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two-dimensional copper
signatures in human blood for bladder cancer with
machine learning†
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Currently, almost all available cancer biomarkers are based on concentrations of compounds, often

suffering from low sensitivity, poor specificity, and false positive or negative results. The stable isotopic

composition of elements provides a different dimension from the concentration and has been widely

used as a tracer in geochemistry. In health research, stable isotopic analysis has also shown potential as

a new diagnostic/prognostic tool, which is still in the nascent stage. Here we discovered that bladder

cancer (BCa) could induce a significant variation in the ratio of natural copper isotopes (65Cu/63Cu) in

the blood of patients relative to benign and healthy controls. Such inherent copper isotopic signatures

permitted new insights into molecular mechanisms of copper imbalance underlying the carcinogenic

process. More importantly, to enhance the diagnostic capability, a machine learning model was

developed to classify BCa and non-BCa subjects based on two-dimensional copper signatures (copper

isotopic composition and concentration in plasma and red blood cells) with a high sensitivity, high true

negative rate, and low false positive rate. Our results demonstrated the promise of blood copper

signatures combined with machine learning as a versatile tool for cancer research and potential clinical

application.
Introduction

Cancer biomarkers are vital for cancer diagnosis, prognosis
prediction, epidemiologic studies, and therapeutic interven-
tions. Currently, almost all available cancer biomarkers are
based on concentrations of specic compounds.1 However, the
concentrations of biomarkers are easily interfered by other non-
tumor sources, oen leading to low sensitivity, poor specicity,
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and false positive or negative results.2 The natural stable
isotopic composition of an element provides an independent
dimension of information from the concentration. Most
elements have multiple naturally occurring stable isotopes with
relatively constant compositions, while some physical, chem-
ical, or biological processes are able to separate isotopes to
cause stable isotopic fractionation.3 Compared with the
concentration, the natural stable isotopic composition can bear
ngerprint information about the source or processes of an
element, due to the isotopic homogeneity of a source and the
unidirectional stable isotopic fractionation during a specic
process.4 Thus, the stable isotopic composition has been widely
used as a powerful tracer in geochemistry, archaeology,
anthropology, and environmental forensics.4–6 However, in
other elds, its power has been less realized.7

In the last two decades, application of stable isotopic anal-
ysis in health research has also been explored.8–10 An increasing
number of studies have reported the stable isotopic fraction-
ation phenomena related to a variety of human diseases,11–13

revealing the possibility of using stable isotopic analysis as
a diagnostic/prognostic tool.14 For example, the stable iron (Fe)
isotopic composition in human blood was reported to differ
between individuals and genders,15 and hereditary hemochro-
matosis was associated with enrichment of heavy Fe isotopes in
blood.16 Stable calcium (Ca) isotope ratios in urine could rapidly
© 2022 The Author(s). Published by the Royal Society of Chemistry
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reect the changes in bone mineral balance and bone loss.17

The serum copper (Cu) of Wilson's disease patients was isoto-
pically lighter than that of controls,10 and patients with liver
conditions of different etiologies showed lower serum copper
isotopic compositions than controls.18,19 With regard to cancers,
it has been reported that copper and sulfur (S) were enriched in
light isotopes in the blood of hepatocellular carcinoma (HCC)
patients, and the tumor tissue had a heavier copper isotopic
composition than the adjacent healthy tissue.20 A similar trend
in blood or tissue was also observed with breast cancer, colo-
rectal cancer, ovarian cancer, hematological malignancies, and
oral squamous cell carcinoma.14,21–25 In addition, zinc (Zn)
isotopic fractionation was observed with breast cancer,
pancreatic cancer, and hematological malignancies.23,26,27

However, until now, the mechanisms for disease-related
isotopic fractionation are still poorly understood.28 Most
previous studies were limited to reporting the isotopic frac-
tionation phenomena between patients and controls, but the
actual clinical applications are still very scarce, partly due to the
insufficient distinguishing effect between patients and controls
Fig. 1 The study design and 2D copper signatures in plasma and RBC of a
of subjects were separately subjected to ICP-MS and MC-ICP-MSmeasu
(d65Cu value). (B) Copper concentration in plasma. *PB ¼ 0.7302 and *

