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Rapid and column-free syntheses of acyl fluorides
and peptides using ex situ generated thionyl
fluoridet

Cayo Lee, © Brodie J. Thomson® and Glenn M. Sammis & *

Thionyl fluoride (SOF,) was first isolated in 1896, but there have been less than 10 subsequent reports of its
use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its
generation. Herein we report a novel protocol for the ex situ generation of SOF, and subsequent
demonstration of its ability to access both aliphatic and aromatic acy! fluorides in 55-98% isolated yields
under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid
couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97%
isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting
groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can
be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides
in 14-88% yields without the need for column chromatography. We also demonstrated that this new
method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98%
yields.

The past decade has witnessed a resurgence in the application
of sulfur(vi) fluorides to organic synthesis. The majority of these
studies have focused on the commodity chemical sulfuryl
fluoride (SO,F,)" and its derivatives,> which readily react with
a wide variety of oxygen-containing functional groups, such as
alcohols (1), oximes (2),* and carboxylates (3),° to form acti-
vated fluorosulfate intermediates (5). Fluorosulfates behave like
triflate surrogates and have been used in a wide variety of
subsequent transformations.® Due to the mild reaction condi-
tions and stable sulfate byproducts, many of these trans-
formations can be carried out in a single reaction vessel and
often do not require flash column chromatography for purifi-
cation.” While fluorosulfate derivatives are powerful for some
transformations, they are highly reactive and often undergo
undesired side reactions. This problem is exemplified in
peptide couplings, where epimerization is observed alpha to the
initially formed acyl fluorosulfate (5, R> = R'C(0), Fig. 1).>
Despite the importance of a liquid phase, column-free method
for peptide coupling, it remains an unsolved challenge for S-F
based reagents® and other non-sulfur based deoxyfluorinating
agents.®

An alternative, and largely unexplored strategy for carboxylic
acid activation is to access the analogous acylfluorosulfite
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intermediate (7). These intermediates are less reactive at the
acyl carbon than the analogous fluorosulfate derivates and
should, therefore, be less susceptible to epimerization.’® One
reagent that could be used to access these sulfite intermediates
is thionyl fluoride (6). Thionyl fluoride is more reactive than
sulfuryl fluoride, which should increase the rate of carboxylate
activation.™ Intriguingly, thionyl fluoride has received very little
attention as a reagent. The synthesis of thionyl fluoride was first
reported in 1896,"* but it was not until 1985 when Shreeve and
coworkers reported on its use to react with phosphorous
derivatives, amines, and alkanes.”® Since then, only four
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Fig. 1 Activation of carboxylic acids for peptide coupling using sulfur
fluoride gasses.
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manuscripts and three patents have detailed its use as
a reagent.™ These studies indicate that thionyl fluoride forms
activated fluorosulfite intermediates in the presence of oxygen
nucleophiles, but the reactivity of these intermediates has not
been extensively studied.

Key to further investigations into the synthetic potential of
thionyl fluoride is the development of a facile and direct
method for SOF, formation. Thionyl fluoride is typically
generated from thionyl chloride and a fluoride salt followed by
isolation via condensation of the resulting gas.'® These methods
are effective but isolation of the condensed gas is a significant
practical impediment, and has likely limited studies of its
reactivity. A more practical strategy is to obviate the need for
isolation through ex situ generation and direct use of thionyl
fluoride.’® This has been a powerful strategy for sulfuryl
fluoride-based methodologies'®* but it has not yet been applied
to SOF,. As thionyl fluoride has a similar safety profile as
SO,F,,"” an on-demand generation approach also minimizes the
safety risk associated with its handling.

Ex situ SOF, gas generation was examined using an analo-
gous set-up as the recent ex situ generation of sulfuryl fluoride.*®
Thionyl chloride and fluoride salts® were added to one reaction
vessel and the resulting SOF, gas was bubbled through an
organic solvent in a second vessel. Unlike SO,F, generation, we
found that an imidazole trap inserted between the two reaction
chambers was necessary to remove any unwanted SOCIF and
HCI. Our final optimized conditions'® were effective for creating
thionyl fluoride solutions using a wide variety of solvents as
determined by '’F NMR spectroscopy (Table 1, arranged by
descending dielectric constants). While dimethyl sulfoxide
(DMSO, entry 1) reacts with SOF,, acetonitrile (ACN) is a viable
solvent and affords comparable concentrations (entry 2) as the
analogous reaction with SO,F,.”® Lower concentrations were
observed in both N,N-dimethylformamide (DMF, entry 3)** and
dichloromethane (DCM, entry 4). Tetrahydrofuran (THF), 1,2-

