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in secondary structure prediction
using deep learning and broad learning system

Lu Yuan, Xiaopei Hu, Yuming Ma* and Yihui Liu*

Protein secondary structure prediction (PSSP) is not only beneficial to the study of protein structure and

function but also to the development of drugs. As a challenging task in computational biology,

experimental methods for PSSP are time-consuming and expensive. In this paper, we propose a novel

PSSP model DLBLS_SS based on deep learning and broad learning system (BLS) to predict 3-state and 8-

state secondary structure. We first use a bidirectional long short-term memory (BLSTM) network to

extract global features in residue sequences. Then, our proposed SEBTCN based on temporal

convolutional networks (TCN) and channel attention can capture bidirectional key long-range

dependencies in sequences. We also use BLS to rapidly optimize fused features while further capturing

local interactions between residues. We conduct extensive experiments on public test sets including

CASP10, CASP11, CASP12, CASP13, CASP14 and CB513 to evaluate the performance of the model.

Experimental results show that our model exhibits better 3-state and 8-state PSSP performance

compared to five state-of-the-art models.
1 Introduction

As an important part of cell composition, proteins are not only
the basis of life activities, but also play an important role in
transporting substances, catalyzing chemical reactions and
immune functions. The tertiary structure of a protein deter-
mines its function. However, existing techniques for predicting
tertiary structure are time-consuming and expensive.1,2

Secondary structure is the spatial arrangement of atoms in the
backbone of a peptide chain. The tertiary structure is formed by
further folding on the basis of the secondary structure. There-
fore, the study of protein secondary structure directly affects the
prediction of tertiary structure.3,4 As an important task in bio-
informatics, protein secondary structure prediction (PSSP) not
only contributes to the study of protein function and structure
but also facilitates the design and development of new drugs.

According to the division method of the DSSP program, the 8
states of protein secondary structure include G (helix), I (p-
helix), H (a-helix), B (b-bridge), E (b-sheet), T (turn), S (bend)
and C (coil).5 The 8-state protein secondary structure can also be
classied into 3 states: H (helix), B (strand) and C (coil).6,7 In the
early stages of research, machine learning methods such as
support vector machines,8,9 K-nearest neighbors,10,11 and neural
networks12,13 focused extensively on 3-state PSSP. However, the
complex 8-state secondary structure has richer protein infor-
mation and is more conducive to protein research.
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In recent years, continuously developed and improved deep
learning techniques have been widely used in PSSP, which
exhibit superior performance and can improve computing
speed. The PSIPRED14 method utilized two feedforward neural
networks for PSSP. The JPred4 (ref. 15) method utilized the JNet
algorithm to predict the secondary structure. The SSpro16 model
used an ensemble of BRNN for prediction. The DeepCNF17

model utilized shallow neural networks and conditional neural
elds to model the mapping relationship between features and
labels. Zhou et al. introduced a convolutional architecture in
a supervised generative stochastic network to improve PSSP.18

The SSREDNs3 model used deep recurrent encoder-decoder
networks for PSSP. The SPIDER3 server utilized a deep model
LSTM-BRNN for 3-state prediction.19 The SPOT-1D method
utilized an ensemble model consisting of LSTM-BRNN and
residual network for prediction.20 The NrtSurfP-2.0 model
utilized CNN and BLSTM to extract local and global depen-
dencies between amino acid residues.21 The SAINT method
introduced a self-attention mechanism in the Deep3I network
to extract secondary structure features.22 The OPUS-TASS
method combined CNN, BLSTM and Transformer architec-
tures to improve accuracy.23 The MLPRNN method used two
MLP blocks and one BGRU to predict the secondary structure.24

Inspired by the application and effectiveness of deep
learning in PSSP, we propose SETCN to extract key deep features
in protein sequences by introducing Squeeze-and-Excitation25

(SE) blocks in temporal convolutional networks26 (TCN). Since
secondary structure recognition is affected by residues in front
and rear positions, we further propose SEBTCN to extract deep
features bidirectionally.
RSC Adv., 2022, 12, 33479–33487 | 33479
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To improve PSSP, we propose a novel prediction model
DLBLS_SS for 3-state and 8-state PSSP based on bidirectional
long short-term memory27 (BLSTM) network, SEBTCN and
broad learning system28 (BLS). The input features of the model
are position-specic scoring matrix (PSSM)29 proles and one-
hot encoding. In DLBLS_SS, BLSTM can extract global interac-
tions in residue sequences, SEBTCN can capture bidirectional
key long-range dependencies between residues, and BLS can
further quickly extract local optimal features and complete
classication.

