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sulfonylation of a,b-unsaturated
ketones: synthesis and application of g-keto
sulfones†

Xiufang Cheng,‡a Shuo Wang,‡a Yibo Wei,‡a Huamin Wang *a

and Ying-Wu Lin *ab

g-Keto sulfones are versatile building blocks and valuable intermediates in organic synthesis and

pharmaceutical chemistry. Motivated by their excellent properties, we herein report a green, convenient,

metal-free hydrosulfonylation method for a variety of ynones, vinyl ketones, and sodium sulfinates in the

absence of stoichiometric oxidants. This operationally simple protocol provides straightforward and

practical access to a wide range of g-keto sulfones with broad functional group tolerance from easily

available starting materials. Moreover, the b,g-unsaturated keto sulfones could further react with 2,3-

butadienoate to generate cyclopentenes in phosphine-mediated [3 + 2] cycloaddition.
As a useful common structural fragment in a broad number of
pharmaceuticals1 and functional materials,2 keto sulfones are
usually present in promising biologically active molecules such
as Casodex,3 VCAM-1 (ref. 4) and anti-HIV-1 (ref. 5) (Fig. 1).
Furthermore, a valuable synthetic impression is associated with
the role of reactive intermediates in various high-demand
synthetic transformations,6 including total synthesis.7 Owing
to their excellent properties, and efficient and practical
synthesis methods keto sulfones are in high demand.

In the past decades, a variety of protocols have been devel-
oped to construct b-keto sulfones.8 Whereas succinct synthetic
routes toward structurally related g-keto sulfones are scarce,9

traditionally, g-keto sulfones were synthesized via the nucleo-
philic substitution of sodium sulnates by 2-chlorovinyl
ketones,10 the elimination of the bromo derivatives of saturated
keto sulfones11 and the oxidation of the corresponding suldes
ctive g-keto sulfones.

ing, University of South China, Hengyang,

cn; linlinying@hotmail.com

tion, University of South China Medical

ESI) available. CCDC 2181007. For ESI
other electronic format see DOI:

equally to this work.

the Royal Society of Chemistry
or sulfoxides.12 However, the principal drawback is that these
procedures were strongly limited by multiple steps, narrow
substrate scope, or poor stereoselectivity.

Indeed, several streamlined strategies for the preparation of
g-keto sulfones involves addition reaction of alkenes or alkynes
have been developed.13 Li's group14 reported the synthesis of (E)-
vinyl sulfones through Pd-catalyzed conjugate additions of
alkynes with 1,2-bis(phenylsulfonyl)ethane. In 2013 Jiang and
co-workers15 showed that a Pd-catalyzed sulfonylation of alky-
noates with sodium sulnates affords g-keto sulfones (Scheme
1a). Li and coworkers16 reported that BPO triggered the hydro-
sulfonylation of chalcones with arylsulfonyl hydrazides
producing g-keto sulfones. Subsequently, Bi's group17
Scheme 1 Methods for the synthesis of g-keto sulfones.
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developed a Ag2CO3-promoted sulfonylation of allyl/propargyl
alcohols with sodium sulnates for the preparation of g-keto
sulfones (Scheme 1b). Nevertheless, most cases still have to use
large excess oxidants, noble metal catalysts, or require high
temperatures. Accordingly, an efficient, mild and practical
method to furnish g-keto sulfones is worthwhile studying.

With growing demand for sustainable chemistry, an “ideal”
reaction system for such transformations would be “metal-free”
due to cost efficiency and possible advantages regarding
toxicity, as well as selectivity. With this intent, we herein
describe a simple and efficient acid-mediated sulfonylation of
sodium sulnates and a,b-unsaturated ketones for the selective
synthesis of g-keto sulfones (Scheme 1c). The signicant
advantages of this method are high efficiency, metal-free and
mild reaction conditions, thus providing a potential application
in natural product synthesis and medicinal chemistry.

Further studies were commenced with the optimization of
the conditions for the hydrosulfonylation of the ynone 1f with
sodium benzosulfonate 2a (Table 1). Acetate buffer solution (pH
= 3.5)13e and acetyl chloride/H2O,19 as used in the previous
Table 1 Optimization of the reaction conditionsa