Table 1 Solubility of SOF; in organic solvents®

o Chamber A o

11 1l
CI/S\CI% o

8 solvent, rt 6
Entry Solvent SOF, (M)
1 DMSO 0
2 ACN 0.14
3 DMF 0.08
4 DCM 0.07
5 THF 0.13
6 DME 0.11
7 EtOAc 0.15
8 Chloroform 0.10
9 Tol 0.10
10 Pet ether 0.03

“ Reaction conditions: 8 (3.0 mmol), KHF, (3 equiv), solvent (6 mL),
imidazole trap, 30 min. The molarity of SOF, in the solvent was
determined by '°F NMR spectroscopy using trifluorotoluene as an
internal standard.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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dimethoxyethane (DME), and ethyl acetate (EtOAc) afforded
0.13 M, 0.11 M, and 0.15 M solutions, respectively (entries 5-7).
Chloroform and toluene (Tol) performed equivalently, both
yielding 0.10 M solutions (entries 8-9), but SOF, was poorly
soluble in the least polar solvent that was screened, petroleum
ether (Pet ether, entry 10).

With a protocol for the ex situ generation of thionyl fluoride
in hand, we then focused on the syntheses of peptides as it
could not be readily accomplished using sulfuryl fluoride. We
started our investigations by exploring the first step of this
process, the direct conversion of carboxylic acids to the cor-
responding acyl fluoride. meta-Fluorobenzoic acid (1a) was
selected as an initial substrate due to its simplicity and
because we could use the aryl fluoride as a handle to track the
reaction by '°F NMR spectroscopy. An initial screen found that
acid fluoride 9a can be accessed using the SOF,-containing
stock solutions from entries 2-10 (Table 1).>> DCM was
particularly effective; treatment of 1a with a stock solution of
thionyl fluoride in DCM afforded the desired product (9a) in
99% conversion after only 30 minutes at room temperature
(Table 2), which is more effective than the analogous reaction
using SO,F,.”® A direct comparison was performed under the

Table 2 Formation of acyl fluorides from carboxylic acids using SOF,*

SOF,
pyridine j\
9

=0

DCM
30 min, rt

@*

C (85%)

[saiN

R™ "OH

Q: “

9b 92% (95% 9d 76% (86%)

9e 86% (92%)” of 75% (92%)° 99 (92%) 9h (96%)
| heteroagl |
o] o} o]
NP @A o
/©)k Ej)\ \_s
Ph N
i

9i (90%) 9j (99%)>°¢ 9k (69%)° 91(60%)>°
9j' 78%"°7 9k’ 67%7 9I' 55%29
L_akyl |

(0} Br (0]
©/\)LF ©/\/U\ g‘\ WF

9m 94% (99%) 9n 94% (99%) 0 (99%) 9p (95%)
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H 0] H (0] H 0] H (0]

Boc’N\{[I\F Cbz/N\;)J\F Cbz’N\;)J\F Fmoc” \;)J\F
Bn Bn SBu Pr

9q 98% (99%)° 9r 86% (95%)° 9s 90% (95%)° 9t 90% (98%)°

% Reaction conditions: 3 (0.6 mmol), SOF, in DCM (1 equiv,
approximately 0.07 M), pyridine (1 equiv), 30 min. Isolated yields for
the one-pot reaction are reported, with '’F NMR yields using
trlﬂuorotoluene as the 1nternal standard provided in parentheses
5 SOF, in ACN was used. ¢ The reaction time was 1 h. ¢ Yields of
subsequent derivatization to the corresponding N-hydroxyphthalimide
ester. See ESI for reaction details. ¢ The reaction time was 20 min.
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Fig.2 '°F NMR spectroscopy kinetic study of the formation of 9a from
3-fluorobenzoic acid, with SOF, or SO,F,. Blue = with SOF,; red =
with SO,F,. Reactions were carried out in parallel on a 0.6 mmol scale.

same conditions (Fig. 2), which found that SOF, promotes
a higher reaction rate relative to SO,F,. This enhanced reac-
tion rate compared to SO,F, is consistent with literature
reports describing the higher reactivity of SOF,."* As acyl
fluorides can be volatile, DCM was selected for further studies
due to its low boiling point. The acyl fluorides can be isolated
after extractive work-up by diluting with DCM and washing
with 0.1 M NaHCO; solution and brine.

