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onal energies of diatomic systems
with high quality by machine learning improved
DFT method

Zhangzhang Yang, a Zhitao Wan,a Li Liu,a Jia Fu,*a Qunchao Fan,*a Feng Xie,b

Yi Zhangc and Jie Mad

When using ab initio methods to obtain high-quality quantum behavior of molecules, it often involves a lot

of trial-and-error work in algorithm design and parameter selection, which requires enormous time and

computational resource costs. In the study of vibrational energies of diatomic molecules, we found that

starting from a low-precision DFT model and then correcting the errors using the high-dimensional

function modeling capabilities of machine learning, one can considerably reduce the computational

burden and improve the prediction accuracy. Data-driven machine learning is able to capture subtle

physical information that is missing from DFT approaches. The results of 12C16O, 24MgO and Na35Cl

show that, compared with CCSD(T)/cc-pV5Z calculation, this work improves the prediction accuracy by

more than one order of magnitude, and reduces the computation cost by more than one order of

magnitude.
1 Introduction

Diatomic molecules and their corresponding energy spectra are
widely used in astrophysics, ultracold molecules, fundamental
physical constants and thus on.1–5 Various experimental tech-
niques have been developed for high-precision spectra measure-
ment such as velocity modulation laser spectroscopy (VMS),6 noise
immune cavity enhanced optical heterodyne molecular spectros-
copy (NICE-OHMS),7 laser-induced breakdown spectroscopy
(LIBS)8 and so forth. However, limited by experimental conditions,
generally only part of the energy levels corresponding to lower
quantum numbers can be measured accurately. In the theoretical
side, there are two main options: (1) ab initio methods based on
the principles of quantum mechanics, such as Hartree Fock and
its extension, DFT, etc.9–13 The post-Hartree Fock methods like
multireference conguration interaction methods have decent
performance in accuracy, whereas the steep computation cost and
lengthy time make them limited to small systems.12,14,15 The DFT
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method is compromised in accuracy, but it has rapid calculation
speed, which makes it the rst choice for the calculation of large
systems.16–18 In order to improve the performance of DFT, both
general and accurate exchange-correlation functionals and basis
set are required,16,18–20 which is still a challenge to us.18,21,22 (2) Data
driven algorithms, such as empirical potential energy function
and direct parameter formulas for energy levels.23,24 The accuracy
of data driven algorithms are higher than ab initiomethods except
that they are only applicable to some molecular systems which
have superior-quality experimental data.

Recently, the machine learning algorithm has made many
achievements in spectroscopy study.25–27 In this work, machine
learning algorithm was applied to improve the performance of
DFT in the study of diatomic vibrational spectrum. To obtain
the best prediction, three widely used machine learning
regression algorithms were tested with H35Cl as an example.
Then, the best performing algorithm was used to predict the
vibrational energy levels of 12C16O, 24MgO, and Na35Cl. Finally,
the spectral quality of many systems (24MgO, HF, N2, H

35Cl,
Na35Cl, 12C16O, BeH, and SiN et al.) were greatly improved.
2 Theory and method
2.1 DFT for vibrational energies

For the purpose of obtain the vibrational energy spectrum of
diatomic molecules systems, it is inevitable to solve the Schro-
dinger equation (r and R denote the electronic and the nuclear
coordinate, respectively),

ĤJ(r, R) = EJ(r, R), (1)
© 2022 The Author(s). Published by the Royal Society of Chemistry
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View Article Online
where Ĥ, E and J(r, R) represent the Hamiltonian of the system,
total energy and wave function, respectively. It is worth noting that
the wave function must be rst order continuous differentiable,
square integrable, and so on, which makes the partial solutions of
the Schrodinger equation called mathematical but nonphysical.28

In other words, the wave function is the result of approximation.
Then, when studying the radial motion of the binuclear system,
taking nonrelativistic approximation and Born–Oppenheimer
approximation (BOA) into consider, eqn (1) can be simplied to�

