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Achieving vibrational energies of diatomic systems
with high quality by machine learning improved
DFT method
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Yi Zhang® and Jie Ma®

When using ab initio methods to obtain high-quality quantum behavior of molecules, it often involves a lot
of trial-and-error work in algorithm design and parameter selection, which requires enormous time and
computational resource costs. In the study of vibrational energies of diatomic molecules, we found that
starting from a low-precision DFT model and then correcting the errors using the high-dimensional
function modeling capabilities of machine learning, one can considerably reduce the computational
burden and improve the prediction accuracy. Data-driven machine learning is able to capture subtle
physical information that is missing from DFT approaches. The results of 2C*%0, 2*MgO and Na**Cl
show that, compared with CCSD(T)/cc-pV5Z calculation, this work improves the prediction accuracy by
more than one order of magnitude, and reduces the computation cost by more than one order of

rsc.li/rsc-advances magnitude.

1 Introduction

Diatomic molecules and their corresponding energy spectra are
widely used in astrophysics, ultracold molecules, fundamental
physical constants and thus on."® Various experimental tech-
niques have been developed for high-precision spectra measure-
ment such as velocity modulation laser spectroscopy (VMS),® noise
immune cavity enhanced optical heterodyne molecular spectros-
copy (NICE-OHMS),” laser-induced breakdown spectroscopy
(LIBS)® and so forth. However, limited by experimental conditions,
generally only part of the energy levels corresponding to lower
quantum numbers can be measured accurately. In the theoretical
side, there are two main options: (1) ab initio methods based on
the principles of quantum mechanics, such as Hartree Fock and
its extension, DFT, etc.>** The post-Hartree Fock methods like
multireference configuration interaction methods have decent
performance in accuracy, whereas the steep computation cost and
lengthy time make them limited to small systems."**** The DFT
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method is compromised in accuracy, but it has rapid calculation
speed, which makes it the first choice for the calculation of large
systems.’**® In order to improve the performance of DFT, both
general and accurate exchange-correlation functionals and basis
set are required,'***?° which is still a challenge to us.'®**?* (2) Data
driven algorithms, such as empirical potential energy function
and direct parameter formulas for energy levels.>*** The accuracy
of data driven algorithms are higher than ab initio methods except
that they are only applicable to some molecular systems which
have superior-quality experimental data.

Recently, the machine learning algorithm has made many
achievements in spectroscopy study.”***” In this work, machine
learning algorithm was applied to improve the performance of
DFT in the study of diatomic vibrational spectrum. To obtain
the best prediction, three widely used machine learning
regression algorithms were tested with H*>Cl as an example.
Then, the best performing algorithm was used to predict the
vibrational energy levels of >C'°0, **Mg0, and Na**Cl. Finally,
the spectral quality of many systems (>**MgO, HF, N,, H*’Cl,
Na*>Cl, >C'°0, BeH, and SiN et al.) were greatly improved.

2 Theory and method
2.1 DFT for vibrational energies

For the purpose of obtain the vibrational energy spectrum of
diatomic molecules systems, it is inevitable to solve the Schro-
dinger equation (r and R denote the electronic and the nuclear
coordinate, respectively),

HW(r, R) = E¥(r, R), (1)
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where H, E and ¥(r, R) represent the Hamiltonian of the system,
total energy and wave function, respectively. It is worth noting that
the wave function must be first order continuous differentiable,
square integrable, and so on, which makes the partial solutions of
the Schrodinger equation called mathematical but nonphysical.*®
In other words, the wave function is the result of approximation.
Then, when studying the radial motion of the binuclear system,
taking nonrelativistic approximation and Born-Oppenheimer
approximation (BOA) into consider, eqn (1) can be simplified to

(B B IR

2ur?
where i = h/27 (h is the Planck constant), u is the reduced mass
of two nucleus, J is total angular momentum quantum number,
r is internuclear distance, and V(r) corresponds to the electro-
static interaction of all the particles.”® One problem is that the
exchange-correlation energy has no universal accurate form,*
which introduces error to results. Finally, the ro-vibrational
energy level E,; can be expressed as

= EVJ(/)(F)‘ (2)

Eyy = G(v) + Fu(J), 3)

and

1 1\’ 1\’
G(V)—we(y+§)7wexe<l’+§> +(i)eye<’/+§> + (4)

i =afs(re3)] o (e )] +mfr(o+3)]
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A conclusion is drawn that obtaining the vibrational energy
levels of molecules, a large quantity of approximations need to
be included, and various approximations affect each other.
Error is often unavoidable and difficult to predict in advance.