The reaction was effective for a wide range of benzoic acid
derivatives, affording 9b-9i in 85-96% NMR yields (Table 2).
Investigations next turned to the preparation of heteroaryl acyl
fluorides. Pyridine (1j), furan (1k) and thiophene (11) were
effective substrates, affording 9j-91 in 99%, 69%, and 60%
NMR yields, respectively. As substrates have low boiling points
and have previously been documented to be unstable out of
solution,” they were derivatized to the corresponding N-
hydroxyphthalimide esters 9j-91' in 78%, 67%, and 55%
overall isolated yields, respectively. The reaction was also
compatible with alkyl carboxylic acids, affording 9m-9p in
near quantitative conversion. Boc, Cbz, and Fmoc-protecting
amino acids were also viable substrates, affording 9q-9t in
excellent isolated yields without the need for flash column
chromatography.

Investigations next focused on one-pot peptide couplings
directly from Boc protected amino acids (Table 3). Subjecting
Boc-protected glycine to our optimized thionyl fluoride reaction
conditions, followed by sparging with nitrogen and addition of
L-Ala-OBu produced the desired dipeptide (10a) in 87% yield
and >99:1 er, as determined by HPLC. Notably, the side
products are readily removed by extraction and the dipeptide
could be isolated pure with no column chromatography
required. Alanine (Ala) was compatible with the reaction
conditions to deliver 10b in 92% yield with >99:1 dr. For
comparison, we also conducted experiments using conven-
tional synthetic methodologies including DCC/HOBt, PyBOP,
and HBTU. In all cases, the reactions took 4 hours to afford 10b

190 | Chem. Sci, 2022, 13, 188-194
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in 42%, 77%, and 76% yield, respectively all with >99:1 dr.
Notably, column chromatography was required for each of
these established coupling methods.

Amino acids with other hydrophobic alkyl and aryl side
chains, such as leucine (Leu), isoleucine (Ile), valine (Val),
phenylalanine (Phe), tryptophan (Trp), and methionine (Met)
were successfully coupled to produce dipeptides 10c-10h in
good to excellent yields with minimal to no epimerization.
This is in contrast to SO,F,-mediated amidation of amino
acids, where substantial epimerization was observed.** No
epimerization was observed when excess SOF, stock solution
(1.5 equiv.) was used, suggesting that the issue of epimeriza-
tion arises from the use of SO,F, rather than the number of
equivalents of SOF, that were utilized. Coupling with cystine
(Cys), proline (Pro), and tyrosine (Tyr) proceeded successfully
to afford the desired dipeptides 10i-10k in 84%, 80%, and 88%
yields, respectively. O-Protected amino acid serine (Ser) was
also effective, and afforded 101 in 90% yield without epimeri-
zation. Threonine (Thr) coupling afforded a slightly lower yield
(83% for 10m) than serine (Ser), likely due to increased sterics.
Asparagine (Asn), glutamine (Gln), lysine (Lys), arginine (Arg),
histidine (His), aspartic acid (Asp), and glutamic acid (Glu)
were effective in this methodology, giving excellent yields of
10n-10t with >99 : 1 dr. No evidence of cyclization was detec-
ted for any of these substrates. Compared to the current state-
of-the-art for peptide coupling methodologies, our method
provides comparable yields and diastereoselectivities, but with
improved reaction times and simpler purification protocols
(Table 4).>*

The method can also be applied for unnatural amino acids.
Ornithine (Orn) was an efficient substrate, affording 10u in 82%
yield. Phenylglycine (Phg) is recognized as one of the most easily
racemized amino acids.”* Our method successfully coupled
phenylglycine (Phg) to give 10v in 79% yield with 98 : 2 dr, in 2 h.

We next examined the protecting group tolerance of this new
dipeptide coupling reaction (Table 4).>” Amino acids with N-Boc,
N-Cbz, or N-Fmoc protecting groups effectively coupled with
OBn, O'Bu, or OMe amino esters to form the corresponding
dipeptides 11a-11d in excellent yields with >99:1 dr. Our
protocol can be performed on a 2 gram-scale to generate 11e
safely and with similar efficacy.