� ħ2d2

2mdr2
þ VðrÞ þ ½JðJ þ 1Þ�ħ2

2mr2

�
4ðrÞ ¼ EnJ4ðrÞ: (2)

where ħ= h/2p (h is the Planck constant), m is the reduced mass
of two nucleus, J is total angular momentum quantum number,
r is internuclear distance, and V(r) corresponds to the electro-
static interaction of all the particles.23 One problem is that the
exchange–correlation energy has no universal accurate form,29

which introduces error to results. Finally, the ro-vibrational
energy level EnJ can be expressed as

EnJ = G(v) + Fn(J), (3)

and

GðnÞ ¼ ue

�
nþ 1

2

�
� uexe

�
nþ 1

2

�2

þ ueye

�
nþ 1

2

�3

þ/; (4)

FnðJÞ ¼ Bn

�
J

�
J þ 1

2

��
�Dn

�
J

�
J þ 1

2

��2
þHn

�
J

�
J þ 1

2

��3
þ/:

(5)

While J = 0, EnJ degenerates to Gn, namely vibrational energy
level.30
Fig. 1 Absolute error of H35Cl in ML algorithms and DFT methods.

© 2022 The Author(s). Published by the Royal Society of Chemistry
A conclusion is drawn that obtaining the vibrational energy
levels of molecules, a large quantity of approximations need to
be included, and various approximations affect each other.
Error is oen unavoidable and difficult to predict in advance.
2.2 Combining machine learning algorithm and DFT

2.2.1 Machine learning algorithm. Among a variety of
machine learning (ML) regression algorithms, articial neural
network (ANN),31,32 random forest (RF)33,34 and extreme gradient
boosting (XGBoost)35 algorithms were widely used and usually
found successful. All three algorithms have been tested in this
work for vibrational energy prediction. The results were
compared in the Fig. 1. The absolute error is the predicted
values minus the experimental values. Clearly, ANN performs
the best. Thus, it is the algorithm used in this work.

An ANN consists of an input layer of neurons, followed by
many hidden layers (two, three or more layers are all ne), and
a nal layer of output neurons. Neurons are connected by
weights Vij. Given the input, xj, the output, hi, of neuron i is,

hi ¼ s

 XN
j¼1

Vijxj þ Thid
i

!
; (6)

where s(*) is called activation function, N is the number of
input neurons, and Thidi is the threshold term of the neurons.31

It is worth noting that activation function not only introduces
nonlinearity into the neural network, but also constrains the
value of neurons to prevent the ANN from being paralyzed by
divergent neurons. And a common example of the activation
function is the sigmoid function,31 dened as

sðuÞ ¼ 1

1þ e�u
: (7)
RSC Adv., 2022, 12, 35950–35958 | 35951
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Fig. 2 Architecture of an ANN.
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The architecture is shown in Fig. 2. When ANN is used to
establish a high-dimensional functional relationship between
input and output variables, the data samples will be divided
into three groups, namely training set, validation set, and test
set. For convenience, the training set and the validation set are
also called sub-sample set uniformly. Similar to how humans
learn through feedback, neural networks obtain training errors
through their performance on the training set. Then, the
weights between the connected neurons are adjusted for
Fig. 3 Systematic error of B3PW91/def2-QZVP in vibrational energy lev

35952 | RSC Adv., 2022, 12, 35950–35958
learning, which reduces the training error. The performance of
ANN on the validation set is tracked during the learning
process. And the one that performs the best is selected as the
chosen model. Finally, the test set is used to determine the
performance level of the ANN.31

2.2.2 Prediction of vibrational energies. By analyzing the
error data between DFT and experimental results, a denite
and clear trend is found. It is illustrated in Fig. 3 (take
B3PW91/def2-QZVP as an example) that higher vibrational
els prediction.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The input characteristic variables of 24MgO (cm−1)

EQZv ETZv ESv

380.703 385.124 379.880
1203.812 1145.498 1141.218
2016.469 1894.550 1890.964
2818.615 2632.317 2629.060
3610.286 3358.877 3355.515
4391.528 4074.295 4070.334
5162.374 4778.626 4773.501
5922.839 5471.926 5465.001
6672.946 6154.270 6144.839
7412.729 6825.742 6813.034
8142.228 7486.417 7469.602
8861.481 8136.358 8114.558
9570.527 8775.622 8747.914
10 269.395 9404.272 9369.688
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quantum number means greater error, and the error trajecto-
ries of different molecules are similar. The absolute error here
is the theoretical vibrational energy minus the experiment
value. This trend law with abundant details can be learned by
MLmethod. Therefore, aer getting the theoretical value Eabv of
the DFT methods and the corresponding experimental results,
the systematic error Esysv of DFT methods can be obtained
through ANN. Ultimately, the predicted vibrational energy En is
dened as