2.2 Combining machine learning algorithm and DFT

2.2.1 Machine learning algorithm. Among a variety of
machine learning (ML) regression algorithms, artificial neural
network (ANN),*"*?> random forest (RF)**** and extreme gradient
boosting (XGBoost)** algorithms were widely used and usually
found successful. All three algorithms have been tested in this
work for vibrational energy prediction. The results were
compared in the Fig. 1. The absolute error is the predicted
values minus the experimental values. Clearly, ANN performs
the best. Thus, it is the algorithm used in this work.

An ANN consists of an input layer of neurons, followed by
many hidden layers (two, three or more layers are all fine), and
a final layer of output neurons. Neurons are connected by
weights V;;. Given the input, x;, the output, #;, of neuron i is,

N
hi = U(Z Viix; + T[hid> . (6)
Jj=1
where o(*) is called activation function, N is the number of
input neurons, and 79" is the threshold term of the neurons.**
It is worth noting that activation function not only introduces
nonlinearity into the neural network, but also constrains the
value of neurons to prevent the ANN from being paralyzed by

+ - divergent neurons. And a common example of the activation
(5) function is the sigmoid function,* defined as
1
While J = 0, E,; degenerates to G,, namely vibrational energy o(u) = o (7)
level.*®
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Fig. 1 Absolute error of H**Clin ML algorithms and DFT methods.
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Fig. 2 Architecture of an ANN.

The architecture is shown in Fig. 2. When ANN is used to
establish a high-dimensional functional relationship between
input and output variables, the data samples will be divided
into three groups, namely training set, validation set, and test
set. For convenience, the training set and the validation set are
also called sub-sample set uniformly. Similar to how humans
learn through feedback, neural networks obtain training errors
through their performance on the training set. Then, the
weights between the connected neurons are adjusted for
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learning, which reduces the training error. The performance of
ANN on the validation set is tracked during the learning
process. And the one that performs the best is selected as the
chosen model. Finally, the test set is used to determine the
performance level of the ANN.**

2.2.2 Prediction of vibrational energies. By analyzing the
error data between DFT and experimental results, a definite
and clear trend is found. It is illustrated in Fig. 3 (take
B3PW91/def2-QZVP as an example) that higher vibrational
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Fig. 3 Systematic error of B3PW91/def2-QZVP in vibrational energy levels prediction.
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quantum number means greater error, and the error trajecto-
ries of different molecules are similar. The absolute error here
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Table 2 The input characteristic variables of 2*MgO (cm™)