The main contributions of this paper include: (1) we propose
SETCN by introducing the channel attention mechanism SE
block in TCN, which can extract key deep features in the
sequence. (2) We further propose SEBTCN by improving SETCN,
which can bidirectionally extract key deep features in sequences.
(3) We propose a novel PSSP model using BLSTM, SETCN and
BLS to improve feature extraction of residue sequences. To the
best of our knowledge, this is the rst application of BLS in PSSP.
(4) Experimental results on seven benchmark datasets demon-
strate that the proposed method achieves state-of-the-art
performance compared to ve popular methods.
2 Material and methods
2.1. Bidirectional long short-term memory networks
(BLSTM)

For long protein sequences, recurrent neural networks30 not
only have inevitable error accumulation when transmitting
useful information, but also may have problems such as
exploding gradients. Therefore, we use BLSTM to capture the
global features of the sequence, which can extract important
information while automatically discarding useless informa-
tion. As shown in Fig. 1, BLSTM contains forward LSTM and
backward LSTM, which can obtain bidirectional interactions of
sequences through forward and backward extraction of infor-
mation. The computation of a standard LSTM31 cell at time t is
as follows:

it = s(Wxi
× xt + Whi

× ht−1 + bi) (1)

ft = s(Wxf
× xt + Whf

× ht−1 + bf) (2)

ot = s(Wxo
× xt + Who

× ht−1 + bo) (3)

ct = ft � ct−1 + it � tanh(Wxc
× xt + Whc

× ht−1 + bc) (4)
Fig. 1 The architecture of BLSTM.

33480 | RSC Adv., 2022, 12, 33479–33487
ht = ot � tanh(ct) (5)

where i is the input gate, f is the forget gate, o is the output gate,
s is the activation function, xt is the input, ht is the output,W is
the weight, b is the bias, ct is the unit state, ☉ represents the
element-wise multiplication, and tanh represents the hyper-
bolic tangent function.
2.2. The proposed SEBTCN

As a sequence-to-sequence prediction network, TCN has the
characteristics of stable training, low memory requirements,
exible receptive eld, and parallel computing. To enhance the
ability to extract key features in residue sequences, we introduce
a channel attention module in the TCN residual block.
Furthermore, secondary structure recognition is not only
affected by residues in past positions, so we further propose
SEBTCN to capture bidirectional deep features between
residues.

2.2.1. Dilated causal convolution. The network uses causal
convolution to prevent the loss of future information, so the
output at time t depends on the input at time t and historical
time. However, for sequences that rely on long histories, the
network requires extremely deep architectures or large lters,
which brings huge computational workload.

To expand the receptive eld to obtain long historical
information, the network introduces dilated convolutions. The
computation of the dilated convolution F on the sequence
element s is:

FðsÞ ¼ ðx� df ÞðsÞ ¼
Xk�1
i¼0

f ðiÞ$xs�d$i (6)

where x is the input, f and k are the lter and lter size, d is the
dilation factor, and s − d$i is the history direction. Since the
dilation factor increases exponentially with the number of
layers in the network (d = 2n at layer n), the network has an
extremely large receptive eld and its top layers can get more
information. The dilated causal convolution structure is shown
in Fig. 2(a).

2.2.2. Residual connections. For high-dimensional
sequences, the network may require extremely deep layers,
but it is difficult to maintain stability during training. There-
fore, as shown in Fig. 2(b), the network introduces residual
connections, which operate on the input X as follows:

O = activation(X + F(X)) (7)

where F is a series of transformations. Residual connections can
allow each layer to learn to modify the identity map rather than
all transformations, which is benecial for very deep networks.

