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Multivariate chemical reaction optimization involving catalytic systems is a non-trivial task due to the high

number of tuneable parameters and discrete choices. Active machine learning (ML) represents a powerful

strategy for automating reaction optimization. However, the translation of chemical reaction conditions

into a machine-readable format requires the identification of highly informative features which accurately

capture the factors which determine reaction success. Herein, we compare the efficacy of different

calculated chemical descriptors for a high throughput experimentation generated dataset to determine the

impact on a supervised ML model when predicting reaction yield. Then, the effect of featurization and size

of the initial dataset within a closed-loop reaction optimization was examined. Finally, the balance between

descriptor complexity and dataset size was considered. Ultimately, tailored descriptors did not outperform

simple generic representations, however, a larger initial dataset accelerated reaction optimization.

Introduction

Identifying the optimal reaction conditions to enact a specific
transformation is a major challenge for chemists, particularly
in the field of small molecule drug synthesis and natural
product synthesis.1,2 The field of laboratory automation
allows for the rapid and systematic generation of high-quality
data, which, when used in combination with ML-directed self-
optimization algorithms can become a powerful tool for
research.3–8 In order to apply such tools, a chemical reaction
must be represented in a machine-readable format. This
representation must be composed of descriptors that are
simple and relevant enough to avoid the introduction of
undesired noise, yet information-rich, enough to account for
properties that impact reaction success such as sterics and
electronics.

Unlike the large datasets used for ML in other disciplines
(e.g., image recognition), synthetic chemistry datasets are

often extremely small and, to compensate, researchers often
develop bespoke descriptors, which are based on expert
knowledge such as mechanistic understanding or quantum
chemical calculations.9–12 However, it is possible that the
descriptors generated contain little relevant information and
are simply perceived as distracting noise by the ML model. In
this publication, we aim to investigate the relationship
between descriptor complexity and ML model performance
when predicting the yield of chemical reactions.
Furthermore, we aim to explore how the descriptor
complexity impacts closed-loop optimization, a strategy that
may help to guide synthetic chemists towards optimal
reaction conditions.

Whilst it can be challenging for humans to identify
complex relationships in large datasets, ML relies on building
statistical models that adjust to the given input data and has
recently proven to be a powerful tool for the successful
identification of nuanced patterns in complex data.13–17

Trained ML models can be used to make predictions when
given inputs that lie within the defined parameters of the
training dataset, referred to as interpolative tasks. This
includes new combinations of already known components,
such as catalysts/ligands/additives. In contrast, extrapolative
tasks, which are represented by predictions of inputs which
are not represented in the training data are challenging, with
the predictive power of an ML model decreasing as structural
differences between the training and test data increase. These
extrapolative tasks require the ML model to learn about the
fundamental chemical properties and, as such, the inputs are
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generally molecular descriptors that are based on
fundamental molecular properties such as atomic distances,
orbital energies or charge distributions.18

The application of ML as a decision-making tool during
reaction optimization represents an effective combination as
it accelerates experimental workflows and allows for rapid
gains in understanding. Active ML-driven closed-loop
optimization uses an initial dataset to make predictions
about yet unseen conditions and these predictions can
inform decisions about the subsequent experiments. For
example, the experiments predicted to deliver the highest
yields or the greatest improvement in model performance
can be prioritized and conducted. The data gained from
running this experiment can be used to re-train the ML
model and new predictions are made. This iterative process
continues until the desired objective (such as more accurate
predictions or increased yield) is fulfilled. ML-based
optimizers have the potential to increase the efficiency in
which chemical space is navigated, removing operator bias
and ultimately reducing the total number of experiments
required, thus reducing waste significantly.7,19–21

Previous reports vary in their conclusions on whether the
implementation of chemical descriptors, rather than generic
one-hot encoding (OHE) representations, truly boosted the
predictive performance of their ML models.19,22,23 Pd-
catalyzed C(sp3)–H activation is a powerful reaction manifold
that enables the facile introduction of functional complexity
in small molecules, in addition to the late-stage
functionalization of complex molecules like trimipramine (1),
a tricyclic antidepressant, as recently demonstrated by one of
our groups.24 Hence we chose to explore the parameterization
and featurization of the newly developed tertiary amine
directed C(sp3)–H bond activation with a HTE-generated
dataset, comparing tailored descriptors, based on in silico
studies, to understand the influence of descriptor complexity
on supervised ML prediction and closed-loop optimization.