EY* EM* ES
is the theoretical vibrational energy minus the experiment _¥ M M
value. This trend law with abundant details can be learned by 350 703 385.124 379.880
ML method. Therefore, after getting the theoretical value E2° of  1203.812 1145.498 1141.218
the DFT methods and the corresponding experimental results, 2016.469 1894.550 1890.964
the systematic error E® of DFT methods can be obtained i:ig;;g ﬁg%g” igzg'oio
. . . . . . 58.877 55.515
through ANN. Ultimately, the predicted vibrational energy E, is 4391.528 1074.295 1070.334
defined as 5162.374 4778.626 4773.501
. 5922.839 5471.926 5465.001
E(a) = E5° + EY (), (8) 6672.946 6154.270 6144.839
7412.729 6825.742 6813.034
where « represents the kind of diatomic molecular system. It's  8142.228 7486.417 7469.602
worth noting that E(a) is an error function associated with 8861481 8136.358 8114.558
molecules. So that it is not a fixed constant. 9570.527 8775.622 8747.914
: : 10 269.395 9404.272 9369.688
10958.118 10 022.374 9979.911
11636.728 10 630.005 10578.627
3 Results and discussion 12 305.264 11227.241 11 165.886
12 963.767 11814.158 11741.743
3.1 Obtain initial sample set 13 612.285 12390.825 12 306.256
. 12,16 14 250.864 12957.311 12 859.483
The potential energy.curves of 39 rr-lolecules, such a§ H,, “C™0, , 79 549 13 513.684 13 401.489
CIF, et al., were obtained by Gaussian 09 (ref. 36) with B3PW91/
Table 1 Partial experimental vibrational energy levels of molecules in the ground state (cm™)
M BH 12C160 12C17O 12C180 13C160 13C17O 13C180 14C160
0 1171.08 1081.77 1068.03 1055.71 1057.72 1043.66 1031.05 1036.74
1 3440.30 3225.04 3184.32 3147.84 3153.79 3112.11 3074.74 3091.61
2 5614.11 5341.83 5274.81 5214.74 5224.54 5155.92 5094.38 5122.15
3 7694.67 7432.21 7339.54 7256.48 7270.04 7175.14 7090.03 7128.44
4 9684.16 9496.24 9378.60 9273.14 9290.35 9169.83 9061.73 9110.52
v 14C17O 14C180 24Mg]60 25Mg‘l6o 26Mg160 SO AlO BeH
0 1022.39 1009.51 391.14 388.01 385.10 576.94 488.00 1021.30
1 3049.05 3010.88 1165.88 1156.60 1147.99 1740.42 1453.40 3008.15
2 5052.07 4989.20 1930.32 1915.05 1900.90 2916.75 2404.76 4921.11
3 7031.50 6944.51 2684.16 2663.08 2643.55 4105.98 3342.12 6760.67
4 8987.38 8876.87 3427.11 3400.42 3375.67 5308.16 4265.42 8527.35
v BeD BeT BF CIF H*Cl H*Cl D*Cl D*’Cl
0 759.86 649.25 742.00 390.50 1483.88 1482.76 1066.60 1065.04
1 2248.84 1925.35 2208.00 1164.00 4369.86 4366.64 3157.66 3153.10
2 3697.03 3171.70 3651.00 1927.60 7151.86 7146.69 5195.04 5187.63
3 5104.62 4388.42 5072.00 2681.20 9830.66 9823.69 7179.05 7168.96
4 6471.83 5575.64 6470.00 3424.50 12 406.70 12398.10 9109.98 9097.36
v HF DF H, HBr MgH N, Na**Cl Na*’Cl
0 2050.77 1490.30 2170.88 1314.65 739.11 1175.77 181.90 179.94
1 6012.19 4396.97 6332.02 3873.57 2171.09 3505.69 543.05 537.24
2 9801.57 7212.12 10257.99 6341.99 3539.79 5806.93 900.70 891.11
3 13 423.60 9937.66 13 953.23 8719.91 4841.14 8079.47 1254.89 1241.59
4 16 882.40 12575.30 17 421.24 11 007.00 6070.50 10323.30 1605.65 1588.71
v NaLi 0, Sic sicl SiN Sio
0 127.81 787.14 475.47 267.25 574.0616 619.20
1 384.08 2343.47 1416.67 798.54 1712.46 1848.90
2 631.07 3876.15 2344.87 1325.50 2837.85 3066.50
3 877.74 5385.51 3260.07 1847.50 3950.20 4272.30
4 1121.07 6871.86 4162.27 2365.50 5049.46 5466.10
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Table 3 Main parameter settings of ANN“
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Hidden layer 1 Hidden layer 2 trainRatio

valRatio

Train function Error function Divide function

30 20 0.85 0.15

trainbr mse Dividerand

“ trainRatio = the number of train set/the number of subsample set. valRatio = the number of validation set/the number of subsample set.

