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arboxylation of toluenes with
chlorine dioxide under photoirradiation†

Shohei Ohno, a Haruyasu Asahara, ab Tsuyoshi Inoueab and Kei Ohkubo *bc

Chlorocarboxylation of toluene was achieved by photoirradiation of a chlorine dioxide radical (ClO2c) under

ambient conditions (298 K and 1 atm). 2- and 4-Chlorobenzoic acids were obtained in a 1 : 1 yield ratio. This

is a single step synthesis under metal-free and mild conditions.
The chlorocarboxylation reaction is of practical importance in
organic synthesis as chloro and carboxy groups are introduced
into the substrate in a single step. In the 1980s, chlorocarbox-
ylation of polymer materials such as polyethylene was per-
formed using toxic dry chlorine gas and/or maleic anhydride at
high temperatures (90–110 °C).1 To the best of our knowledge,
there have been no reports of chlorocarboxylation of small
molecules thus far.2,3 However, reactions such as chloroester-
ication and chlorocarbamoylation in the presence of transi-
tion metal catalysts have been reported.4 The substrates used in
these reactions were limited to only alkenes and alkynes;
chlorocarboxylation of aromatic compounds have not been re-
ported to date. In this study, we developed a photoinduced
chlorocarboxylation of toluene initiated by a chlorine dioxide
radical (ClO2c) at room temperature without the use of a metal
catalyst [eqn. (1)]. We hypothesized that ClO2c is rst photo-
chemically activated to generate Clc and O2, which would react
with toluene to produce 2- and 4-chlorobenzoic acids in a 1 : 1
yield ratio.

(1)

Previous reports have demonstrated the synthesis of 2- and
4-chlorobenzoic acids via a two-step process, where chlorina-
tion occurs rst followed by the oxidation of toluene in the
presence of toxic metals.5 In contrast, our method is green and
sustainable as the products are obtained in a single step under
metal-free conditions.
ces, Osaka University, Yamada-oka 1-6,

Research Initiatives, Osaka University,

pan

Osaka University, Yamada-oka 1-6, Suita,

rdd.osaka-u.ac.jp

tion (ESI) available. See DOI:

14
ClO2c (50 mM), which is a water-soluble gas and a stable
radical at room temperature, was prepared by mixing sodium
chlorite (NaClO2, 200 mg, 1.75 mmol) and 35% aq. HCl (100 mL)
in aqueous solution (28 mL), as described in a previously re-
ported method.6–9 The generation of ClO2c gas is shown in
eqn (2).

5NaClO2 + 4HCl / 4ClO2c + 5NaCl + 2H2O (2)

UV-vis absorption (lmax = 358 nm) and electron spin reso-
nance (ESR) spectroscopy (g = 2.015, a(Cl) = 16 G) of the
aqueous solution conrmed the generation of ClO2c gas.7

Chlorocarboxylation of toluene did not occur in the dark
because ClO2c cannot be activated without photoirradiation. In
contrast, when an LED (l = 365 nm, 20 mW cm−1) was used,
ClO2c was photochemically activated to yield Clc radical and
singlet oxygen (ð1O*

2Þ) [eqn (3)].7

ClO
�

2 !hv Cl
� þ 1Ο*

2 (3)

First, we studied the effects of different solvents on the
chlorocarboxylation of toluene (Table 1). This reaction does not
proceed in solvents with C–H bonds because ClO2c reacts with
a hydrogen atom from the solvent. When acetone-d6 (entry 1)
was used, 2-chlorobenzoic acid 1 and 4-chlorobenzoic acid 2
were produced in a total yield of 68% (35% and 33%, respec-
tively). This implies that chlorination proceeded selectively at
the electron-rich ortho and para positions. When acetonitrile-d3
and dimethylformamide-d6 were used under identical condi-
tions (entries 2 and 3), the product yields (33% and 31%) were
comparable to that of entry 1.10 When methanol-d4, N,N-dime-
thylformamide-d7, tetrahydrofuran-d8, benzene-d6, per-
uorocarbons, and carbon tetrachloride were used (entries 4–9),
the reaction did not proceed at all.

