RSC Advances

CORRECTION

View Article Online
View Journal | View Issue

Cite this: RSC Adv., 2022, 12, 34568

Correction: Palladium nanoparticles immobilized on polyethylenimine-derivatized gold surfaces for catalysis of Suzuki reactions: development and application in a lab-on-a-chip context

Prasad Anaspure, Subramanian Suriyanarayanan* and Ian A. Nicholls

DOI: 10.1039/d2ra90120j

rsc.li/rsc-advances

Correction for 'Palladium nanoparticles immobilized on polyethylenimine-derivatized gold surfaces for catalysis of Suzuki reactions: development and application in a lab-on-a-chip context' by Prasad Anaspure et al., RSC Adv., 2021, 11, 35161–35164. https://doi.org/10.1039/D1RA06851B.

The authors regret that the turnover numbers (TONs) were not correctly given in the original article.

In the abstract on page 35161, the corrected number should read 3.4×10^4 .

The corrected versions of Table 1 and 2 are shown below.

Accordingly, Table 1-SI, Table 2-SI, Table 3-SI, and Table 4-SI in the original ESI have been revised; the ESI has been updated online.

An independent expert has viewed the corrected tables and has concluded that they are consistent with the discussions and conclusions presented.

Table 1 Suzuki cross-coupling reactions of aryl halides with arylboronic acids using PEI/Pd as catalysts^a

Entry	R_1	X	R_2	Amount of Pd, μg	Yield	TON
1	Н	I	Н	3.2	93%	3.1×10^4
2	Н	Br	Н	2.8	95%	3.4×10^4
3	Н	I	2-CH ₃	3.9	82%	$2.2 imes 10^4$
4	Н	I	3-OCH ₃	4.0	57%	$1.5 imes 10^4$
5	Н	I	4-OCH ₃	3.7	84%	$2.4 imes 10^4$
6	Н	I	2-CN	3.99	15%	$0.4 imes 10^4$
7	Н	I	4-CN	3.6	95%	2.8×10^4
8	4-CH_3	Br	Н	6.2	88%	$1.5 imes 10^4$
9	4-OCH ₃	Br	Н	8.4	95%	$1.2 imes 10^4$
10	Н	I	$H3-NH_2$	3.5	n. r.	_
11	Н	Cl	Н	1.0	94%	10.0×10^4
12	4-OCH ₃	Cl	Н	1.62	80%	$5.3 imes 10^4$
13	4-CoCH3	Cl	Н	1.5	n. r.	_

 $[^]a$ General procedure: 1.0 mmol of aryl halide, 1.2 mmol of arylboric acid, 2.0 mmol of k_2CO_3 in $H_2O/EtOH$. Turnover number TON = mol product/mol Pd. n. r. = no reaction.

Linnaeus University Centre for Biomaterials Chemistry, Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden. E-mail: subramanian.suriyanarayanan@lnu.se

Table 2 Suzuki cross coupling reaction of iodobenzene and phenylboronic acid using PEI/Pd as catalyst^a

Entry	Run	Conc. of Pd, ag	Yield	TON
1 2 3 4	1 st 2 nd 3 rd 4 th	$\pm 2.3 \\ \pm 2.22 \\ \pm 2.22 \\ \pm 2.15$	93% 89% 85% 80%	4.4×10^{4} 4.3×10^{4} 4.0×10^{4} 3.9×10^{4}

^a General procedure: 1.0 mmol of aryl halide, 1.2 mmol of arylboronic acid, 2.0 mmol of K₂CO₃ in H₂O/EtOH. TON = mol product/mol.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.