2.2.3. SETCN residual block. The architecture of the SETCN
residual block is shown in Fig. 3. We utilize three dilated causal
convolutional layers with the same dilation factor to extract
features. Aer each layer of convolution, we also set an instance
normalization layer to speed up network convergence, a ReLU
layer to keep training stable, and a spatial dropout layer to avoid
network overtting. We add a channel attention module to
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Architecture in the network. (a) The dilated causal convolution. (b) The residual connection.

Fig. 3 The SETCN residual block.

Fig. 4 The architecture of SEBTCN.
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extract key features aer a series of convolutional trans-
formations in the SETCN residual block. In channel attention,
the global average pooling operation can compress the input
features x ˛ RH×W×C (H and W are the length and width of the
input, C is the number of channels) into 1 × 1 × C. Two fully
connected layers are used for dimensionality reduction and
restoration, respectively. We multiply the input of the channel
attention with the weights normalized by the sigmoid function
element-wise to obtain the output of the channel attention.
Global average pooling of channel attention is dened as:

zc ¼ ReLU

 
1

H �W

XH
i¼1

XW
j¼1

xcði; jÞ; 0
!

(8)

The input of the SETCN residual block is added to the output
of the channel attention, where 1 × 1 convolution is used to
ensure that the input and output have the same channels.
Therefore, the output yn = ReLU( f(W × yn−1 + b) + yn−1) of the
nth residual block.

2.2.4. Architecture of SEBTCN. Secondary structure
prediction is not only inuenced by past information but also
related to future information. However, SETCN using dilated
causal convolution does not rely on future features for sequence
prediction. Therefore, we propose SEBTCN to extract bidirec-
tional key features in sequences.

As shown in Fig. 4, the SEBTCN contains forward SETCN and
backward SETCN. Let the protein sequence be X = {x1, x2, .,
xL}24 and the reverse sequence be X) = {xL, xL−1, ., x1}, where
L is the sequence length. SEBTCN can be calculated as:

Ŷ ¼ SETCN
�����!ðXÞ (9)

Ŷ 1 ¼ SETCN
) �

X
)�

(10)
© 2022 The Author(s). Published by the Royal Society of Chemistry
Ouput ¼ softmax

�
F

�
1DCov

�
Ŷ4Ŷ 1

)���
(11)

where Ŷ and Ŷ1 represent the outputs of the forward and

backward SETCN, SETCN
����!

and SETCN
 �����

represent the forward
and backward SETCN, Output represents the output of SEBTCN,
somax represents the activation function, F represents the
operation of the fully connected layer, 1DCov represents
operations such as convolution optimization of the 1DCov

block, Ŷ1

)

represents the reverse vector of Ŷ1, and 4 represents
an element-wise addition operation.

Therefore, our SEBTCN can not only extract key feature
information but also extract bidirectional deep dependencies.
Furthermore, SEBTCN can be applied to all classication
problems.
2.3. Broad learning system (BLS)

BLS is a at network based on random vector functional-link
neural networks,32 which can effectively solve local optimal
problems. As an efficient incremental learning system that does
not require a deep network architecture, BLS has a simple
RSC Adv., 2022, 12, 33479–33487 | 33481
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Fig. 5 The architecture of the BLS.

Fig. 6 The detailed architecture of DLBLS_SS.
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structure, an efficient modeling process, and can be updated
dynamically and incrementally. As shown in Fig. 5, the archi-
tecture of BLS mainly consists of three parts: feature mapping
layer, enhancement node layer and output layer. The network
can randomly map input features to feature nodes. Then, the
mapped features are expanded to the generated enhancement
nodes. Finally, feature nodes and enhancement nodes are
connected to the output.

Let the input feature matrix be X ˛ RN×D, and the secondary
structure label be Y ˛ RN×C, where N is the number of samples,
D is the sample dimension, and C is the number of categories.
The mapping feature generated by the ith mapping feature
node is:

Zi = f(XWei + bei), i = 1, ., n (12)

where f is the mapping function, and W and b are randomly
generated weights and biases. To speed up the learning process
during training, features are randomly mapped to enhance-
ment nodes to improve nonlinear learning ability in feature
extraction.