Traditional round-bottom flask chemistry is still the major
strategy for reaction optimization; however, it is limited by
the capacity of a human experimentalist and experimental
set-up can vary between chemists, unintentionally
introducing sources of error. Hence, we chose to employ
high-throughput experimentation (HTE) to conduct
experimental arrays in parallel, increasing the rate of data
generation and improving reproducibility. To the best of our

knowledge, this is the first application of this chemical
transformation in HTE.

The reaction contains three discrete reaction parameters
which were varied in tandem: mono-N-protected amino acid
(MPAA) ligand, the palladium pre-catalyst, and the aryl
boronate (Scheme 1). All combinations of 31 ligands (plus
one control), three pre-catalysts, and two boronates results in
186 unique conditions that were each run in quadruplicate
on a 125 nmol scale using nanoscale HTE, outliers were
eliminated, and the repeats averaged to ensure
reproducibility. For the active learning studies, this dataset
would serve as the navigable chemical space that experiments
would be simulated within.

Materials and methods
Molecular parameterization

Developing machine-readable representations that can
capture the correlation between structure and reactivity
represents a major challenge within computational
chemistry.30 A key consideration when choosing a
parameterization method is that, depending on the ML
model used, the sparsity of input features (i.e., the location
and number of ones and zeros in a bit vector) may influence
modelling performance by undermining relevant information
within the input vector.

Within the obtained dataset a varied structure–reactivity
relationship was demonstrated by the ligands, with >90% of
the variation in yield is attributable to ligand choice, and
their role as knock-out criteria for the reaction, we focussed
primarily on parameterizing them whilst the boronates and
pre-catalysts were encoded by means of OHE and Morgan 2
fingerprints only.

MPAA ligands (Fig. 1), first popularized by Yu and co-
workers in 2008,25 are uniquely favoured ligands for Pd-
catalyzed C–H activation as both the carboxylate and amide
motifs have relatively weak coordination strengths when
compared to phosphine or NHC-type ligands, and both are
able to bind to Pd as L-type (neutral) and X-type (anionic)
ligands enabling them to dynamically adjust between
coordination modes throughout the catalytic cycle.26 Diversity
within this ligand-set comes primarily from variation of the
α-substituent, and with the amide protecting group, enabling
a wide range of steric and electronic profiles to be generated.

Scheme 1 General conditions for catalytic C(sp3)–H bond activation of tertiary alkylamines. Original conditions: Pd(OAc)2 (10 mol%), (L)-tert-
leucine (25 mol%), ArB(OH)2 (1.0 equiv.).
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The subtle impact these modifications may have on
reactivity, is unintuitive and, as such, it is thought that ML
may be able to aid in predicting reaction outcomes for
reactions that depend on these ligands.

Although we concede that the conformation of the ligand
when alone and when in the catalytic complex differs, we
aimed to keep our approach computationally inexpensive
and attempted to derive descriptors from the unbound
ligands (instead of the ligand–metal complex). We chose
three levels of chemical parameterization complexity which
contained sequentially more chemical information at the
expense of increased computing time. Initially, one-hot
encoding (OHE) was used, a computationally simplistic
method that merely details the presence or absence of certain
reagents whilst encoding no chemical information. For the
inclusion of structural information, Morgan fingerprints
(radius of 2, see ESI† for discussion) were chosen to encode
the molecular fragments that were present in a given reaction

mixture.27 These bit vectors contain information on atom
types, neighbouring connectivity relationships and bond
types. Finally, steric and electronic descriptors were
calculated for the set of ligands using density functional
theory (DFT) from geometry optimized structures (B3LYP
functional and 6-31G(d) basis set, see ESI† for full details).
Within this investigation different sub-sets of descriptors
were used and combined to develop hybrid molecular
representations, containing information of the fingerprints
and DFT descriptors.

As discussed previously, there are two main positions of
diversity within MPAA ligands: the α-carbon and the
acetamide protecting group. Hence, to separate their
influence on reaction outcome, both positions were
parameterized separately for each ligand rather than using a
single descriptor for the entire molecule. The ligand's steric
profile was expected to influence reaction yield greatly –

preliminary work clearly identified an increase in yield with

Fig. 1 An overview of common data representation methods for organic molecules (top) and the diverse ligand space used for screening within
this study (bottom).
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increasing size of the group on the α-carbon: H → CH3 →

