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Constructing sterically congested vicinal quaternary-tertiary
carbons (4°/3° carbons) via Cope rearrangement is currently
quite limited with only a handful of papers on the subject
published over the past 40 years. This stands in stark contrast to
the plethora of other methods for establishing sterically con-
gested vicinal carbons.' Central to the challenge are kinetic
and thermodynamic issues associated with the transformation.
In the simplest sense, Cope rearrangements proceed in the
direction that results in highest alkene substitution (Fig. 1).%’
To forge 4°/3° motifs by Cope rearrangement, additional driving
forces must be introduced to reverse the [3,3] directionality and
compensate for the energetic penalty associated with the steric
and torsional strain of the targeted vicinal 4°/3° motif. With
limited reports in all cases, oxy-Cope substrates (Scheme 1, eqn
(1)),>** divinylcyclopropanes (Scheme 1, eqn (2)),"*?° and
vinylidenecyclopropane-based 1,5-dienes** (Scheme 1, eqn (3))
have demonstrated favourability for constructing vicinal 4°/3°
carbons. Malachowski et al. put forth a series of studies on the
construction of quaternary centers via Cope rearrangement
driven forward by a conjugation event (Scheme 1, eqn (4)).>>** In
their work, a single example related to the construction of
vicinal 4°/3° centers was disclosed, though kinetic (180 °C) and
thermodynamic (equilibrium mixtures) challenges are also
observed.” And of particular relevance to this work, Wigfield
et al. demonstrated that 3,3-dicyano-1,5-dienes with the poten-
tial to generate vicinal 4°/3° carbons instead react via an ionic
mechanism yielding the less congested products (Scheme 1,
eqn (5)).>

Our group has been examining strategies to decrease kinetic
barriers and increase the thermodynamic favourability of 3,3-
dicyano-1,5-diene-based Cope substrates.””** Beyond the
simplest, unsubstituted variants, this class of 1,5-diene is not
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Substrates have been designed which exhibit Cope rearrangement kinetic barriers of ~23 kcal mol™
with isoenergetic favorability (AG ~ 0). These fluxional/shape-shifting molecules can be driven forward
by chemoselective reduction to useful polyfunctionalized building blocks.

particularly reactive in both a kinetic and thermodynamic sense
(e.g. Scheme 1, eqn (5)).2*** Reactivity issues aside, these
substrates are attractive building blocks for two main reasons:
(1) they have straightforward accessibility from alkylidenema-
lononitriles and allylic electrophiles by deconjugative allylic
alkylation.* (2) The 1,5-diene termini are substantially different
(malononitrile vs. simple alkene) thus allowing for orthogonal
functional group interconversion facilitating target and
analogue synthesis.** Herein we report that a combination of
1,5-diene structural engineering®*?*' and reductive conditions
(the reductive Cope rearrangement®*°) can result in the
synthesis of building blocks containing vicinal gem-dimethyl 4°/
3° carbons along with orthogonal malononitrile and styrene
functional groups for interconversion (Scheme 1B). On this line,
malononitrile can be directly converted to amides* yielding
functionally dense B-gem-dimethylamides, important pharma-
ceutical scaffolds.*

This project began during the Covid-19 pandemic lockdown
(ca. March-May 2020). As such, we were not permitted to use
our laboratory out of an abundance of caution. We took this
opportunity to first computationally investigate a Cope rear-
rangement that could result in vicinal 4°/3° carbons (Scheme 2).
Then, when permitted to safely return to the lab, we would
experimentally validate our findings (vide infra). From our
previous work, it is known that by adding either a 4-aromatic
group® or a 4-methyl group® to a 3,3-dicyano-1,5-diene, low
barrier (rt - 80 °C) diastereoselective Cope rearrangements can
occur. Notably, the 4-substituent was found to destabilize the
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Fig. 1 Cope equilibrium of 1,1,6-trisubstituted 1,5-dienes.
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Scheme 1 (A) Cope rearrangements for constructing vicinal 4°/3°-
centers (B) this report.