Let all feature nodes be Zn b [Z1, Z2,., Zn], so themth group
of enhancement nodes can be calculated as:

Hm b x(ZnWhm + bhm) (13)

where x is the activation function of the enhancement node.
BLS can be calculated as follows:

Y ¼ ½Z1;.;ZnjH1;.;Hm�Wm

¼ ½ZnjHm�Wm (14)

where Wm = [ZnjHm]+Y is the output connection weight of BLS.
Let A = [ZnjHm], the network computes A+ by solving the ridge
regression approximation:

Aþ ¼ lim
l/0

�
lI þ AAT

��1
AT (15)

2.4. The proposed DLBLS_SS

The detailed architecture of DLBLS_SS is shown in Fig. 6. To
improve PSSP, the proposedmodel combines deep learning and
BLS to predict 3-state and 8-state secondary structure.
DLBLS_SS is mainly divided into four modules: input module,
BLSTM feature extraction module, SEBTCN feature extraction
module, BLS feature extraction and output module.

In the input module, we use the initial protein data to
generate one-hot features and PSSM proles. The input to the
33482 | RSC Adv., 2022, 12, 33479–33487
model is a 41 × L hybrid feature PSSM + one-hot, where L
represents the residue length of the protein.

In the BLSTM feature extraction module, we use two BLSTM
layers to extract global features in residue sequences. We also
use a dropout layer aer the BLSTM layer to avoid the risk of
overtting during training.

In SEBTCN feature extraction module, we fuse input features
and global features extracted by BLSTM. We then use four
SETCN residual blocks with channel attention to further bidi-
rectionally capture key deep long-range dependencies between
amino acid residues. Furthermore, a 1DCov block is used for
fast optimization of features. The broad receptive eld of
SEBTCN can establish better long-range bidirectional interac-
tions between sequence elements.

In the BLS feature extraction and output module, we rst
fuse the long-range features extracted by SEBTCN and BLSTM.
Secondary structure prediction is mainly affected by local resi-
dues, so we use the sliding window technique to segment the
fusion features into sequences of size 40 × 19 and further
transform them so that the model can extract local interactions.
We use 40 feature node groups with 40 nodes to transform the
input data into the mapping feature space. Then, the mapping
features are expanded in a broad sense to 10 000 enhancement
feature nodes for nonlinear learning. Finally, we obtain the
output weights by computing the pseudo-inverse of the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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mapping and enhancement features to complete the classi-
cation of the secondary structure.

The proposed model can not only capture key long-range
interactions in protein sequences but also utilize local
optimal features for 3-state and 8-state PSSP. Furthermore, the
powerful feature extraction capability of our model can better
model complex sequence–structure relationships between
input sequences and structural labels.
3 Experiments
3.1. Datasets

The PISCES33 server is widely used for PSSP, which can generate
sequence subsets from the Protein Data Bank based on struc-
tural quality and mutual sequence identity. Therefore, we
selected 14 991 proteins using the PISCES server with parame-
ters including: the percent identity cutoff was set to 25%, the
resolution cutoff was set to 3 Å, and the R-factor cutoff was set to
0.25. We removed sequences that were duplicated with the test
set. In addition, proteins with sequence lengths less than 40 or
more than 800 were also deleted. The nal constructed
CullPDB33 dataset has 14 562 proteins. For testing purpose, we
randomly divided the dataset into training set (11 650), valida-
tion set (1456) and test set (1456). We randomly divided the
dataset three times for classication three times. The nal
prediction accuracy is the mean of the three prediction
accuracy.