Copper concentration in RBC. *PC ¼ 0.004, and ***PC ¼ 0.2526, Mann
*PD ¼ 0.0684, **PD ¼ 0.0046, and ***PD < 0.0001, Welch's t-test. (E) d65C
0.0206, unpaired Student's two-tailed t-test. (F) 2D plot of the Cu–d65Cu
each symbol presents an individual subject. ESA: electrostatic analyz
comparison. Specifically, “*” means the comparison between healthy and
groups, and “***” means the comparison between healthy and BCa grou
healthy groups, respectively.

© 2022 The Author(s). Published by the Royal Society of Chemistry
by stable isotopic analysis. The specicity of the disease-related
isotopic fractionation also needs further evaluation.

In this study, we investigated the variations of the copper
concentration and copper isotopic ratio in the blood of bladder
cancer (BCa) patients, and developed a machine learning model
to classify BCa and non-BCa subjects. To the best of our
knowledge, this work may represent the rst example of
combination of stable isotopic data and machine learning for
clinical applications. BCa is one of the most common cancers,29

but its early diagnosis is still challenging partially due to the
lack of reliable molecular biomarkers in clinical practice,
though some tests have been available.30,31 We focus on copper,
because copper plays vital roles in fundamental life processes
(e.g., oxidative processes),32,33 and urinary cancers have been
hypothesized to be closely associated with abnormal systemic
copper distribution34 but the underlying mechanisms are still
indistinct.35 Thus, stable copper isotopes (65Cu and 63Cu) are
expected to provide a novel approach to understand the copper
imbalance underlying the carcinogenic process. Note that
inherent natural copper isotopes were used in this study, which
ge-matched healthy, benign, and BCa groups. (A) The plasma and RBC
rements to obtain their copper concentration and copper isotopic ratio
**PB < 0.0001, Mann Whitney test; **PB ¼ 0.0043, Welch's t-test. (C)
Whitney test; **PC ¼ 0.0286, Welch's t-test. (D) d65Cu value in plasma.
u value in RBC. *PE ¼ 0.002 and ***PE < 0.0001, Welch's t-test; **PE¼
value in plasma. (G) 2D plot of the Cu–d65Cu value in RBC. In (B)–(G),

er. In (B)–(E), the asterisks are used to indicate different groups of
benign groups, “**” means the comparison between BCa and benign

ps. In (F) and (G), red, green, and blue dots represent BCa, benign, and

Chem. Sci., 2022, 13, 1648–1656 | 1649
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is basically different from the articial isotope labelling
method.

The copper concentration and copper isotopic ratio in blood
were measured by inductively coupled plasma mass spectrom-
etry (ICP-MS) and multi-collector ICP-MS (MC-ICP-MS) aer
chromatographical purication, respectively (Fig. 1A). Notably,
to validate whether the copper isotopic fractionation was
induced by BCa, we not only compared the copper isotopic ratio
between BCa patients and healthy controls, but also examined
other benign urinary diseases and studied the dependence of
copper isotopes on the grades and stages of BCa. Based on the
two-dimensional (2D) copper signatures in blood, i.e., the
copper isotopic ratio and concentration in plasma and red
blood cell (RBC), a machine learning model was developed to
classify BCa and non-BCa subjects to reveal the potential role of
this tool in cancer diagnosis and surveillance. To generalize the
approach, we also validated the machine learning model with
a previously published data set of HCC.
Results
Copper concentration variations in the blood of BCa patients

To realize the copper signatures related to BCa, we set three
groups, i.e., the cancer group, age-matched healthy control, and
benign urinary diseases (Tables S1–S8†). The cancer group
includes BCa patients with different types, malignancy grades,
and cancer stages. Note that men have a higher BCa morbidity
than women36 and the BCa risk increases with age (most BCa
cases are diagnosed in patients older than 50),37 and a young
healthy control group was also included for reference. All study
participants were recruited from the same region (Tianjin, China)
to exclude the effects arising from geographical factors. The
blood biochemical indexes of study participants are given in
Tables S6–S8 and Fig. S1.†Here we chose plasma and RBC rather
than urine as target media for copper isotopic analysis, because
blood is the main medium of substance exchange between the
tumor and the environment,38 and as two main components of
blood, plasma and RBC have almost all of the blood copper
burden, so the blood coppermay directly reect the disruption of
copper metabolism by the tumor. In contrast, urine is not the
main metabolic pathway of copper and the urinary copper
concentration is too low to perform the isotopic analysis.39