C(CH3)3, for more detailed insights see Rodrigalvarez et al.24

Two steric descriptors were introduced, Sterimol and
percentage buried volume (%VBur).28,29 Sterimol descriptors
quantify steric demands along different principal axes,
making them well-suited to describing the steric effects of
unsymmetrical substituents. The percentage buried volume is
a descriptor that is traditionally used for catalyst-ligand
complexes and describes the percentage of the volume of a
sphere that is occupied by a given substituent. We used the
α-carbon/[N-residue] as centre of our sphere and the
calculation was performed considering only the variable
residue extending from this position. In addition to this, a
number of electronic descriptors were calculated for the
ligand molecules as the fine-tuned electronics can impact
Lewis basicity of the two binding atoms (N and O) and the
aptitude to engage in the key mechanistic step (concerted
metalation deprotonation, CMD). To capture the electron
density distribution, we calculated the HOMO/LUMO
energies and conducted a NBO analysis (natural bond orbital)
and a CHELPG analysis (charges from electrostatic potentials
using a grid-based method).30,31

Each calculated descriptor was used as a stand-alone input
and was also combined with other inputs to develop hybrid
features, aiming to deliver a streamlined set of input features
which allow for a detailed description of the reaction
conditions. A feature importance assessment based on Gini
importance method (or mean decrease in impurity, MDI) was
conducted and indicated high importance for the ligand
fingerprints and the DFT descriptors (see ESI† for more
details).

For more detailed information about different
parameterization techniques, we refer the reader to these
papers on molecular fingerprints,20,32,33 and on DFT-based
descriptors.7,9,11,34

Machine learning surrogate models

Following feature engineering, we wanted to compare
different ML models and assess their performance given a
predictive task, mapping reaction conditions to yield and
make predictions for unseen conditions. Different data
structures and featurization methods can deliver varying
performance with different ML models, something which
cannot be predicted a priori, meaning empirical evaluation is
required.

To evaluate the performance of a ML model, the dataset is
partitioned into training and testing data. A model is trained
(using the training data), before being given the inputs for
the, previously unseen, testing data and asked to make
predictions on the outputs. The difference between the
predictions and the actual values is given with the root mean
squared error (RMSE), a common performance metric. To
partition the dataset into training and test sets, we applied
two different strategies, a random split, and a designed split.
When data for the training and testing partitions are chosen

at random it is very likely that the training data contains
information that is well distributed amongst the dataset and,
as such, is in part representative of the test data. Thus, a
random split may be considered as an interpolative
prediction task. To simulate out-of-sample prediction the
training/test partitions can be chosen with the intention of
neglecting a specific part of the dataset, for example by
excluding one ligand from the training data via a leave-one
group out (LOGO) cross validation (CV). After the model has
been trained, it is given the testing data that was poorly
represented in the training data and attempts to make
predictions. In this way a train/test partition can be designed
to simulate an extrapolative prediction of unseen data. To
obtain more general results, many different train-test
partitions are used and an average RMSE of the predictions
based on the test dataset is calculated and used as a
performance metric.

Reaction optimization

Within this study we applied closed-loop optimization using
simulated experiments and assessed the effect of different
surrogate models and data representations. In terms of
sampling strategy, we conducted both exploitative search (the
condition with the highest predicted yield is chosen for
experimental evaluation) and Bayesian optimization (BO)
based on expected improvement (EI) acquisition function
(the condition with the highest expected improvement for
yield was chosen for evaluation – incorporating the
uncertainty of the prediction). For more detailed information
on EI, BO and sampling strategies, refer to the ESI† and
published literature.19,35,36

Results and discussion
Preliminary studies: supervised ML modelling towards yield
prediction

Random split – interpolation. Four different commonly
used ML models – linear regression (baseline), random forest
(RF),37 Gaussian processes (GP),38 and artificial neural
networks (ANN),39 were compared for a regression task and
the effect of the input features on model performance was
assessed with the goal of determining whether we could
boost model performance with hand-crafted DFT based
descriptors. The investigation began with simple OHE where
the model is not given any chemical information.
Subsequently, more features such as fingerprints/DFT
descriptors were added to evaluate how a richer source of
chemical information influences the model performance.
Hybrid features were also generated, consisting of
combinations of steric descriptors, electronic descriptors,
OHE and principal components of Morgan 2 fingerprints. To
compare the performance of different ML models on the
given dataset within an interpolative task, the existing data
was split randomly into a training (80%) and test (20%) set
and the evaluation was repeated six times to generate mean
and standard deviation values. This was conducted for each
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data representation and the mean and standard deviation
values were calculated (Fig. 2a).