starting material (weaken the C3-C4 bond, conformationally
bias the substrate for [3,3]), and stabilize the product side of the
equilibrium via resonance (phenyl group) or hyperconjugation
(methyl group). In this study, we modelled substrates 1, 3, and 5
that have variable 4-substitution and would result in vicinal
gem-dimethyl- and phenyl-containing 4°/3° carbons upon Cope
rearrangement to 2, 4, or 6, respectively. We chose to target this
motif due to likely synthetic accessibility from simple starting
materials but also because of the important and profound
impact that gem-dimethyl groups impart on pharmaceuticals.*
Substrate 1 lacking 4-substitution had an extremely unfav-
ourable kinetic and thermodynamic profile (AG* = 31.6; AG =
+5.3 keal mol~'). When a 4-methyl group was added, the kinetic
barrier (AG*) dropped appreciably to 28.2 kcal mol; however, the
thermodynamics were still quite endergonic (AG =
+4.4 keal mol ™). Most excitingly, it was uncovered that the 4-
phenyl group dramatically impacted the kinetics and thermo-
dynamics: the [3,3] has a barrier of 22.9 kcal mol ! (AG*) and is
~isoenergetic (AG = +0.17 kcal mol™"). Thus, the reaction
appears to be fluxional/shape-shifting at room temperature.***°
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For this substrate, we also modelled the dissociative pathway
(Scheme 2D). It was found that bond breakage to two allylic
radical intermediates is a higher energy process than the
concerted transition state (Scheme 2C vs. Scheme 2D). Specifi-
cally, the dissociative pathway was found to be kinetically less
favourable (AG* ~ 27.6 kcal mol; AG = 26.2 kcal mol ') than the
concerted process (AG* = 22.9 kcal mol~'). While the disso-
ciative pathway is less favourable than the concerted trans-
formation, we surmised that the two-step process becomes
accessible at elevated temperature (vide infra). Finally, the ionic
pathway was calculated to be significantly higher for this
substrate (see the ESIt).

The class of substrate uncovered from our computational
investigation could be accessed from vy,y-dimethyl-
alkylidenemalononitrile (7a) and 1,3-diarylallyl electrophiles
(such as 8a) by Pd-catalyzed deconjugative allylic alkylation
(Scheme 3A).** As such, model 1,5-diene 5a was prepared to
verify the computational results. It was found that upon
synthesis of 5a, an inseparable 21 : 79 mixture of 1,5-diene 5a
and the 1,5-diene 6a was observed. The predicted ratio of 5a to
6a was 57 : 43 (Scheme 2C). These two results are within the
error of the calculations (predicted; slightly endergonic,
observed; slightly exergonic). To determine whether the trans-
formation was progressing through the predicted concerted
pathway (Scheme 2C) over the dissociative pathway (Scheme
2D), substrate 5b was prepared by an analogous deconjugative
allylic alkylation reaction. Similarly, two Cope equilibrium
isomers 5b and 6b are observed at room temperature ina 12 : 88
ratio. Upon heating at 100 °C for 3 h, the 1,5-dienes “scramble”
(e.g. iso-6b is observed; 0.2 :1.0: 1.5 ratio of 5b : 6b : iso-6b)
indicating that the dissociative pathway is only accessible at
elevated temperature. This is all in good agreement with the
calculated kinetics and thermodynamics of this system
(Scheme 2).

With respect to the synthetic methodology, we aimed to
increase the overall efficiency and applicability of the sequence
(Scheme 3B). Specifically, we wanted to avoid [3,3] equilibrium
mixtures and sensitive/unstable substates and intermediates. It
was found that the direct coupling of 7a with diphenylallyl
alcohol 9a could take place in the presence of DMAP, Ac,0, and
Pd(PPh;),. When the coupling was complete, methanol and
NaBH, were added to drive the Cope equilibrium forward,
yielding the reduced Cope rearrangement product 10a in 76%
isolated yield. In terms of practicality and efficiency, this
method utilizes diphenylallyl alcohols, which are more stable
and synthetically accessible than their respective acetates, and
the [3,3] equilibrium mixture can be directly converted
dynamically to a single reduced product.

With an efficient protocol in hand for constructing malo-
nonitrile-styrene-tethered building blocks featuring central
vicinal 4°/3° carbons, we next examined the scope of the
transformation (Scheme 4). We chose diarylallyl alcohols with
the propensity to react regioselectively via an electronic bias
(Scheme 3C).*"** The combination of p-nitrophenyl and phenyl
(10b) or p-methoxyphenyl (10c) yielded regioselective outcomes
with the electron-deficient arene at the allylic position. This is
consistent with the expected regiochemical outcome where the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Computational analysis of 3,3-dicyano-1,5-diene that in theory could result in vicinal 4°/3° carbons. (A) 4-Unsubstituted 3,3-
dicyano-1,5-diene. (B) 4-Methyl 3,3-dicyano-1,5-diene. (C) 4-Phenyl 3,3-dicyano-1,5-diene. (D) The dissociative mechanism for substrate 5 is
higher than the closed transition state. (E) visualization of the kinetic- and thermodynamic differences of transformations (A-D).
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protocol for constructing vicinal 4°/3° centers. (C) The Pd-catalyzed deconjugative allylic alkylation must be regioselective.

nucleophile reacts preferentially at the o-position and the
electrophile reacts at the allylic position bearing the donor-
arene (Scheme 3C).*“** Then, reductive Cope rearrangement
occurs to position the electron-deficient arene adjacent to the
gem-dimethyl quaternary center. This is an exciting outcome as
many pharmaceutically relevant (hetero)arenes are electron
deficient. Thus, fluorinated arenes were installed at the allylic
position of products 10d-10k. While the phenyl group resulted
in poor regioselectivity (1 : 1-3 : 1), the p-methoxyphenyl group
enhanced the regiomeric ratios in all cases (3 : 1-15: 1). The
degree of selectivity is correlated with the number and position

