

 Cite this: *RSC Adv.*, 2022, **12**, 34568

DOI: 10.1039/d2ra90120j

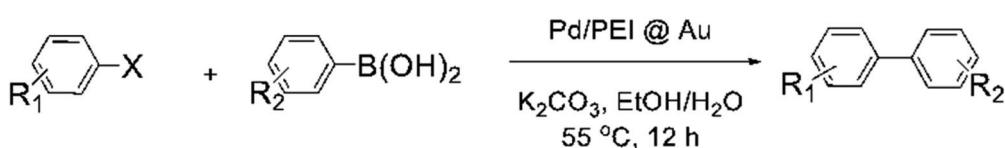
rsc.li/rsc-advances

Correction: Palladium nanoparticles immobilized on polyethylenimine-derivatized gold surfaces for catalysis of Suzuki reactions: development and application in a lab-on-a-chip context

Prasad Anaspure, Subramanian Suriyanarayanan* and Ian A. Nicholls

Correction for 'Palladium nanoparticles immobilized on polyethylenimine-derivatized gold surfaces for catalysis of Suzuki reactions: development and application in a lab-on-a-chip context' by Prasad Anaspure *et al.*, *RSC Adv.*, 2021, **11**, 35161–35164. <https://doi.org/10.1039/D1RA06851B>.

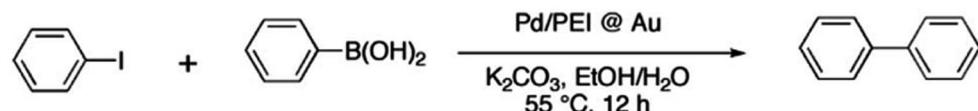
The authors regret that the turnover numbers (TONs) were not correctly given in the original article.


In the abstract on page 35161, the corrected number should read 3.4×10^4 .

The corrected versions of Table 1 and 2 are shown below.

Accordingly, Table 1-SI, Table 2-SI, Table 3-SI, and Table 4-SI in the original ESI have been revised; the ESI has been updated online.

An independent expert has viewed the corrected tables and has concluded that they are consistent with the discussions and conclusions presented.


Table 1 Suzuki cross-coupling reactions of aryl halides with arylboronic acids using PEI/Pd as catalysts^a

Entry	R ₁	X	R ₂	Amount of Pd, µg	Yield	TON
1	H	I	H	3.2	93%	3.1×10^4
2	H	Br	H	2.8	95%	3.4×10^4
3	H	I	2-CH ₃	3.9	82%	2.2×10^4
4	H	I	3-OCH ₃	4.0	57%	1.5×10^4
5	H	I	4-OCH ₃	3.7	84%	2.4×10^4
6	H	I	2-CN	3.99	15%	0.4×10^4
7	H	I	4-CN	3.6	95%	2.8×10^4
8	4-CH ₃	Br	H	6.2	88%	1.5×10^4
9	4-OCH ₃	Br	H	8.4	95%	1.2×10^4
10	H	I	H3-NH ₂	3.5	n. r.	—
11	H	Cl	H	1.0	94%	10.0×10^4
12	4-OCH ₃	Cl	H	1.62	80%	5.3×10^4
13	4-CoCH ₃	Cl	H	1.5	n. r.	—

^a General procedure: 1.0 mmol of aryl halide, 1.2 mmol of arylboric acid, 2.0 mmol of K₂CO₃ in H₂O/EtOH. Turnover number TON = mol product/mol Pd. n. r. = no reaction.

Table 2 Suzuki cross coupling reaction of iodobenzene and phenylboronic acid using PEI/Pd as catalyst^a

Entry	Run	Conc. of Pd, μg	Yield	TON
1	1 st	± 2.3	93%	4.4×10^4
2	2 nd	± 2.22	89%	4.3×10^4
3	3 rd	± 2.22	85%	4.0×10^4
4	4 th	± 2.15	80%	3.9×10^4

^a General procedure: 1.0 mmol of aryl halide, 1.2 mmol of arylboronic acid, 2.0 mmol of K_2CO_3 in $\text{H}_2\text{O}/\text{EtOH}$. TON = mol product/mol.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