More complex features (that were chosen based on prior
knowledge of the reaction) such as DFT and fingerprint-
derived descriptors delivered only marginal increases in
performance compared to OHE which represents the
baseline. RF and GP demonstrated almost equal prediction
performance, regardless of which features were used. OHE
along with a linear model delivered an RMSE of 9.6% ± 0.7%
(standard deviation) yield. The best performance was
achieved with feature set 2 and 14 using RF, giving an RMSE
of 7.6% ± 1.2% and 7.2% ± 1.3% respectively. As visible in
Fig. 2, feature set 14 is a combined input of steric and
electronic ligand DFT descriptors (Sterimol, %Bur, NBO,
CHELPG), principal components of the Morgan 2
fingerprints, OHE and existence/absence of a proton on the
amide nitrogen. RMSE is reported with respect to yield –

between 0 and 1. Fig. 2a shows that different features
influence the performance of ANN and the linear model
significantly and that their overall performance is worse than
RF or GP, which is likely due to the small size of the dataset

or choice of the features. Fig. 2b illustrates a parity plot of RF
regression using feature set 14, illustrating the fitting of the
training and test data.

The estimated statistical uncertainty of the datapoints is
2.8%, averaged over all 186 conditions (see ESI†). This serves
as a lower limit to the RMSE in the predictions of any model.
It may seem surprising that models with more informative
hybrid features did not strongly outperform those with OHE.
However, since the latter already allows for a qualitatively
good performance, there is little room for improvement when
using more descriptive features. As discussed, with a random
partition for the training/testing data it is likely that every
ligand will be represented in the training data and, as such,
it is likely that the good performance of OHE results from
this ‘data leakage’ since the other two parameters (boronate,
pre-catalyst) do not influence the outcome significantly. The
magnitude of this effect would likely be smaller if the other
two parameters had a greater influence on the reaction
outcome.

Out-of-sample prediction – extrapolation. Aiming to make
predictions for reaction conditions that are not as well

Fig. 2 Supervised ML of different surrogate models for yield prediction using random split of training and test data (a) a comparison of the used
data representations (see table) and models for modelling the initial dataset. Error bars represent the standard deviation (b) parity plot of the RF
regression using feature set 14. RMSE values are reported with respect to yield – between 0 and 1, instead of a 0–100% scale. Abbreviations: RF,
random forest; GP, Gaussian process; ANN, artificial neural network.

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
1/

8/
20

25
 7

:5
0:

32
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2re00008c


React. Chem. Eng., 2022, 7, 1368–1379 | 1373This journal is © The Royal Society of Chemistry 2022

represented by the training data represents a more
significant challenge. To simulate these extrapolative-type
tasks, all data points are assigned a group number according
to the ligand used and data partitioning was restricted so
that all datapoints of the same group can be either in the test
or the train set. Thus, the task can be considered as an
extrapolation into untrained chemical space. For automating
the process of model evaluation, LOGO CV was applied. The
ligand was chosen as the variable parameter. Then, the
dataset is split up into 31 sections (31 ligands) and the
models are trained on all sections except for the single held-
out section on which the models are tested.

A graphical representation is shown in Fig. 3a, and a more
detailed summary of LOGO CV is presented in the ESI.† After
the generation of test RMSE for all data sections, the mean
and standard deviation can be calculated and used as
indicators for model performance. Fig. 3b illustrates the
comparison of different surrogate models and different data
representations. Linear regression failed to conduct
extrapolative predictions using features containing bit vectors
as input and thus was dropped. Expanding the scope of the
out-of-sample prediction, we chose to introduce two
additional commonly used surrogate models: support vector
regression (SVR)40 and adaptive boosting (AdaBoost)41 to
experimentally test their ability to fit the chemical reaction
data.

Comparison of the different models suggests that RF
delivered the best overall performance (using Morgan 2

fingerprints as input), achieving the lowest average RMSE of
22.7% ± 18.8% (standard deviation). On the other hand, GP
seems to deliver the worst performance for out-of-sample
predictions across most of the input features. Feature set 2,
consisting of exclusively Morgan 2 fingerprints, delivered the
best prediction performance across all models. Additionally,
even though the hybrid features (feature sets 11–14) include
relevant principal components of the fingerprints and
additional steric/electronic information from DFT
calculations, they did not outperform the feature set 2.
Interestingly, the performance of many of the feature sets
was similar to the performance of OHE, which serves as a
control (no chemical information), as can be seen in Fig. 3a
in which all of the error bars of feature sets 1–14 overlap.
Thus, it can be concluded that the additional time and
expertise required to generate high-fidelity DFT descriptors,
based on mechanistic understanding, is unjustified when the
improvement in performance of fingerprints alone is only
modest.