We rst measured the copper concentration in blood. As
shown in Fig. 1B, the mean copper concentration in plasma of
BCa patients was lower than that of healthy and benign subjects
(P < 0.05) but the difference was relatively small. The healthy
and benign groups showed different copper concentrations in
RBC, but the BCa group showed no signicant difference from
the healthy or benign groups (Fig. 1C). Noteworthily regarding
the copper concentration in the blood of patients with urinary
cancers, inconsistent trends have been obtained in the previous
literature.40–44
Copper isotopic signatures of BCa in blood

We then measured the copper isotopic ratio in the plasma and
RBC of study participants by MC-ICP-MS (see the Experimental
1650 | Chem. Sci., 2022, 13, 1648–1656
section in the ESI for details†). Prior to isotopic analysis, the
sample was puried by an anion exchange chromatographic
method.45 The copper isotopic ratio (65Cu/63Cu) is expressed as
the d65Cu value (in &) relative to a standard material (ERM-
AE633):

d65Cu ¼
 �

65Cu
�
63Cu

�
sample�

65Cu
�
63Cu

�
standard

� 1

!
� 1000& (1)

A decrease in the d65Cu value means a depletion of 65Cu (i.e.,
enrichment of 63Cu). The effect of the biological matrix on the
copper isotopic analysis has been excluded to ensure a high
precision (Fig. S2†).

As shown in Fig. 1D and E, we found that the BCa patients
accumulated the light copper isotope (63Cu) in blood (d65Cu
value ¼ �0.57 � 0.73& in plasma and 0.25 � 0.74& in RBC)
compared with age-matched healthy (d65Cu value ¼ 0.07 �
0.23& in plasma and 1.39 � 0.38& in RBC) and benign control
groups (d65Cu value ¼ �0.06 � 0.31& in plasma and 0.76 �
0.68& in RBC). For the healthy controls, the blood d65Cu value
was constrained in a relatively narrow range that was close to
the literature data.20 Both benign and malignant diseases could
lead to a broadening of the d65Cu value range. Remarkably, in
BCa patients, the blood d65Cu value was signicantly dispersed
and 65Cu-depleted (Fig. 1D and E), suggesting that the incidence
of BCa disrupted the copper homeostasis in the body.
Compared with the copper concentration variations (Fig. 1B
and C), the d65Cu value showed larger discrepancies between
BCa and control groups in both plasma and RBC (D65Cuplasma ¼
0.64& between BCa and healthy control; P < 0.0001), indicating
that the blood copper isotope signature was more sensitive than
the copper concentration in response to the cancer develop-
ment. This result also revealed the signicance of the blood
copper isotopic ratio as a biomarker for BCa.

Notably, in plasma, only BCa (P < 0.0001), but not benign
diseases (P > 0.05), could induce a signicant copper isotopic
fractionation compared to healthy control (Fig. 1D). Such
a phenomenon was absent with the copper concentration or in
RBC. Furthermore, by jointly using the copper concentration
and d65Cu value (Fig. 1F and G), we can better differentiate BCa,
benign, and healthy controls. As shown in the 2D plot of copper
signatures in plasma and RBC (Fig. 1F and G), the three groups
are distributed in different zones as indicated by different
colors. However, some overlaps were still observed, indicating
that the distinguishing ability needs to be further improved.
Dependence of 2D copper signatures on cancer grades and
stages

