for the
desired position, would likely lead to overreaction and yield
loss. Again, this type of prediction could help to guide synthetic
design and subsequent experimental investigations.

Yang, Liu, and Jiang reported a similar approach (Fig. 7C)*>
that employed 2,5-dibromo-3-methoxypyrazine as the pyrazine
building block; a series of model studies established that

Chem. Sci., 2022, 13, 3477-3488 | 3485


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc00174h

Open Access Article. Published on 28 February 2022. Downloaded on 2/7/2026 6:33:42 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

regioselective C2-coupling is possible. Despite the fact that both
sites appear very similar, our model predicts that C2 is the
major site, albeit with moderate selectivity (AAGH, =
5.1 k] mol ™', 6:1 at 80 °C); this lower selectivity may be re-
flected in the lower isolated yield relative to the differential
halogenation strategy of Garg et al. In the subsequent Stille
coupling, Yang et al. use the unprotected indole derivative,
which we predict is ~10-fold less reactive than the corre-
sponding N-Ts substrate; nevertheless, the desired reaction site
is heavily favored relative to the other two Ar-Br positions,
consistent with the observed regioselectivity.

Conclusions

We have demonstrated that a quantitative structure-reactivity
model for oxidative addition, a key step in many catalytic
mechanisms, enables accurate predictions for the outcome of
various cross-coupling reactions. By correlating relative reaction
rates with easily-obtained molecular descriptors, we can predict
the reactivity of diverse (hetero)aryl electrophiles toward
oxidative addition to Pd(0). This reactivity model links molec-
ular structure to predicted AG#, for any hypothetical substrate,
with applicability well beyond the oxidative addition training
set. We used these AG}, values to predict rates and selectivities
for many different catalytic reactions under various conditions,
including Sonogashira, Suzuki, Buchwald-Hartwig, and Stille
couplings.

Given the importance of palladium-catalyzed reactions in
the synthesis of complex organic molecules, we anticipate that
quantitative reactivity predictions could be used during
synthetic planning to design substrates with high intrinsic
selectivity, and/or to identify where achieving the desired
selectivity is likely to be more challenging/resource intensive.
Applying AGH, predictions to hypothetical synthetic sequences
and potential intermediates could therefore be used to design
more selective routes and/or prioritize different potential routes
prior to commencing experimental investigations. It could also
be used to identify where extensive reaction development is
necessary (e.g. overriding predicted selectivity), or where
“simple” systems are likely to be successful. As we expand this
oxidative addition reactivity model to incorporate additional
sets of reaction conditions and catalysts, we expect it will not
only shed new light on the mechanistic aspects of cross-
coupling, but also find widespread use in refining and aug-
menting computer-aided synthesis design and automated
reaction discovery/optimization. Finally, we are exploring
quantitative reactivity models based on key steps in other
catalytic mechanisms to generate accurate and general predic-
tions across the synthesis landscape.

Data availability
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