Overall, these experiments demonstrate promising
predictions with interpolative modelling tasks with the lowest
RMSE of 7.2% yield, however extrapolative out-of-sample
predictions still represents a significant challenge with the
lowest RMSE of 25% yield (or 50% of MAE). The latter results
confirm and emphasize the lack of predictive power of ML
for reaction condition prediction that are not directly
represented within the training data, in low data regimes
which are of particular relevance to bench chemists. Within

Fig. 3 Leave-one-group-out cross validation (CV) (a) a conceptual illustration of LOGO CV. Different shades of blue/brown/green represent
datapoints within the same group. For each iteration a different colour is circled which indicates that these datapoints are used as test data for
model evaluation and the other remaining datapoints are used as training data (b) LOGO CV results of different ML models with varying input
features (for feature description see Fig. 2). Error bars represent the standard deviation.
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the LOGO CV experiment, even if a diverse chemical space is
captured in the training data, the average prediction
performance for the held-out test data was limited. The
preliminary assessment of these investigation allows for
benchmarking of combinations of input representations and
surrogate models by showing the most appropriate strategy
for similar sized datasets generated by the chemical
community. We believe that the performance of extrapolative
predictions may be better with larger datasets and, also, may
vary depending on the reaction mechanism itself since this
affects the learning of structure-reactivity relationships by ML
models.

Closed-loop active machine learning. Active ML represents
a strategy for continuous model optimization through the
iterative improvement of the surrogate model by repeatedly
retraining on new experimental data as it is collected.42 An
objective, such as yield, can be rapidly maximized through
the efficient exploration of chemical space, with experimental
prioritization being guided by the surrogate model. Based on
our preliminary modelling using different data
representations/surrogate models, we aimed to assess how
well these surrogate models perform within a closed-loop
optimization framework. To allow for a fair comparison, the
initial dataset was shuffled, a random batch was used for
model initialization and the remaining data was stored as
“Lookup-table” (Fig. 4). The initial batch size was varied – if
not stated otherwise the models were initialized with 15
datapoints (7.5% of the dataset).

Once the models were trained on the initialization data,
yield predictions were generated using the relevant reaction
feature-sets. The datapoint (or a batch of datapoints) with the
highest yield predictions were selected for “experimental”
evaluation and the true yield was transferred from the lookup
table (serving as a simulated experiment) to the training
dataset. The models are then retrained, and this workflow is
repeated until the global optimum reaction yield was
identified. We chose to use feature set 14 (unless stated

otherwise), for all experiments due to the highest information
content. To allow for an easy and fair performance
comparison, the initialization was kept the same across all
surrogate models. All learning curves shown within this
section represent averaged learning trajectories from 10
individual experiments – for insights into standard deviation
of those 10 single experiments please refer to ESI.†

Comparison of different surrogate models for active
learning. To assess the different surrogate model
performances within this iterative optimization strategy and
identify their ability to operate under an initial low data
regime, we compared 5 different models: RF, ANN, GP, SVR
and AdaBoost. Fig. 5a shows that the yield distribution
within the dataset is evenly distributed between 0% and
100% yield, except for an increased number of samples with
0% yield. The learning curves of the single surrogate models
within the closed-loop optimization (Fig. 5b), in which the
maximum yield observed in each active learning iteration is
presented, illustrate performance of the models when
searching for the optimal conditions. The experiments were
conducted using sequential sampling such that one
datapoint was sampled during each iteration using an
exploitative acquisition function.

Overall, whilst the rate of improvement in the highest
observed yields in the earlier iterations did not significantly
vary between the different ML models, the required number
of iterations to find the best-performing conditions (=99.9%
yield) highlighted the differences between the models.
Although the ANN model started initially with the lowest
yield, the model achieved the optimal conditions within
approximately 60 iterations, the fastest of all models. Tree
based models such as AdaBoost and RF required
approximately 100 iterations and GP/SVR achieved the ideal
conditions within 110 iterations.

We hypothesized that using a combination of active
surrogate models within the same optimization strategy may
increase performance compared to single models. In detail,

Fig. 4 Schematic of the active learning workflow and pseudocode of the optimization loop. To allow for generalizability all closed-loop
experiments were conducted 10 times and the average was calculated.