To explore the column-free, liquid phase syntheses of tri-,
tetra-, penta-, and decapeptides, we designed the protocol
outlined in Scheme 1. The protocol begins by first treating an
N-terminal amino acid with Boc-protected amino acid fluo-
ride, which was synthesized by our new method (step 1). Boc-
protected dipeptides were obtained in 1-2 h after a simple
aqueous work up. Subsequent deprotection of the Boc group
was achieved with 4.0 M HCI in dioxane or TFA/DCM (1 : 1) in
1 h (step 2).*® Concentration in vacuo and neutralization
afforded N-terminal peptides. Steps 1 and 2 were repeated, as
necessary, for subsequent amino acid incorporation. The final
coupling with the Boc-protected amino acid fluorides (step 3)
afforded the desired polypeptides. This strategy was effective
for the synthesis of tripeptides 12a and 12b, which were ob-
tained in 84% and 88% yields over the three-step sequence.
Tetrapeptide 12¢ and pentapeptide 12d were synthesized in

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Representative scope of Boc-protected amino acids serving as electrophilic components”
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% Reaction conditions: Boc-AA-CO,H (0.6 mmol), SOF, in DCM or ACN (1 equiv.), pyridine (1 equiv.), 30 min. Followed bﬁy L-Ala-O'Bu (1 equiv.),

pyridine (1 equiv.), 1-2 h. Isolated yields are reported. Unless otherwise noted, the drs were determined by "H NMR.

determined by HPLC.

The drs and ers were

Table 4 Representative examples of examining various protecting groups for peptide bond formation®

SOF,
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“ Reaction conditions: PG-AA-CO,H (0.6 mmol), SOF, in DCM or ACN (1 equiv.), pyridine (1 equiv.), 30 min. Followed by L-Ala-PG (1 equiv.), pyridine
(1 equ1v ), 1-2 h. Isolated yields are reported. Unless otherwise noted, the drs were determined by 'H NMR. ? The drs and ers were determined by

HPLC. ¢ 2 gram-scale (8 mmol).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Representative examples of liquid phase peptide synthesis through acyl fluoride intermediates.
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Scheme 2 Representative example of solid phase peptide synthesis through acyl fluoride intermediate.

80% and 51% isolated yields using an analogous method as
the tripeptides, except the dipeptide N-Boc-Leu-Gly-CO,H was
used. Similary, a decapeptide (12e) was produced in 14% iso-
lated yield over 8 couplings using the dipeptide N-Boc-Leu-Gly-
CO,H. Notably, all of the tri-, tetra-, and pentapeptides could
be assembled in a single day without the use of column
chromatography.

To explore the potential of using SOF, generated amino acid
fluoride in solid phase peptide synthesis (SPPS),* we examined
the new protocol in couplings with Wang resin (Scheme 2). We
started with Fmoc-deprotection of Fmoc-Ala-Wang resin using
20% piperidine in DMF to afford free amine. The free amine
was subjected to coupling with Fmoc-Ala-C(O)F to generate
Fmoc-Ala-Ala-Wang resin in 1 h. After coupling, the resin was
cleaved with TFA/DCM and the target Fmoc protected dipep-
tide 13a was obtained in 96% yield. Serine (Ser), threonine
(Thr), and lysine (Lys) were compatible with this solid phase
peptide synthesis and afforded the corresponding products

192 | Chem. Sci, 2022, 13, 188-194

13b-13c with excellent yields. Pentapeptide 13e was also
synthesized in 83% isolated yield.

Conclusions

In conclusion, we have developed a novel acid activation
peptide coupling strategy utilizing SOF, to access acyl fluorides
via acyl fluorosulfite intermediates. The ex situ generation of
thionyl fluoride was achieved using inexpensive and readily
available commodity chemicals, and displayed an expedited,
column-free preparation of alkyl, aryl, and amino acid fluorides.
Dipeptides were afforded in a one-pot, column-free protocol,
effective across natural and unnatural amino acid substrates
with a wide range of protecting groups and retention of optical
purity. Our approach was applied to the syntheses of tri-, tetra-,
and decapeptides, providing a competitive method for liquid
phase, iterative peptide couplings. The new approach was also
amenable to solid phase peptide synthesis.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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