Ev(a) = Eab
v + Esys

v (a), (8)

where a represents the kind of diatomic molecular system. It's
worth noting that Esysv (a) is an error function associated with
molecules. So that it is not a xed constant.
10 958.118 10 022.374 9979.911
11 636.728 10 630.005 10 578.627
12 305.264 11 227.241 11 165.886
12 963.767 11 814.158 11 741.743
13 612.285 12 390.825 12 306.256
14 250.864 12 957.311 12 859.483
14 879.549 13 513.684 13 401.489
3 Results and discussion
3.1 Obtain initial sample set

The potential energy curves of 39 molecules, such as H2,
12C16O,

ClF, et al., were obtained by Gaussian 09 (ref. 36) with B3PW91/
Table 1 Partial experimental vibrational energy levels of molecules in the ground state (cm−1)

n BH 12C16O 12C17O 12C18O 13C16O 13C17O 13C18O 14C16O

0 1171.08 1081.77 1068.03 1055.71 1057.72 1043.66 1031.05 1036.74
1 3440.30 3225.04 3184.32 3147.84 3153.79 3112.11 3074.74 3091.61
2 5614.11 5341.83 5274.81 5214.74 5224.54 5155.92 5094.38 5122.15
3 7694.67 7432.21 7339.54 7256.48 7270.04 7175.14 7090.03 7128.44
4 9684.16 9496.24 9378.60 9273.14 9290.35 9169.83 9061.73 9110.52

n 14C17O 14C18O 24Mg16O 25Mg16O 26Mg16O SO AlO BeH

0 1022.39 1009.51 391.14 388.01 385.10 576.94 488.00 1021.30
1 3049.05 3010.88 1165.88 1156.60 1147.99 1740.42 1453.40 3008.15
2 5052.07 4989.20 1930.32 1915.05 1900.90 2916.75 2404.76 4921.11
3 7031.50 6944.51 2684.16 2663.08 2643.55 4105.98 3342.12 6760.67
4 8987.38 8876.87 3427.11 3400.42 3375.67 5308.16 4265.42 8527.35

n BeD BeT BF ClF H35Cl H37Cl D35Cl D37Cl

0 759.86 649.25 742.00 390.50 1483.88 1482.76 1066.60 1065.04
1 2248.84 1925.35 2208.00 1164.00 4369.86 4366.64 3157.66 3153.10
2 3697.03 3171.70 3651.00 1927.60 7151.86 7146.69 5195.04 5187.63
3 5104.62 4388.42 5072.00 2681.20 9830.66 9823.69 7179.05 7168.96
4 6471.83 5575.64 6470.00 3424.50 12 406.70 12 398.10 9109.98 9097.36

n HF DF H2 HBr MgH N2 Na35Cl Na37Cl

0 2050.77 1490.30 2170.88 1314.65 739.11 1175.77 181.90 179.94
1 6012.19 4396.97 6332.02 3873.57 2171.09 3505.69 543.05 537.24
2 9801.57 7212.12 10 257.99 6341.99 3539.79 5806.93 900.70 891.11
3 13 423.60 9937.66 13 953.23 8719.91 4841.14 8079.47 1254.89 1241.59
4 16 882.40 12 575.30 17 421.24 11 007.00 6070.50 10 323.30 1605.65 1588.71

n NaLi O2 SiC SiCl SiN SiO

0 127.81 787.14 475.47 267.25 574.0616 619.20
1 384.08 2343.47 1416.67 798.54 1712.46 1848.90
2 631.07 3876.15 2344.87 1325.50 2837.85 3066.50
3 877.74 5385.51 3260.07 1847.50 3950.20 4272.30
4 1121.07 6871.86 4162.27 2365.50 5049.46 5466.10

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 35950–35958 | 35953
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Table 3 Main parameter settings of ANNa

Hidden layer 1 Hidden layer 2 trainRatio valRatio Train function Error function Divide function