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
1/

8/
20

25
 7

:5
0:

32
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2re00008c


React. Chem. Eng., 2022, 7, 1368–1379 | 1375This journal is © The Royal Society of Chemistry 2022

we based our investigation on the fact that the current best
model (ANN) typically does not perform well at the beginning
of the optimization, when very little data is available.
Random forest, however, seems to perform better under a
low data regime. Within the RF-ANN hybrid model, the rule
was set that during the first 10 iterations the decision-
making was conducted based on the predictions of the RF
and then the ANN continued. Unexpectedly, the performance
of the hybrid model did not outperform ANN. Nonetheless, it
was the second-best model and achieved the optimal
conditions within 70 iterations.

The effect of input features on active learning. Intuitively,
adding more descriptive input features to a model, such as
relevant structural and electronic information, should allow
for better modelling and hence better prediction
performance, as observed during the preliminary studies for
interpolative predicting reaction yields. The effect of adding
chemical information within active learning was
subsequently studied to observe how ML models perform in
initial low data regimes. Four different data representations
were compared: OHE, Morgan 2 fingerprints, dimensionality
reduced Morgan 2 fingerprints (the first 30 principal
components generated after principal component analysis
(PCA) of each of the three varying reagents, giving 90
principal components in total) and the full feature set 14
(including OHE, PCA of fingerprints and all DFT features).

It was observed that OHE clearly outperformed the other
representations after 10 iterations were achieved and reached
the optimal set of conditions in the fewest number of iterations
(Fig. 6). In a similar manner, recent results by Shields et al.
observed that OHE delivers approximately equal performance
compared to hand-crafted DFT descriptors during Bayesian
optimization of organic reaction conditions.19 Initially, we
assumed that the superiority of OHE performance could be due
to the full factorial chemical space since all possible parameter
combinations could be evaluated. Whilst this effect would
benefit all representations, we hypothesized that the simplicity
of OHE along with a full factorial space could be more

beneficial when compared to the effect on other input features
(e.g. fingerprints) that are far more complex and might
represent a challenge for the model to detect patterns in the
data. To test this assumption, we dropped a random selection
of the datapoints of the entire dataset (25%), therefore no
longer representing a full factorial chemical space. However, we
still observed that OHE outperformed the full feature set (see
ESI†). Another reason for the good performance of OHE might
be that during each optimization experiment the model receive
datapoints of the same ligand multiple times (in combination
with a different pre-catalyst or boronate). As discussed
previously, the impact of the ligand is significantly higher to
reaction outcome, compared to the other two parameters. As a
result, it is likely that OHE captures the variability between
ligands and therefore can efficiently identify high yielding
reaction conditions.

Fig. 5 Variation of surrogate models for active learning (a) distribution of reaction yield over the training data set (b) comparison of different
surrogate models within the active learning loop using feature set 14. The confidence intervals (interquartile range) of the repeated experiments
are shown as filled area.

Fig. 6 The effect of different input features on active learning using
RF surrogate model. The confidence intervals (interquartile range) of
the repeated experiments are shown as filled area. FP: fingerprints, PC:
principal component.
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All previous experiments were conducted in a sequential
design – during each iteration of the active ML algorithm,
one decision was made and one single datapoint was
sampled from the lookup table. In a real world setting this
means that after each single experiment the yield is evaluated
and then added to the ML training data. However, typically
organic chemists conduct multiple experiments in parallel to
accelerate the process of finding optimal conditions.
Therefore, batch-sequential sampling within active learning
represents a more realistic approach and was also
investigated. The ideal batch size is a trade-off: a large batch
size typically brings benefits to experimental workflows as
HTE equipment can be applied, for example screening 96
conditions at a time. If the experimenter gains more useful
data per HTE run, this will often lead to minimizing the total
number of HTE runs and be less time intensive. However,
large batch sizes at the beginning of the active learning
strategy could lead to the acquisition of chemically
redundant data as the active learning model may make low
informative predictions due to the initially limited number of
datapoints used for training. Conversely, a smaller batch size
allows the training data of the ML model to be updated more
frequently and thus enables better quality predictions. As
shown in detail in the ESI† (Fig. S18), the batch size did not
significantly vary model performance (most learning
trajectories of different batch sizes are overlapping) and thus
we propose they should be chosen in accordance with
experimental workflows.

To conclude, we believe that prospective research in this
area should consider the required complexity of molecular
parameterization, due to increased computational time and
expense. It could be possible that the low data regime in
combination with complex features does not allow the
models to efficiently learn from the data and likely over-
complicates the task. Moreover, we conclude that instead of
over-allocating resources on feature generation, it may be
more strategic and resourceful to increase experimental data
generation capabilities.