To evaluate the performance of the proposed model, we also
use six public test sets CASP10,34 CASP11,35 CASP12,36 CASP13,37

CASP14 (ref. 38) and CB513,39 where all CASP datasets are
available at https://predictioncenter.org/. The statistics of the
six datasets are shown in Table 1.
3.2. Features

In this work, we use two feature representation methods one-
hot encoding and PSSM as the input to the model. Amino
acids include 20 standard amino acids (A, C, D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W, Y and X) and 6 non-standard
amino acids such as B, X, and Z. Because the number of non-
standard amino acids is low, they can be classied as one
type. Therefore, we can consider that amino acids have 21 types.
The one-hot encoding method can represent each type of amino
acid as a 21-dimensional vector, in which the corresponding
component of the amino acid is 1, and the remaining compo-
nents are 0. Since the vectors of the 21 amino acid types are
mutually orthogonal, one-hot encoding can also be called
orthogonal encoding.

PSSM is a scoring matrix generated by aligning the sequence
itself with multiple sequences, which is widely used for feature
Table 1 Number of proteins and residues in the six datasets

Number CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Proteins 99 81 19 22 23 513
Residues 24 048 20 084 4257 5948 4644 84 119

© 2022 The Author(s). Published by the Royal Society of Chemistry
representation. We use the PSI-BLAST40 procedure to generate
PSSM proles, where the threshold E is set to 0.001 and the
number of iterations is set to 3. PSSM can express an amino acid
sequence of length L as an L × 20 feature matrix by scoring 20
standard amino acid types.

3.3. Evaluation metrics

In this work, to evaluate the overall prediction accuracy of the
proposed model, we use four commonly used metrics: Q3

accuracy, Q8 accuracy and SOV41 score for 3-state and 8-state
PSSP. The secondary structure corresponding to the amino acid
sequence was obtained by the DSSP5 program. Let the 3-state
secondary structure S3 = {H, E, C}, and the 8-state secondary
structure S8 = {G, I, H, B, E, S, T, C}. Q3 and Q8 overall accuracy
is dened as:

Q3ðQ8Þ ¼
P

ns

N
� 100; s˛S3ðs˛S8Þ (16)

where N is the total number of residues and ns is the correct
number of predicted type s. Let the total number of residues of
the sequence beNSOV, the observed segment be S1, the predicted
segment be S2, and the overlapping segment of S1 and S2 be S0.
The SOV score can be calculated as follows:

SOV ¼ 100

NSOV

X
S0

	
minovðS1;S2Þ þ sðS1;S2Þ

maxovðS1;S2Þ lengthðS1Þ



(17)

where maxov(S1, S2) and minov(S1, S2) represent the union
length and overlap length of the segments S1 and S2, respec-
tively. The s(S1, S2) allowed to vary at the segment edges is
calculated as:

sðS1;S2Þ ¼ min

8>>>>><
>>>>>:

maxovðS1;S2Þ �minovðS1;S2Þ
minovðS1;S2Þ
int½lenðS1Þ�=2
int½lenðS2Þ�=2

9>>>>>=
>>>>>;

(18)

3.4. Performance analysis of the proposed model

In this section, to demonstrate the impact of the hyper-
parameters of the three modules in DLBLS_SS on the perfor-
mance of 3-state and 8-state PSSP, we conduct extensive
experiments using the CullPDB dataset.

3.4.1. Inuence of BLSTM module parameters. To explore
the effect of the number of units in the BLSTM layer on the
proposed method, we conduct comparative experiments on the
validation and test sets. We use two BLSTM layers, which is the
best number demonstrated experimentally. As shown in Fig. 7,
the model achieves the highest Q3 and Q8 accuracy on two
datasets when using 2500 units. Because the number of units
directly affects the ability to analyze high-dimensional residue
sequences, too many hidden units can also lead to network
overtting.

3.4.2. Inuence of SEBTCN module parameters. Since the
number of SETCN residual blocks determines the receptive eld
of the model, we use different numbers of residual blocks to
classify the validation and test sets. As shown in Fig. 8, the
RSC Adv., 2022, 12, 33479–33487 | 33483
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Fig. 7 (a) Q3 accuracy of the proposed method under different number of units. (b) Q8 accuracy of the proposed method under different
number of units.