To clarify the relationship of copper isotopic fractionation with
BCa, we then studied the 2D copper signatures of BCa patients
grouped by cancer grading (high or low grade of the malig-
nancy) and staging (Ta-T4 according to the TNM system).2,46 The
cancer grades and stages were determined based on physical
exams, biopsies, and imaging tests. As shown in Fig. 2A and B,
high- and low-grade BCa showed no signicant difference in the
blood copper level (P > 0.7). By contrast, high-grade BCa was
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Cu concentration and the d65Cu value in plasma and RBC of BCa patients grouped by cancer grade, cancer stage, age, and gender. Each
symbol presents an individual subject. (A and B) Cu concentration in plasma and RBC of BCa patients for different grades. “Low” refers to low-
grade BCa (n¼ 16) and “high” refers to high-grade BCa (n¼ 21). PA¼ 0.7910 and PB¼ 0.8324, MannWhitney test. (C and D) d65Cu value in plasma
and RBC of BCa patients for different grades. PC ¼ 0.0227 and PD ¼ 0.1854, unpaired Student's two-tailed t-test. (E and F) Cu concentration in
plasma and RBC of BCa patients for different cancer stages (n ¼ 31 for Ta/T1 and n ¼ 4 for T2/T3). PE ¼ 0.9692 and PF ¼ 0.7699, unpaired
Student's two-tailed t-test. (G and H) d65Cu value in plasma and RBC of BCa patients for different cancer stages. PG ¼ 0.2094 and PH ¼ 0.5604,
unpaired Student's two-tailed t-test. (I and J) Variation of the Cu concentration in plasma and RBC of all subjects with age. (K and L) Variation of
the d65Cu value in plasma and RBC of BCa patients with age. (M and N) Variation of the Cu concentration in plasma and RBC of BCa patients with
gender (n ¼ 28 for male and n ¼ 13 for female). PM ¼ 0.1083, unpaired Student's two-tailed t-test; PN ¼ 0.2924, Mann Whitney test. (O and P)
Variation of the d65Cu value in plasma and RBC of BCa patients with gender. PO ¼ 0.8701 and PP ¼ 0.7349, unpaired Student's two-tailed t-test.
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View Article Online
signicantly 65Cu-depleted in plasma relative to low-grade (P <
0.05; Fig. 2C). This isotopic fractionation direction was consis-
tent with that shown in Fig. 1D. Fig. 2A and C again suggest that
the d65Cu value should be a more sensitive BCa marker than the
copper concentration. Furthermore, the cancer grade describes
how malignant the cancer cells are. Thus, the result shown in
Fig. 2C, i.e., the more malignant the tumor was, the larger the
copper isotopic fractionation, evidenced that the signicant
copper isotopic fractionation was related to BCa.

Regarding cancer staging, BCa was divided into two groups,
supercial (Ta/T1) and muscle-invasive cancer (T2/T3), repre-
senting different degrees of tumor invasion and metastasis. In
this study, the sample collection was mainly performed in the
inpatient department, so only a limited number of T2/T3
© 2022 The Author(s). Published by the Royal Society of Chemistry
patients were included (patients with T2 or a higher stage BCa
were rarely subjected to surgical treatment). As shown in
Fig. 2E–H, no difference in the blood copper level or d65Cu value
at different cancer stages was observed (P > 0.7 for the copper
concentration and P > 0.2 for the d65Cu value). Due to the small
sample set of the T2/T3 group, it was difficult to draw any
conclusions about the cancer staging yet. However, it was
interesting to note that the plasma showed a tendency to be
enriched in 63Cu in the T2/T3 group (Fig. 2G). More studies on
this aspect are needed in the future.

It has been reported that age and gender may affect the
copper concentration and d65Cu value in human blood.21,47