Entry Acid (x equiv.) Solvent Yieldb (%) E/Zc

1 Buffer (pH = 3.5) DMF NR —
2 Acetyl chloride/H2O CHCl3 NR —
3 AcOH (3.0) Toluene 49 90 : 10
4 HCO2H (3.0) Toluene 23 85 : 15
5 HCl (3.0) Toluene 36 80 : 20
6 HNO3 (3.0) Toluene 36 87 : 13
7 Benzoic acid (3.0) Toluene 66 96 : 04
8 p-Toluic acid (3.0) Toluene 52 96 : 04
9 4-Acetylbenzoic acid (3.0) Toluene 57 96 : 04
10 4-Fluorobenzoic acid (3.0) Toluene 73 98 : 02
11 PCBA (3.0) Toluene 80 98 : 02
12 4-Bromobenzoic acid (3.0) Toluene 72 95 : 05
13 PNBA (3.0) Toluene 57 88 : 12
14 2-Naphthoic acid (3.0) Toluene 48 94 : 06
15 2-Nitrobenzoic acid (3.0) Toluene 29 94 : 06
16 PCBA (3.0) o-Xylene 73 92 : 08
17 PCBA (3.0) p-Xylene 70 90 : 10
18 PCBA (3.0) m-Xylene 72 96 : 04
19 PCBA (3.0) DMF NR —
20 PCBA (3.0) MeOH 68 89 : 11
21 PCBA (3.0) Mesitylene 85 95 : 05
22 PCBA (2.0) Mesitylene 83 95 : 05
23 PCBA (1.2) Mesitylene 76 91 : 09
24 PCBA (0.5) Mesitylene 44 73 : 27
25d PCBA (2.0) Mesitylene 79 90 : 10
26e PCBA (2.0) Mesitylene 80 95 : 05
27f PCBA (2.0) Mesitylene 53 97 : 03

a Reaction conditions: 1f (0.1 mmol), 2a (0.25 mmol), acid (x equiv.),
solvent (1.0 mL), 30 °C, 48 h. b Isolated yields. c Determined by RP-
HPLC. d With 2.0 equiv. 2a. e 50 °C. f 80 °C. PCBA = 4-chlorobenzoic
acid. PNBA = p-nitrobenzoic acid.

35650 | RSC Adv., 2022, 12, 35649–35654
study, were completely ineffective due to several unknown
complex products being formed (entry 1). Gratifyingly, the
desired g-keto sulfone 3fawas isolated in a 49% yield (E/Z= 90 :
10) as the major product for the reaction mediated by AcOH
(entry 3). Encouraged by this initial result, we screened an array
of acids. The results showed that 4-chlorobenzoic acid (PCBA)
gave the best result, leading to the isolation of g-keto sulfone
3fa in a yield of 80% (E/Z = 98 : 02) (entries 4–15). Solvent
screening indicated that mesitylene could improve the yield to
85% (E/Z = 95 : 05) (entry 21). Further investigations on the
reduced usage of PCBA to 2.0 equivalents, the yield of 3fa was
slightly reduced (entry 22, 83% yield, E/Z = 95 : 05). The
amounts of sodium benzosulfonate 2a and the reaction
temperature have deleterious effects on the reaction yields
(entries 23–27). Thus, the optimized reaction conditions were
successfully established as 1f (1.0 equiv.), 2a (2.5 equiv.), PCBA
(2.0 equiv.), and mesitylene (2.0 mL) at 30 °C in this process.

We then sought to explore the generality of the method for
the synthesis of a,b-unsaturated g-keto sulfones, using various
ynones in reactions with 2a under the optimized conditions
(Scheme 2). The reaction of the 1-phenylprop-2-yn-1-one 1a with
2a proceeded reasonably to provide an excellent yield of the
corresponding g-keto sulfone 3aa (97% yield, E/Z = 98 : 02). To
our delight, the reaction worked successfully with a range of
ynones 1 bearing various substituents on the aromatic ring.
Substituents such as methyl, thiomethylmethoxy, phenyl,
halogen and dimethylamino atoms could be tolerated and gave
the corresponding products 3ba–3ja with high to excellent
yields (71–98% yield) and stereoselectivity (E/Z = 82 : 18 to 98 :
02). Triuoromethyl and nitro substituents on the aromatic ring
were also compatible and products 3ka and 3la were afforded
95% and 71% yields, respectively. 9-Anthracenee-derived ynone
successfully afforded 3ma in a 94% yield (E/Z = 98 : 02). The
methyl group in the ortho or meta positions of the aromatic ring
Scheme 2 Sulfonylation reaction of various terminal alkynones with
2a. All reactions were carried on 0.2 mmol scale in mesitylene (2.0 mL)
and used 2.5 equiv. of 2a, 2.0 equiv. PCBA, at 30 °C. Yields of isolated
products are reported. E/Z ratios were determined by RP-HPLC.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Sulfonylation reaction of vinyl ketone with sodium sulfi-
nates. All reactions were carried on 0.2 mmol scale in mesitylene (2.0
mL) and used 2.0 equiv. of 2a, 2.0 equiv. PCBA, at 30 °C. Yields of
isolated products are reported. aAt 80 °C for 72 h.
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gave the desired g-keto sulfones in 82% and 94% yield,
respectively. The desired product 3pa bearing a pitavastatin unit
could be readily prepared in a yield of 87%.When alkyl terminal
alkynone 1q was subjected to the reaction, affording the desired
product 3qa in 65% yield (E/Z = 97 : 03).