The impact of initialization of the closed-loop
optimization. The success of closed-loop optimization
algorithms strongly depends on the information included in the
initialization data on which the initial model is trained. To
assess the effect of the data used for initialization, we
conducted a case study where the optimization is initialized
using: (i) a broader set of reaction conditions from multiple
ligands, and (ii) a restricted dataset that contains only reaction
information from three ligands. Generally, ML models deliver
better prediction for areas in the chemical space that are close
to or within the training data. In Fig. 7a, two different extreme
situations were compared – initializing the active learning either
with local data (the dataset contains datapoints of only three
ligands) or with random data (on average the dataset contains
information of 7 ligands). By restricting the dataset we
intentionally introduce biases (by showing the model only a very
restricted part of the chemical space) in order to assess the
impact on the closed-loop optimization. It is apparent that even
though the local initialization possesses restricted knowledge,
within ten iterations the model performance is approximately
equal to an initialization dataset which is more diverse. These
findings may be very beneficial for experimental chemists that
want to start their optimization workflow with a restricted set of
chemicals (e.g., ligands) before purchasing much more diverse,
potentially inadequate, chemicals. The results show that
restricted initialization data can rapidly catch up with diverse
initialization data when predicting experimental yields.

Another important factor for initializing active learning is
the size of the initial training data. The choice of the size of the
initial dataset represents a trade-off between showing the model
enough information so that initial predictions are useful and
keeping the dataset sufficiently small to limit the amount of
experimental time and resources used. We chose four different
sizes of initialization with five, 10, 15 and 20 random
datapoints. As shown in Fig. 7b, the results indicate that larger
sized initial datasets allow the model to predict conditions that
give >99% yield in fewer iterations. Using 20 random
datapoints for initializations allowed finding the global

Fig. 7 Comparison of different learning trajectories by variation of initialization and chemical representation (a) random initialization vs. local
initialization using RF and feature set 14. (b) Different sizes of the initialization dataset (c) variation of complexity of parameterization and size of
the initial dataset.
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optimum on average within 40 iterations while using only five
initial datapoints required up to 100 iterations. In total 186
datapoints are available. Whilst the choice of the adequate size
of the initialization dataset might vary on the parameter space
of the dataset as well as the size and complexity of the
prediction space, we assume that a minimum of 15–20
datapoints should be chosen – here this choice allowed for
identification of optimal conditions in approximately 45
iterations. Overall, we suspect that the smaller sized
initialization datasets are detrimental as biases may get
introduced from the beginning, particularly since a greedy
search (no exploration) was used. This leads to negative impacts
when the active ML is conducting mostly extrapolative
predictions (see the low performance of extrapolation described
previously). In the case of the small (e.g., five datapoints)
initialization datasets, this effect was severe for the learning
curves. However, being restricted to a local initialization dataset
(data from three ligands) led to very steep initial learning curves
and a performance similar to the initialization with a more
diverse dataset, thus demonstrating the power of successful
navigation through the chemical space by active ML driven
closed-loop optimization.

Based on the previous findings on the size of the initial
dataset and the different chemical representations, a direct
comparison was conducted to assess the performance
between complexity of parametrization and size of the initial
dataset. Initialization datasets of 10, 15 and 20 datapoints
were chosen along with OHE, Morgan 2 fingerprints and
hybrid full feature representation (feature set 14, see Fig. 2 for
more details). When using different sizes of initialization
dataset the remaining data limits the number of possible
active learning iterations. To allow for easy comparison of
different sized initialization datasets, the data was normalized
and, as such, at every location in the x-axis the different
models have access to the same number of datapoints and so
the effect of initialization dataset is represented.

By comparing extremes such as having no chemical
information, but a larger initialization set (Fig. 7c, OHE 20)
to using a smaller fully parametrized initialization dataset
(full features 10), the effects of parametrization complexity
and initialization data size could be more clearly identified.
Within the case study, the results clearly indicated that
having a dataset parameterized to higher complexity only
delivers acceptable learning curves when the size of the
initial dataset is sufficiently large. When using 10 datapoints
for initialization, the OHE dataset clearly outperformed the
fully parameterized dataset, however, when using 20
datapoints for initialization we found less of a difference in
performance. When comparing size of the initial dataset
against complexity of parameterization, we found that OHE
20 reached the maximum yield within 40 experiments
whereas initialization with only 10 datapoints with full
features required more than 110 experiments – almost more
than three times more experiments where required. Based on
these insights, we believe that it is relevant to consider the
trade-off between feature complexity and size of the dataset