Fig. 2I and J show the relationship of age with the blood copper
concentration in groups of BCa, benign, and healthy controls.
Chem. Sci., 2022, 13, 1648–1656 | 1651
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Fig. 3 Machine learning model for classification of BCa and non-BCa subjects. (A) Schematic of the random forest (RF) model. (B) The t-SNE
dimensionality reduction results with the four copper-related variables (plasma Cu concentration, RBC Cu concentration, plasma d65Cu value,
and RBC d65Cu value). (C) Comparison of receiver-operating characteristic (ROC) curves of the machine learning model and the single variables
without RF classification. The ROC curves were plotted by using TPR as the ordinate and FPR as the abscissa. The area under the ROC curve of the
machine learning model (AUCML) reached 0.92, remarkably higher than that without RF classification. (D) The variable importance of four Cu-
related variables in the RF model. (E) Classification results and model performance. Non-BCa means healthy plus benign controls. The “number
of correct” means the number of subjects with correct classification results. NPV: negative predictive value. TPR: true positive rate. FPR: false
positive rate. TNR: true negative rate.
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In all groups, there was a clear linear positive correlation
between the blood copper concentration and age. Interestingly,
the slope of linearity decreased in the order of healthy > benign
> BCa group. It thus appeared that the incidence of BCa could
erase the effect of age on the blood copper. This result was also
evidenced by the isotope data. In contrast to the previous report
that the blood d65Cu value decreased with age in healthy
people,47 there was no correlation between the blood d65Cu
value and age of BCa patients (Fig. 2K and L). With regard to
gender, it has been reported that women tend to have a lower
blood d65Cu value than men because of menstruation.48

However, in this study, the female BCa patients were mostly
postmenopause women. This can explain why we did not nd
any difference in the blood copper concentration (Fig. 2M and
N) or d65Cu value between genders (Fig. 2O and P).

In addition, we have also performed a comprehensive
correlation analysis taking into account multiple factors
(including bloodmetals and biochemical indexes) (see Fig. S3†).
Overall, only weak correlations between biochemical indexes
and the blood copper concentration or d65Cu value were
observed (see Discussion in the ESI†).
Machine learning model for distinguishing BCa from non-
BCa

Since the subjects were difficult differentiate manually (Fig. 1F
and G), we developed a machine learning model to further
improve the distinguishing ability by combining all copper
signatures. T-distributed stochastic neighbor embedding (t-
SNE) is a non-linear technique for visualizing high-dimensional
1652 | Chem. Sci., 2022, 13, 1648–1656
data by giving each sample data a location in a two- or three-
dimensional map.49 As such, t-SNE could be used for automat-
ically classifying and rationalizing the study participants
according to copper-related variables that would otherwise have
been difficult to differentiate manually.

As shown in Fig. 3A, we rst carried out the t-SNE dimen-
sionality reduction process on data with all the four copper-
related variables (i.e., the plasma copper concentration, RBC
copper concentration, plasma d65Cu value, and RBC d65Cu
value), and gained a conspicuous distinguishing result between
BCa (n¼ 41) and non-BCa groups (benign plus healthy controls;
n ¼ 47). Since different groups could be visibly distinguished in
the t-SNEmap (Fig. 3B), we then developed a random forest (RF)
model using the “leave-one-out” cross-validation (LOOCV)
testing method50 to classify BCa and non-BCa groups (Fig. 3A).
RF is an ensemble supervised learning method that ts
a number of individual decision tree classiers on sub-samples
of the whole dataset. Such an ensemble strategy can reduce the
risk of overtting compared with single decision tree and is
particularly suitable for the problems with low data volumes.
The area under the receiver operator characteristic (ROC) curve
(AUC) of the classication model reached 0.92 (Fig. 3C).
Notably, we also performed the ROC analysis with single
copper-related variables without RF classication (see also
Fig. 3C). The results showed that the AUC of the machine
learning model distinctly exceeded that without machine
learning, clearly justifying the use of machine learning. The
variable importance (VI) in the RF model was also analyzed. As
shown in Fig. 3D, all the four variables contributed substantially
to the modelling result, and the RBC d65Cu value played the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Scheme showing the copper homeostatic mechanism and
possible factors affecting the 2D copper signatures in human cells.
Copper can be transported into cells by the hCtr1 pathway (with
Cu2+ being reduced to Cu+ by STEAP proteins as copper reductases)
or DMT1 pathway (redox independent). After uptake by the cells,
copper can be allocated to three main cuproproteins by copper
chaperones (i.e., to SOD1 by CCS and to metallothionein (MT) in the
cytoplasm, or to cytochrome c oxidase (CcO) in the mitochondria by
Cox17). Excess copper is excreted out of cells by ATP7A or ATP7B. The
potential influence of copper uptake and efflux processes by cells on
the blood copper concentration and d65Cu value are indicatedwith the
red and blue circles. The upward, downward, and rightward arrows
indicate up-regulation, down-regulation, and unchanged, respec-
tively. Note: this figure only shows the processes that may account for
the BCa-related copper signatures rather than all processes related to
copper in the human body.
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most important role in the RF model. The overall classication
results are shown in Fig. 3E. For BCa and non-BCa subjects, the
classication accuracy was 89.8%. A high precision (90.0%),
high recall rate (also referred to as sensitivity, 87.8%), high TNR
(true negative rate, also referred to as specicity, 91.5%), and
low FPR (false positive rate, 8.5%) were achieved. Specically,
for high-grade BCa, the precision and recall rate could even
reach 100% and 94.7%, respectively. These results indicated
that the machine learning model had a strong distinguishing
ability toward BCa.