def2-XVP (where X = QZ, TZ or S). Then E2° was obtained by
solving eqn (2) by LEVEL.*” The corresponding data of partial
experimental vibration energy levels®**° are displayed in Table 1
as the initial sample set. Finally, the predicted vibrational
energy and relative deviation ¢ of the molecules are obtained
through ANN. And the expression of ¢ is:

E. —E,

o= x 100%, (9)

AY

where E, represents the theoretical energy (the value of DFT or
ANN), E, represents the experimental value. The input charac-
teristic variables are shown below:

(1) Vibrational energy of B3PW91/def2-QZVP: EX%;

(2) Vibrational energy of B3PW91/def2-TZVP: E, *;

(3) Vibrational energy of B3PW91/def2-SVP: Es.

The output variable is written as Ey. A case in point is **MgO
in Table 2. The task of the ANN is to learn the correct mapping
relationship between input characteristic variables and system
deviation EYS.

Table 4 Prediction of vibrational energies of **C10/2*MgO/Na**Cl (cm™Y)¢

2¢t%0 2"MgO Na*’Cl
v E, E® —E, E; —E, E, E® —E, E) —E, E, E® —E, E; —E,
0 1081.77 20.430 —41.597 391.14 —7.408 —24.315 181.90 —8.463 —5.210
1 3225.04 40.073 —47.228 1165.88 23.542 —67.207 543.05 —8.877 —13.490
2 5341.83 50.975 —52.550 1930.32 37.748 —105.760 900.70 —9.328 —21.736
3 7432.21 16.260 —57.526 2684.16 39.576 —139.913 1254.89 —9.697 —29.886
4 9496.24 —48.621 —62.174 3427.11 34.611 —169.528 1605.650 —9.806 —37.961
5 11 533.99 —21.454 —66.434 4158.89 28.412 —194.442 1953.01 —9.425 —45.949
6 13 545.54 66.471 —70.264 4879.21 24.892 —214.454 2297.02 —8.353 —53.853
7 15 530.95 21.302 —73.663 5587.77 24.813 —229.336 2637.69 —6.375 —61.666
38 17 490.31 29.300 —76.624 6284.28 25.498 —238.849 2975.08 —3.382 —69.383
9 19423.68 18.285 —79.126 6968.45 22.793 —242.728 3309.20 0.641 —77.004
10 21331.14 —32.063 —81.149 7640.00 15.022 —240.705 3640.09 5.541 —84.527
11 23212.78 —44.368 —82.679 8298.63 5.976 —232.502 3967.80 10.937 —91.957
12 25 068.67 —13.295 —83.713 8944.06 2.979 —217.836 4292.33 16.183 —99.282
13 26 898.89 —44.542 —84.264 9575.98 9.678 —196.420 4613.74 20.281 —106.509
14 28703.54 —10.990 —84.316 10194.12 20.080 —167.961 4932.05 21.831 —113.634
15 30482.68 12.240 —83.849 10798.17 22.109 —132.166 5247.30 19.027 —120.651
16 32236.41 4.691 —82.890 11387.86 10.540 —88.739 5559.51 9.710 —127.571
17 33964.80 1.2907 —81.508 11 962.89 —3.230 —37.381 5868.71 —8.600 —134.390
18 35667.96 5.946 —79.757 12 522.96 —1.051 22.204 6174.94 —38.528 —141.106
19 37345.95 —1.119 —77.713 13 067.80 8.500 90.311
20 38998.86 7.838 —75.525 13597.10 —47.268 167.237
21 40 626.79 3.069 —73.411
22 42229.80 0.363 —71.673
23 43 807.99 —1.943 —70.756
24 45361.43 —0.141 —71.309
25 46 890.20 —0.872 —74.258
26 48394.02 —2.294 —80.588
27 49 874.02 —0.886 —93.253
28 51329.22 3.742 —113.948
29 52 760.00 5.960 —146.852
30 54166.50 1.847 —196.933
31 55548.70 —1.806 —268.367
32 56 906.67 —0.006 —360.419
33 58240.46 —0.339 —466.403
34 59550.10 —0.563 —583.000