Next, we optimized the reaction conditions—concentration
of ClO2c and excitation wavelength (Table 2). We observed that
the reaction proceeded most efficiently when a 0.05 M ClO2c

solution was used (entry 2). Other concentrations of ClO2c

solutions produced the products in lower yields (entries 3, 4 and
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Solvent effects on the chlorocarboxylation of toluene using
ClO2c gas

Entry Solvent Yield (%)a 1 : 2

1 Acetone-d6 35 : 33
2 Acetonitrile-d3 33 : 31
3 Dimethyl sulfoxide-d6 32 : 30
4 Methanol-d6 ND
5 DMF-d7 ND
6 THF-d8 ND
7 Benzene-d6 ND
8 Peruorohexane ND
9 Tetrachloromethane ND

a The products were identied and quantied using GC-MS by
comparing them with the characterization data of authentic samples;
ND = not detected.

Table 2 Optimization of reaction conditions for the chlorocarbox-
ylation of toluene

Entry
ClO2c
aq. (M)

Excitation
wavelength (nm) Yield (%)a 1 : 2

1 1.0 365 35 : 33
2 0.05 365 40 : 36
3 0.25 365 39 : 35
4 0.5 365 38 : 35
5 1.5 365 33 : 31
6 0.05 405 39 : 35

a The products were identied and quantied using GC-MS by
comparing them with the characterization data of authentic samples.

Fig. 1 Chlorocarboxylation of other aromatic compounds.

Fig. 2 Control experiments to elucidate the reaction mechanism of
the chlorocarboxylation of toluene.
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5) than those obtained for entry 2. However, the reaction pro-
ceeded well even with visible light (l = 405 nm) (entry 6).
Therefore, the optimal conditions were 0.05 M ClO2c and an
excitation wavelength of 365 nm.

Subsequently, we attempted the chlorocarboxylation of other
substrates (Fig. 1). When an electron-donating group-bearing
toluene (p-methoxy toluene) was used di- or trichlorination
occurred instead of the desired reaction. In contrast, when an
electron-withdrawing group-bearing toluene (p-cyano toluene)
was used, the reaction did not proceed and the starting material
was recovered. Furthermore, the desired reaction did not
proceed when electron-rich or electron-decient heterocycles (2-
methyl thiophene and 2-methyl pyridine, respectively) were
used as substrates.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Finally, control experiments were performed to investigate
the reaction mechanism (Fig. 2). First, the reaction was exam-
ined using 18O-labeled water (H2O

18) under nitrogen atmo-
sphere; however, no labeled product was observed [Fig. 2(a)].
This result suggests that the carboxylate oxygen atoms in the
product were not derived from water. In contrast, when the
reaction was conducted in toluene-d8, only monochlorinated
toluene was obtained without any carboxylated products
[Fig. 2(b)]. This result suggests that the carboxylation step in
chlorocarboxylation begins with hydrogen abstraction at the
benzyl position of toluene. Moreover, when we studied the
chlorination of benzoic acid under ClO2c photoreaction condi-
tions, chlorination did not occur [Fig. 2(c)]. The reactions of 2-
and 4-chlorotoluene yielded the corresponding chlorocarboxylic
acids in good yields (66% and 75%, respectively) [Fig. 2(d)].
These results indicate that the chlorocarboxylation of toluene
begins with chlorination, in which a chlorine radical attacks the
aromatic ring.

Based on these experimental results, we propose the
following mechanism (Scheme 1).:11 First, the photoirradiation
of ClO2c produces a Clc radical and singlet O2. Then the Clc
radical attacks toluene to generate an aryl radical. Subse-
quently, another Clc radical abstracts a hydrogen from the aryl
radical to produce chlorotoluene. Next, another hydrogen
abstraction from chlorotoluene generates a benzyl radical.
RSC Adv., 2022, 12, 31412–31414 | 31413
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Scheme 1 Plausible reaction mechanism for the chlorocarboxylation
of toluene using ClO2c. hn represents photo-irradiation and [O]
represents autoxidation.
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This benzyl radical reacts with a singlet oxygen in the solu-
tion to form a peroxy radical intermediate. This peroxy radical
releases one oxygen atom to form chlorobenzyl alcohol and
chlorobenzaldehyde, which are then oxidized through Pinnick
oxidation or autoxidation to yield the nal product, chlor-
obenzoic acid.

In conclusion, for the rst time in the literature, we
demonstrated that ClO2c is an efficient reagent for the chlor-
ocarboxylation of toluene in a single step. A plausible mecha-
nism was proposed based on control experiments. This single-
step synthesis of chlorobenzoic acids under metal-free condi-
tions is a green and sustainable method that has potential
applications in organic synthesis.
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