Furthermore, to test the universality of the machine learning
model, we also applied the algorithm to a previously published
data set of HCC patients.20 We found that the machine learning
model established here also worked well for classication of
HCC and non-HCC subjects with accuracy, recall, TNR, and FPR
of 87.5, 90.5, 84.2, and 15.8%, respectively (see Fig. S4, ESI†),
thus suggesting the applicability of the machine learning model
for different cancer types.

Discussion

Our results have demonstrated that 2D blood copper signatures
offer a potentially new tool for BCa diagnosis, and the ROC
analysis shows that machine learning plays a critical role in
enabling the diagnosis (Fig. 3C). Currently, diagnosis and
monitoring of BCa mainly rely on an invasive test, i.e., periodic
cystoscopy. This test is reliable but rather uncomfortable for the
patients and it is not exempt of comorbidities. Hence, there is an
imperative need for reliable molecular biomarkers for clinical
non-invasive BCa diagnosis. Noteworthily, the previous studies
on disease-related isotopic analysis were largely limited to
reporting stable isotopic ratio variations between patients and
controls but seldom to realize the actual diagnosis, partly due to
the insufficient distinguishing effect between patients and
controls by only stable isotopic analysis. By contrast, we herein
used 2D copper signatures integrating four copper-related vari-
ables by using the machine learning model. A prominent
advantage offered by this approach is that it can provide a prob-
ability score for each subject for diagnosis, thus greatly
improving the practicability of the stable isotopic analysis-based
approach in clinical practice. The good performance of the
machine learning model with the previously reported HCC data
has also veried the universality of the approach (Fig. S4†).

In addition, the dependence of the copper isotopic frac-
tionation on the cancer grade of the tumor is also of potential
merit for diagnosis. Remarkably, compared with the estab-
lished biomarkers for BCa,31 this approach showed better or
competitive performance with a high sensitivity, high TNR, and
low FPR (see Fig. 3E and Table S9†). Despite that, it is also
noteworthy that liver conditions of different etiologies showed
a similar trend in the blood copper isotopic fractionation with
cancers,18,19 suggesting that the specicity of the method needs
further evaluation. Thus, in clinical practice, it is suggested to
jointly use the 2D copper signatures with other existing diag-
nostic means to achieve a more reliable diagnosis.

Natural copper isotopic signatures also provide a novel point
of perspective to reveal the molecular mechanisms underlying
© 2022 The Author(s). Published by the Royal Society of Chemistry
the carcinogenic process, assuming that cancer development
may induce a specic isotopic fractionation effect of essential
elements. The unique ability of stable isotopic signatures to
identify the origins of elemental abnormity is particularly useful
for cancer etiological research. Here, BCa is associated with
a systemic signicant depletion of 65Cu in blood, which could
not be ascribed to the dietary intake because a typical human
diet is 65Cu-enriched (d65Cu value ¼ �0.4&).51 Therefore, the
BCa-induced copper isotopic fractionation is deemed to result
from the endogenous copper metabolic imbalance.