“ E, represents the experimental vibrational energy. Ex represents the vibrational energy predicted by machine learning method. E3 represents the

vibrational energy of CCSD(T)/cc-pV5Z.
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3.2 Prediction results of vibrational energies

The initial sample set (39 molecules in all) was assigned to the
sub-sample set (36 molecules) and the test set (3 molecules).
After plenty of parameter set tests, and considering the calcu-
lation time and accuracy comprehensively, the most balanced
set of parameters was chosen as the training parameters, which
are listed in Table 3. The relative deviation (see eqn (9)) is used
to measure the performance of ANN. For the test set consists of
Na**Cl, >*MgO and '*C"°0, the average relative deviation of the
final ANN model is 0.42%, the maximum relative deviation is
4.65%, the minimum relative deviation is 0.0000099%. On the
sub-sample set, the average relative deviation is 1.10%, the
maximum relative deviation is 15.92%, the minimum relative
deviation is 0.0000038%. The result shows consistent perfor-
mance on the training and sub-sample set, which means that
the learned model is reliable.

3.3 Comparison and analysis

The comparison with CCSD(T)/cc-pV5Z results are listed in
Table 4. As shown in Tables 2 and 4, it can be found that ANN
can effectively improve the performance of B3PW91/def2-XVP,

View Article Online

RSC Advances

even better than the more complex ab initio method
(CCSD(T)/cc-pV5Z). In detail, the error of ab initial methods
increases significantly at high energy levels and easily exceeds
100 cm ™%, not to mention the maximum error of B3PW91/def2-
QZVP exceeds 1000 cm ™ *. However, the maximum error of ANN
does not exceed 70 cm ™', and the minimum error is only
0.006 cm™'. In addition, the error of the current method is
smaller than that of CCSD(T) at each vibrational energy level.

In order to further illustrate the reliability of the current
method, many more diatomic molecules have been studied and
compared with CCSD(T)/cc-pV5Z. Some are shown in Fig. 4, the
height of red pillar is the average relative deviation of CCSD(T)/
cc-pV5Z and the height of blue pilar is the average relative
deviation of ANN. It shows that the improvement in prediction
introduced by ANN over the ab initio method is better than that
obtained by expanding the basis set.

It should also be emphasized that this work also consider-
ably reduces the computational cost. Taking Na*>Cl for an
example, it takes more than 40 hours to obtain the results of
CCSD(T)/cc-pV5Z, compared to less than one hour for the
current method, which includes preparing DFT data and
executing the ANN algorithm.

Average relative deviation (%)

G Oy Bk 000,
O

B CCSD(T)/cc-pV5Z

<

Fig. 4 Comparison of the average relative deviation of vibrational energy levels between ANN and CCSD(T)/cc-pV5Z.
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4 Conclusion

In this work, a general method is presented to obtain vibra-
tional spectra of diatomic molecules of high quality by starting
from conventional DFT calculations and modifying them with
artificial neural network models. This approach provides
a different path to improve DFT results without introducing
sophisticated models (such as specific hybrid functionals) and
large basis sets. Compared with the results of CCSD(T)/cc-pV5Z,
the current work reduces the vibrational energies prediction
error for diatomic systems from hundreds to dozens, even to
tenths, and takes less than a tenth of the time. Since the strategy
employed in this paper is a general data-driven approach, it can
be easily extended to calculations of other molecular properties.
For example, current DFT calculations of fluorescence spectra
of macromolecular systems can be easily exceed 1000 cm .5
In future work, it is expected that the fluorescence spectral
prediction capability of DFT can be improved by building
a fluorescence spectral data set and adopting a correction
method similar to that used in this work. There are several keys
that should be attention: (1) collect accurate experimental (or
computational) data of macromolecular system properties to
establish a data set; (2) from simple to complex, try a variety of
DFT methods for these properties, so that the calculation error
on the data set can show a certain trend (similar to Fig. 3); (3)
build a high-dimensional function through ANN and learn the
rule of calculation error; (4) combine DFT and ANN error model
to achieve higher prediction quality.
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