30 20 0.85 0.15 trainbr mse Dividerand

a trainRatio = the number of train set/the number of subsample set. valRatio = the number of validation set/the number of subsample set.
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def2-XVP (where X = QZ, TZ or S). Then Eabv was obtained by
solving eqn (2) by LEVEL.37 The corresponding data of partial
experimental vibration energy levels38–59 are displayed in Table 1
as the initial sample set. Finally, the predicted vibrational
energy and relative deviation d of the molecules are obtained
through ANN. And the expression of d is:

d ¼
����E*

n � En

En

����� 100%; (9)
Table 4 Prediction of vibrational energies of 12C16O/24MgO/Na35Cl (cm

n

12C16O 24MgO

Ev EBv − Ev E5v − Ev Ev

0 1081.77 20.430 −41.597 391.14
1 3225.04 40.073 −47.228 1165.88
2 5341.83 50.975 −52.550 1930.32
3 7432.21 16.260 −57.526 2684.16
4 9496.24 −48.621 −62.174 3427.11
5 11 533.99 −21.454 −66.434 4158.89
6 13 545.54 66.471 −70.264 4879.21
7 15 530.95 21.302 −73.663 5587.77
8 17 490.31 29.300 −76.624 6284.28
9 19 423.68 18.285 −79.126 6968.45
10 21 331.14 −32.063 −81.149 7640.00
11 23 212.78 −44.368 −82.679 8298.63
12 25 068.67 −13.295 −83.713 8944.06
13 26 898.89 −44.542 −84.264 9575.98
14 28 703.54 −10.990 −84.316 10 194.12
15 30 482.68 12.240 −83.849 10 798.17
16 32 236.41 4.691 −82.890 11 387.86
17 33 964.80 1.2907 −81.508 11 962.89
18 35 667.96 5.946 −79.757 12 522.96
19 37 345.95 −1.119 −77.713 13 067.80
20 38 998.86 7.838 −75.525 13 597.10
21 40 626.79 3.069 −73.411
22 42 229.80 0.363 −71.673
23 43 807.99 −1.943 −70.756
24 45 361.43 −0.141 −71.309
25 46 890.20 −0.872 −74.258
26 48 394.02 −2.294 −80.588
27 49 874.02 −0.886 −93.253
28 51 329.22 3.742 −113.948
29 52 760.00 5.960 −146.852
30 54 166.50 1.847 −196.933
31 55 548.70 −1.806 −268.367
32 56 906.67 −0.006 −360.419
33 58 240.46 −0.339 −466.403
34 59 550.10 −0.563 −583.000

a En represents the experimental vibrational energy. EBn represents the vibr
vibrational energy of CCSD(T)/cc-pV5Z.

35954 | RSC Adv., 2022, 12, 35950–35958
where E*
n represents the theoretical energy (the value of DFT or

ANN), En represents the experimental value. The input charac-
teristic variables are shown below:

(1) Vibrational energy of B3PW91/def2-QZVP: EQZv ;
(2) Vibrational energy of B3PW91/def2-TZVP: ETZv ;
(3) Vibrational energy of B3PW91/def2-SVP: ESv.
The output variable is written as EBv . A case in point is 24MgO

in Table 2. The task of the ANN is to learn the correct mapping
relationship between input characteristic variables and system
deviation Esysv .
−1)a

Na35Cl

EBv − Ev E5v − Ev Ev EBv − Ev E5v − Ev

−7.408 −24.315 181.90 −8.463 −5.210
23.542 −67.207 543.05 −8.877 −13.490
37.748 −105.760 900.70 −9.328 −21.736
39.576 −139.913 1254.89 −9.697 −29.886
34.611 −169.528 1605.650 −9.806 −37.961
28.412 −194.442 1953.01 −9.425 −45.949
24.892 −214.454 2297.02 −8.353 −53.853
24.813 −229.336 2637.69 −6.375 −61.666
25.498 −238.849 2975.08 −3.382 −69.383
22.793 −242.728 3309.20 0.641 −77.004
15.022 −240.705 3640.09 5.541 −84.527
5.976 −232.502 3967.80 10.937 −91.957
2.979 −217.836 4292.33 16.183 −99.282
9.678 −196.420 4613.74 20.281 −106.509
20.080 −167.961 4932.05 21.831 −113.634
22.109 −132.166 5247.30 19.027 −120.651
10.540 −88.739 5559.51 9.710 −127.571
−3.230 −37.381 5868.71 −8.600 −134.390
−1.051 22.204 6174.94 −38.528 −141.106
8.500 90.311
−47.268 167.237

ational energy predicted by machine learning method. E5n represents the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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3.2 Prediction results of vibrational energies