(1)

Inspired by the above results, the nonterminal alkyne was
used as the substrate to react with PhSO2Na at 30 °C for 36 h.
The reaction provided E and Z-b-sulfonyl-a,b-unsaturated
carbonyl mixed compounds 3qa13e (86% yield, E/Z = 1 : 1).

The results of ynone 1a reacting with a number of sodium
sulnates under the optimized condition are depicted in
Scheme 3. Gratifyingly, no matter whether the phenyl ring of
sodium sulnate was substituted with either a sterically
hindered, electron-donating, or electron-withdrawing group, all
of them smoothly furnished the corresponding products in
moderate to excellent yields with a high range of E/Z ratios from
52 : 48 to 97 : 03 (3ab–3an). Likewise, 2-napthyl and cyclopropyl
substituted sodium sulnates were both effective in this reac-
tion with a yield of 87% and 85%, respectively (3ao and 3ap).
Additionally, L-10-camphorsulfonyl sulnate 2q was also suit-
able for this reaction.
Scheme 3 Sulfonylation reaction of terminal alkynone (1a) with
sodium Sulfinates. All reactions were carried on 0.2 mmol scale in
mesitylene (2.0 mL) and used 2.5 equiv. of 2, 2.0 equiv. PCBA, at 30 °C.
Yields of isolated products are reported. E/Z ratios were determined by
RP-HPLC.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Interestingly, the treatment of the vinyl ketone 4a with
PhSO2Na (2a) under the standard conditions furnished sulfone
5aa (Scheme 4). The substrate scope was also explored in
Scheme 4. Delightfully, it was perfectly tolerable to introduce
both electron-donating (OCH3 and Ph) and electron-
withdrawing (F, Cl, and CN) groups at the para position of the
phenyl ring, affording the corresponding products (5ba–5fa) in
excellent yields. 4-Toluene sulfonate and cyclopropane sulfo-
nate also reacted well with substrate 2a to form g-keto sulfone
in excellent yields. We were pleased to nd that the b-tri-
uoromethylated enone 4h and trans-chalcone (4i–4j) could be
successfully employed to give desired products (5ha–5ja, 55–
61% yields). Unfortunately, no reaction occurred for 2-
cyclopentenone.

Additionally, the synthetic utility of the g-keto sulfones ob-
tained by the present method was explored (Scheme 5). Gram-
scale ynone 1a was reacted with sodium benzosulfonate 2a to
form product 3aa with an excellent E/Z ratio (A). Lu's [3 + 2]
cycloaddition of 2,3-butadienoate with a,b-unsaturated g-keto
sulfones 3 mediated by phosphine produced cycloadducts 6
(ref. 18) in good yields (B). Moreover, pyrazole derivative 6b
could be efficiently obtained from 3aa under ultrasound (US)
irradiation conditions (C). Next, g-keto sulfone 3pa derived
from the biologically active pitavastatin could also react with
hydrazine to give a high yield of 6c (D).

To understand the reaction mechanism, control reactions of
1a with 2a were examined (Scheme 6a). When 1a and 2a was
subjected to the standard reaction conditions except using
deuterated 4-chlorobenzoic acid system, the 3a were detected
with 80% yield. An attempt to run the reaction of 1a and 2a in
a anhydrous solvent system under an N2 atmosphere also
successfully delivered 3a in 97% yield.20 The results unambig-
uously disclosed that the incorporated hydrogen atoms in 3a
originated from acid rather than water. The reaction using
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 2,4-di-tert-
RSC Adv., 2022, 12, 35649–35654 | 35651
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Scheme 5 Gram-scale preparation and further synthetic utilization.
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butyl-4-methylphenol (BHT) as the radical scavengers showed
no observable radical intermediates and unaffected desired
products formation, which suggests that the radical process
could be ruled out.20 On the basis of the results presented above
and previous reports, we propose the following mechanism in
Scheme 6b. The 4-chlorobenzoic acid activates the carbonyl
group in a,b-unsaturated ketones 1 (4) to afford intermediate I
or tautomerize to intermediate II. Finally, sulfonyl anion can
Scheme 6 Mechanistic studies.

35652 | RSC Adv., 2022, 12, 35649–35654
add to the unsaturated bond of intermediate II to afford the
products 3 (5).
Conclusions

In summary, we developed a simple and efficient acid-mediated
approach for the formation of g-keto sulfones from sodium
sulnates and a,b-unsaturated ketones. This environmentally
friendly methodology features a convenient, mild, efficient, C–S
sulfonylation approach without the use of any metal catalysts
and stoichiometric oxidants. The procedure results in good to
excellent yields with various substituted ynones or vinyl
ketones, as well as good functional group tolerance. The sul-
fonylation was easily scaled up and successfully integrated into
Lu's [3 + 2] cycloaddition based on transformations of a,b-
unsaturated g-ketosulfones (3). All these advantages make the
new method highly attractive to the organic chemist in both
academia and industry.
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