© 2022 The Author(s). Published by the Royal Society of Chemistry

of fluorine atoms. N-Heterocycles could be incorporated with
excellent regioselectivity, generally speaking (101-10q). For
example, 3-chloro-4-pyridyl (101/10m) groups were installed at
the allylic position with >20 : 1 rr. 4-Chloro-3-pyridyl was poorly
regioselective (10n), but the combination of 4-trifluomethyl-3-
pyridyl/p-methoxyphenyl (100) gave good regioselectivity of
11 : 1. 2-Pyridyl/p-methoxyphenyl (10q) was also a regioselective
combination. We also examined a few other heterocycles
including quinoline (10s) and thiazole (10t and 10u) with
excellent and modest regioselectivity observed, respectively. As
a general trend, when the arenes on the allylic electrophile

Chem. Sci., 2022, 13, 1951-1956 | 1953
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become less polarized, poor regioselectivity is observed in the OMe Me OMe Me
Pd-catalyzed allylic alkylation. For example, the combination of 12a 78% yield 13a 77% yield
p-chlorophenyl and p-methoxyphenyl (10v) or phenyl (10w)
yields regioisomeric mixtures of products. This can be circum-
vented by utilizing symmetric electrophiles (to 10x).

Scheme 6 (A) oxidative amidation of malononitrile. (B) Removal of
"activating group” by ozonolysis.
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The phenyl or the p-methoxyphenyl group is necessary to
achieve the 4°/3° carbon-generating Cope rearrangement: it
functions as an “activator” by lowering the kinetic barrier and
increasing thermodynamic favourability. These activating
groups can be removed through alkene C=C cleavage reactions
(e.g- metathesis (Scheme 5) and ozonolysis (Scheme 6B)). In this
regard, highly substituted cycloheptenes 11 were prepared by
allylation and metathesis (Scheme 4).>*** The yields were
modest to excellent over this two-step sequence. In many cases,
where 10 exists as a mixture of regioisomers, the major
allylation/RCM products 11 could be chromatographically
separated from their minor constituents. As shown in Scheme
6A, the malononitrile can be transformed via oxidative amida-
tion* to products 12 containing a dense array of pharmaceuti-
cally relevant functionalities (amides, gem-dimethyl,
fluoroaromatics, and heteroaromatics). Following this trans-
formation, ozonolysis terminated with a NaBH, quench installs
an alcohol moiety on small molecule 13a.

These first computational and experimental studies utilizing
3,3-dicyano-1,5-dienes as substrates for constructing vicinal 4°/
3° centers sets the stage for much further examination and
application. For example, while we focused our efforts on gem-
dimethyl-based quaternary carbons, it is likely that other func-
tionality can be installed at this position. For example, while
unoptimized, it appears the protocol is reasonably effective at
incorporating a piperidine moiety in addition to heteroarenes

®
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Scheme 7 (A) The construction of 4/3° centres on piperidines. (B)

Promoting endergonic [3,3] rearrangements is possible, assuming the
[3,3] kinetic barrier is sufficiently low.
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from the allylic electrophile (7b + 9f — 14a; Scheme 7A). Similar
functional group interconversion chemistry as described in
Schemes 5 and 6 can thus yield functionally dense building
blocks 15 and 16 in good yields.

While the 4,6-diaryl-3,3-dicyano-1,5-dienes offered the most
attractive energetic profile (low kinetic barrier, isoenergetic [3,3]
equillibrium; Scheme 2C), the 4-methyl analogue is also
intriguing to consider as a viable substrate class for reductive
Cope rearrangement (Scheme 2B). The challenge here is that the
kinetics and thermodynamics are quite unfavourable (not
observable by NMR), but potentially not prohibitively so. It is
extremely exciting to find that Cope equilibria that are signifi-
cantly endergonic in the desired, forward direction (e.g. 3a to 4a)
can be promoted by a related reductive protocol (Scheme 7B).
While unoptimized, we were able to isolate product 17 in xx%
yield by heating at 90 °C in the presence of Hantzsch ester in
DMF.

Conclusions

We have developed a method to construct vicinal gem-dimethyl
4°/3° carbons via reductive Cope rearrangement. 1,5-Diene
substrates bearing a key 4-phenyl or p-methoxyphenyl group
have low kinetic barriers for Cope rearrangement. The 1,5-
dienes are fluxional/shape-shifting (AG* ~ 23 keal mol %, AG ~
0 keal mol ") and reductive conditions are utilized to drive the
rearrangement forward, toward products containing a central
gem-dimethyl/arene motif flanked on either side by a malono-
nitrile and styrene moiety, respectively. These functional groups
can be manipulated to construct unique molecular architec-
tures such as cycloheptenes (Scheme 5) and amides (Scheme 6).
Future directions involve expanding the scope of this trans-
formation, developing enantioselective variants, and identi-
fying specific opportunities for molecular synthesis and lead
generation in medicinal chemistry campaigns.
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