The initial sample set (39 molecules in all) was assigned to the
sub-sample set (36 molecules) and the test set (3 molecules).
Aer plenty of parameter set tests, and considering the calcu-
lation time and accuracy comprehensively, the most balanced
set of parameters was chosen as the training parameters, which
are listed in Table 3. The relative deviation (see eqn (9)) is used
to measure the performance of ANN. For the test set consists of
Na35Cl, 24MgO and 12C16O, the average relative deviation of the
nal ANN model is 0.42%, the maximum relative deviation is
4.65%, the minimum relative deviation is 0.0000099%. On the
sub-sample set, the average relative deviation is 1.10%, the
maximum relative deviation is 15.92%, the minimum relative
deviation is 0.0000038%. The result shows consistent perfor-
mance on the training and sub-sample set, which means that
the learned model is reliable.
3.3 Comparison and analysis

The comparison with CCSD(T)/cc-pV5Z results are listed in
Table 4. As shown in Tables 2 and 4, it can be found that ANN
can effectively improve the performance of B3PW91/def2-XVP,
Fig. 4 Comparison of the average relative deviation of vibrational energ

© 2022 The Author(s). Published by the Royal Society of Chemistry
even better than the more complex ab initio method
(CCSD(T)/cc-pV5Z). In detail, the error of ab initial methods
increases signicantly at high energy levels and easily exceeds
100 cm−1, not to mention the maximum error of B3PW91/def2-
QZVP exceeds 1000 cm−1. However, the maximum error of ANN
does not exceed 70 cm−1, and the minimum error is only
0.006 cm−1. In addition, the error of the current method is
smaller than that of CCSD(T) at each vibrational energy level.

In order to further illustrate the reliability of the current
method, many more diatomic molecules have been studied and
compared with CCSD(T)/cc-pV5Z. Some are shown in Fig. 4, the
height of red pillar is the average relative deviation of CCSD(T)/
cc-pV5Z and the height of blue pilar is the average relative
deviation of ANN. It shows that the improvement in prediction
introduced by ANN over the ab initio method is better than that
obtained by expanding the basis set.

It should also be emphasized that this work also consider-
ably reduces the computational cost. Taking Na35Cl for an
example, it takes more than 40 hours to obtain the results of
CCSD(T)/cc-pV5Z, compared to less than one hour for the
current method, which includes preparing DFT data and
executing the ANN algorithm.
y levels between ANN and CCSD(T)/cc-pV5Z.
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4 Conclusion

In this work, a general method is presented to obtain vibra-
tional spectra of diatomic molecules of high quality by starting
from conventional DFT calculations and modifying them with
articial neural network models. This approach provides
a different path to improve DFT results without introducing
sophisticated models (such as specic hybrid functionals) and
large basis sets. Compared with the results of CCSD(T)/cc-pV5Z,
the current work reduces the vibrational energies prediction
error for diatomic systems from hundreds to dozens, even to
tenths, and takes less than a tenth of the time. Since the strategy
employed in this paper is a general data-driven approach, it can
be easily extended to calculations of other molecular properties.
For example, current DFT calculations of uorescence spectra
of macromolecular systems can be easily exceed 1000 cm−1.60,61

In future work, it is expected that the uorescence spectral
prediction capability of DFT can be improved by building
a uorescence spectral data set and adopting a correction
method similar to that used in this work. There are several keys
that should be attention: (1) collect accurate experimental (or
computational) data of macromolecular system properties to
establish a data set; (2) from simple to complex, try a variety of
DFT methods for these properties, so that the calculation error
on the data set can show a certain trend (similar to Fig. 3); (3)
build a high-dimensional function through ANN and learn the
rule of calculation error; (4) combine DFT and ANN error model
to achieve higher prediction quality.
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