(i.e., number of experiments) when conducting reaction
optimization with HTE and active ML. A more detailed case
study can be found in the ESI.†

The effect of incorporating an uncertainty metric for
active learning: exploitative search vs. expected improvement.
So far, all presented active learning strategies operated under
a pure exploitation regime. While it is not feasible to directly
identify the prediction uncertainty for all surrogate models,
which is required for exploration, GP models were chosen
due to their intrinsic ability to deliver variance for each
prediction. To allow for a controlled trade-off between
exploitation and exploration, different acquisition functions
can be applied for sampling of subsequent datapoints.
Within this comparison, the expected improvement (EI)
acquisition function was chosen.38 Fig. 8a illustrates a
comparison between exploitation, EI and a random search
(baseline), starting with the same initialization. While a
random search clearly delivered the lowest optimization
performance, the differences between EI and exploitation
become more obvious after the initial rise of the learning
trajectory, with pure exploitation discovering the global
optimum after more iterations. Fig. 8b and c provides
insights into how the active learning algorithms explore the
chemical space, where the graphs illustrate the true yield of
every sampled condition, i.e., the experimental yield of a
selected input parameter selection. In an ideal case, the
graph should indicate the highest values in the beginning
and the lowest values at the end, thus indicating that the
algorithm picks the condition which will deliver a high yield
during the first iterations. Of course, this is unrealistic as the
model requires a certain number of iterations to screen the
chemical space and understand in which region the
maximum is located. The plot for exploitation (Fig. 8b)
demonstrates that the initial search started in a region of the
chemical space which delivered high yields and the model
seem to exploit this area. However, since no exploration was
used for sampling, the global maximum (slightly higher than
the datapoints which were sampled in the beginning) could
only be found after more than 100 iterations. The two peaks
indicate that the model only found these two high yielding
regions after the area around the initial data was exploited.
By contrast, Fig. 8c illustrates that EI samples a priori over a
broader space (many high and low values are sampled and
the curve is noisier) due to the explorative character and then
more steadily reaches low yielding areas of the chemical
space. In a direct comparison, this method often allows for
finding the optimal conditions in fewer experiments than
just exploitative search.

Conclusions

Using an HTE-generated dataset of conditions for the Pd-
catalysed C(sp3)–H bond activation of tertiary alkylamines, we
investigated the role of parameterization for simulated active
ML closed-loop optimization. By using different complexity
levels of data representation, we identified the optimum
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modelling regimes for fitting moderately sized chemical
datasets. When using a random split of the data for training/
testing partitions, we found that simple OHE delivered
already high-quality predictions for reaction yield, however,
by adding more complex chemical descriptors we achieved
slightly lower prediction error. For out-of-sample predictions
we learned that neither fingerprints nor complex DFT-derived
descriptors delivered significantly better performance
compared to OHE, even though the descriptors were chosen
based on mechanistic insights.

Then, based on these preliminary findings, we conducted
simulated closed-loop optimization experiments wherein the
impact of feature complexity on active learning performance
was assessed. Unexpectedly, OHE outperformed complex
parameterizations that incorporated chemical information even
in low data regimes which are used to initialize active learning
models. To understand the impact of initialization of the
closed-loop optimization, different sized initialization datasets
and differently sampled data (random, out-of-sample) were
used, showing that initialization with minimal data led to
ineffective optimization whilst initialization with out-of-sample
data still allows the active ML model to rapidly find ideal
conditions. Most importantly, when comparing initialization of
the closed-loop optimization with data that included the full
feature set (fingerprints, DFT descriptors) to a double-sized
dataset that was encoded with OHE (no chemical information),
the latter identified the highest yield conditions in fewer

experiments. Moreover, we found that increasing complexity of
the parameterization requires a larger initialization dataset to
deliver comparable performance.

The results of this study clearly indicate that current
methods for parameterization are not descriptive enough to
capture the factors that govern reaction success even when
based on specific and relevant mechanistic insights. It must
be noted that the success of different feature sets and models
depends on the complexity of chemistry, the dimensionality
of the design space and the number of variables. Given a
different chemical design space with a larger number of
ligands it might be possible that DFT-based descriptors start
to outperform OHE because the number of OHE features
increase whereas the number of descriptors stays constant.
We believe that this work should serve as a challenge for the
chemical community, and stimulate discussions about the
trade-off between the development of more tailored
parameterization methods or more exhaustive screening as
two key factors for efficient reaction optimization.
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