Bladder is a urinary organ, but the absorption, utilization,
and excretion of copper mainly occur in the intestine and liver,32

so the copper isotopic fractionation should not be caused by
direct changes in organ functions but rather impaired copper
metabolism by cancer cells. The fractionation can be produced
by equilibrium or kinetics processes.4 In an equilibrium
process, a heavy isotope (65Cu) tends to be enriched in chemical
species with higher oxidation states and stronger binding
energies.52 Fig. 4 shows the copper metabolic pathways in
human cells and the possible factors linked to the copper
isotopic fractionation. It is generally thought that the uptake
and efflux of copper by cells are valence-dependent. The copper
transport processes via hCtr1 (with Cu2+ being reduced to Cu+

by STEAP proteins as copper reductases) can induce the blood
to be enriched in 65Cu2+ and the cells to be enriched in 63Cu+,51

and the amplitude of the copper isotopic fractionation is likely
Chem. Sci., 2022, 13, 1648–1656 | 1653
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modulated by the copper reductases.53 It has been reported that
hCtr1 is down-regulated and ATP7A is up-regulated in cancer
cells,54–59 which can explain the lower d65Cu value in the blood of
BCa patients due to the lower cellular uptake of 63Cu+, leaving
more 63Cu in blood (Fig. 1). However, the lower cellular copper
uptake would lead to a higher copper level in blood, which
however was not observed here (Fig. 1B and C). Therefore, our
results imply the existence of additional copper uptake mech-
anisms that can compensate the lowered copper uptake in
cancer cells. We consider that via divalent metal transporter 1
(DMT1) is a very likely mechanism, since its transport of copper
does not involve copper reduction and thereby would not affect
the copper isotopic fractionation induced by the Cu+ uptake
(Fig. 4).60–62 This redox-independent process is normally less
considered in the copper metabolism thus deserving more
attention.

Some characteristics of cancer cells may aggravate the
isotopic fractionation. The hypoxic tumor microenvironment is
favorable for the enrichment of the heavy isotope (65Cu) in
cancer cells.63,64 Furthermore, cancer cells have a relatively high
metabolic rate for more material exchange,65 which may exac-
erbate the Cu+ uptake and excretion by cells, intensifying the
enrichment of 63Cu in blood. Until now, the investigations on
protein-associated copper isotopic fractionation are still very
scarce. More in vitro and animal experiments are denitely
needed in future studies to verify the cancer-related isotopic
fractionation mechanisms.

It is interesting to note that the response of the blood d65Cu
value to the cancer development is more sensitive than the
copper concentration (Fig. 1). A plausible explanation is that
there are some regulators and sophisticated mechanisms to
maintain the copper homeostasis in the human body,35 e.g., the
DMT1 pathway mentioned above.60 However, such mechanisms
may not be able to correct the deviation in the d65Cu value (i.e.,
no homeostatic mechanism toward copper isotopes). Thus, the
cancer-induced deviation in the d65Cu value is more prone to be
accumulated and recorded in the human body. Furthermore,
the copper isotopic fractionation in the human blood associ-
ated with different cancer types appears to be consistent (i.e.,
enriched in 63Cu),14,20–23,25 suggesting that there may be similar
rules governing the copper metabolic imbalance in cancer
development, notwithstanding more cancer types and larger
cohort studies are required to verify this point.

Conclusions

In summary, we have identied the variations in the copper
concentration and natural copper isotopic composition in the
blood of BCa patients relative to benign and healthy controls,
and such 2D copper signatures enabled the distinguishing of
BCa and non-BCa by the aid of machine learning. We show that
the combined use of multiple signatures and machine learning
can greatly enhance the distinguishing capability between
cancer and non-cancer. It is worth noting that such a good
performance was achieved with only a single element. It is
rational to expect that exploring and integrating more types of
elemental signatures in the machine learning model will
1654 | Chem. Sci., 2022, 13, 1648–1656
further enhance the reliability and practicability. It should also
be noted that the sample size used in this study was relatively
limited and so a larger sample set is needed to validate the
method in future studies. The feasibility of the method for other
types of cancers also needs to be explored. Overall, the machine
learning-aided 2D elemental signatures provide a versatile
label-free approach for molecular mechanism research and
diagnosis of diseases. Considering that the stable isotopic
signature is still a relatively new tool for health research, this
work may represent an important step to push forward the
application of stable isotopic chemistry in biomedicine.
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