

 Cite this: *RSC Adv.*, 2022, **12**, 5280

Correction: Synthesis and stereocomplex formation of enantiomeric alternating copolymers with two types of chiral centers, poly(lactic acid-*alt*-2-hydroxybutanoic acid)s

Hideto Tsuji,* Kazuya Nakayama and Yuki Arakawa

Correction for 'Synthesis and stereocomplex formation of enantiomeric alternating copolymers with two types of chiral centers, poly(lactic acid-*alt*-2-hydroxybutanoic acid)s' by Hideto Tsuji *et al.*, *RSC Adv.*, 2020, **10**, 39000–39007. DOI: 10.1039/D0RA08351H.

 DOI: 10.1039/d2ra90003c
rsc.li/rsc-advances

In the original manuscript, incorrect weight- and number-average molecular weights (M_w and M_n , respectively) were shown for the synthesized and used polymers in the 2. Experimental section. The correct M_w and M_n values of P(LLA-*alt*-L-2HB) and P(DLA-*alt*-D-2HB) were 3.00×10^4 , 3.08×10^4 , 1.53×10^4 , and 1.54×10^4 g mol⁻¹, respectively.

Due to the correction of the molecular weight values, the authors would like to remove the following statement regarding the suggested reason for the noncrystallizability of unblended P(LLA-*alt*-L-2HB) and P(DLA-*alt*-D-2HB) in the 3.2. Wide-angle X-ray diffractometry section based on the low molecular weight values: "The noncrystallizability of P(LLA-*alt*-L-2HB) and P(DLA-*alt*-D-2HB) may be due to their lower M_w values ($M_w = 3.0 \times 10^3$ and 3.1×10^3 , g mol⁻¹, respectively) compared to those of the P(LLA-*co*-L-2HB) (56/44) and P(DLA-*co*-D-2HB) (52/48) random copolymers ($M_w = 1.4 \times 10^4$ and 1.6×10^4 , g mol⁻¹, respectively) and P(LLA-*alt*-GA) and P(DLA-*alt*-GA) alternating copolymers ($M_w = 4.8 \times 10^3$ and 5.9×10^3 , g mol⁻¹, respectively).".

Due to the same reason, in the 3.3. Differential scanning calorimetry section, the authors would like to remove the statement "The lower T_m values of P(LLA-*alt*-L-2HB) and P(DLA-*alt*-D-2HB) can be attributable to the low molecular weights compared to those of PLLA and PDLA, P(LLA-*co*-L-2HB) (56/44) and P(DLA-*co*-D-2HB) (52/48), and P(LLA-*alt*-GA) and P(DLA-*alt*-GA)". Additionally, the authors would like to replace the statement "The T_m values for P(LLA-*alt*-L-2HB)/P(DLA-*alt*-D-2HB) ($M_w = 3.0 \times 10^3$ and 3.1×10^3 , g mol⁻¹, respectively) blends are higher than those for solvent-evaporated and melt-crystallized ($T_c = 70$ °C) P(L-2HB)/P(D-2HB) ($M_w = 1.8 \times 10^3$ and 3.3×10^3 , g mol⁻¹, respectively) homopolymer blends ($T_m = 173.0$ and 172.1 °C, respectively)⁸¹ but lower than those for melt-crystallized ($T_c = 130$ °C) PLLA/PDLA ($M_w = 4.0 \times 10^3$ and 5.4×10^3 , g mol⁻¹, respectively) homopolymer blends ($T_m = 197.5$ °C),⁷⁸ and solvent-evaporated and melt-crystallized ($T_c = 160$ °C) P(LLA-*co*-L-2HB) (56/44)/P(DLA-*co*-D-2HB) (52/48) ($M_w = 1.4 \times 10^4$ and 1.6×10^4 , g mol⁻¹, respectively) random copolymer blends (203.6 and 198.4 °C),⁶³ and solvent evaporated and melt-crystallized ($T_c = 100$ °C) P(LLA-*alt*-GA)/P(DLA-*alt*-GA) ($M_w = 4.8 \times 10^3$ and 5.9×10^3 , g mol⁻¹, respectively) blends (187.8 and 187.6 °C).⁶⁷" with the revised statement "The T_m values for P(LLA-*alt*-L-2HB)/P(DLA-*alt*-D-2HB) ($M_w = 3.0 \times 10^4$ and 3.1×10^4 g mol⁻¹, respectively) blends are lower than those for solvent-evaporated and melt-crystallized ($T_c = 70$ °C) P(L-2HB)/P(D-2HB) ($M_w = 3.1 \times 10^4$ and 3.3×10^4 g mol⁻¹, respectively) homopolymer blends ($T_m = 218.9$ and 214.5 °C, respectively)⁸¹ and those for melt-crystallized ($T_c = 130$ °C) PLLA/PDLA ($M_w = 4.0 \times 10^3$ and 5.4×10^3 g mol⁻¹, respectively) homopolymer blends ($T_m = 197.5$ °C),⁷⁸ and solvent-evaporated and melt-crystallized ($T_c = 160$ °C) P(LLA-*co*-L-2HB) (56/44)/P(DLA-*co*-D-2HB) (52/48) ($M_w = 1.4 \times 10^4$ and 1.6×10^4 g mol⁻¹, respectively) random copolymer blends (203.6 and 198.4 °C)⁶³, but similar to those of solvent evaporated and melt-crystallized ($T_c = 100$ °C) P(LLA-*alt*-GA)/P(DLA-*alt*-GA) ($M_w = 4.8 \times 10^3$ and 5.9×10^3 g mol⁻¹, respectively) blends (187.8 and 187.6 °C).⁶⁷".

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