Fig. 8 (a) Q3 accuracy of the proposed method under different number of SETCN blocks. (b) Q8 accuracy of the proposed method under
different number of SETCN blocks.
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model achieves the best 3-state PSSP performance when the
number of residual blocks is 4, and the model achieves the best
8-state PSSP performance on the two datasets when the number
of residual blocks is 4 and 5, respectively. The main reason is
that the number of residual blocks affects the depth of the
Fig. 9 (a) Q3 accuracy of the proposed method under different numbe
number of nodes.

33484 | RSC Adv., 2022, 12, 33479–33487
network. Also, too many residual blocks can trap the model in
local optima.

3.4.3. Inuence of SEBTCN module parameters. The
number of feature nodes and enhancement nodes in the BLS
module determines the network width. Fig. 9 shows the 3-state
r of nodes. (b) Q8 accuracy of the proposed method under different

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 3-state and 8-state PSSP results of six models on seven datasets. Bold indicates the best performance

Models

CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8

LSTM 74.05 62.87 75.66 65.47 74.68 63.22 74.67 62.98 73.91 61.68 73.55 62.77 76.87 66.87
SETCN 75.62 64.79 77.79 66.95 75.73 64.89 76.14 64.85 74.96 63.01 74.69 63.85 80.11 68.12
SEBTCN 81.39 70.92 82.75 71.79 80.96 70.07 80.57 69.97 80.91 67.96 80.54 69.39 84.82 73.94
BLSTM 82.16 72.38 83.21 72.64 80.91 70.16 80.37 69.30 80.46 67.43 80.49 68.81 84.79 75.86
BLSTM + SEBTCN 82.97 73.22 83.73 73.54 81.60 71.52 81.14 70.39 81.27 68.41 81.18 69.97 85.74 77.06
DLBLS_SS 83.10 73.35 84.06 73.95 81.76 71.65 81.28 70.54 81.39 68.59 81.32 70.24 85.90 77.35
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and 8-state PSSP performance of the proposed method on
validation and test sets under different numbers of nodes. The
Q3 accuracy of the model on the two datasets reaches the
maximum when the feature nodes are 40 and the enhancement
nodes are 10 000 and 12 000 respectively. The model achieves
the highest Q8 accuracy on two datasets when using 40 feature
nodes and 10 000 enhancement nodes. Furthermore, the
number of nodes not only determines the prediction perfor-
mance but also affects the size of the model.

3.5. Ablation study

To demonstrate the effectiveness of the proposed models, we
conduct comparative experiments with Q3 accuracy and Q8

accuracy as evaluation metrics. The comparison results of the
six models on the seven datasets are shown in Table 2.
Compared with SETCN, SEBTCN achieves an average
improvement of 5.27% and 5.37% in Q3 accuracy and Q8

accuracy on seven datasets, which indicates that the proposed
SEBTCN can sufficiently extract bidirectional key features in
sequences. SETCN consistently outperforms LSTM in PSSP,
while SEBTCN outperforms BLSTM in most cases, mainly
because SEBTCN has a broad receptive eld, but it also loses
some important information. The integration of BLSTM and
SEBTCN achieves higher 3-state and 8-state PSSP accuracy,
which proves that SEBTCN can further extract long-range
features. Furthermore, DLBLS_SS achieves better prediction
performance compared to BLSTM + SEBTCN, which proves
that the introduction of BLS can effectively extract local
features to improve classication accuracy.

As shown in Table 3, we compare the prediction performance
of the proposed model under different input features on seven
datasets. When the input is the hybrid feature PSSM + one-hot,
the prediction accuracy of DLBLS_SS reaches the maximum.
Furthermore, it can be seen that PSSM features are signicantly
Table 3 Q3 and Q8 accuracy of DLBLS_SS under different features on s

Features

CullPDB CASP10 CASP11

Q3 Q8 Q3 Q8 Q3 Q8

PSSM 82.08 72.13 82.96 72.71 80.63 70.37
One-hot 72.74 62.79 73.59 63.18 72.27 61.97
PSSM + one-hot 83.10 73.35 84.06 73.95 81.76 71.65

© 2022 The Author(s). Published by the Royal Society of Chemistry
better than one-hot features, mainly because PSSM contains
richer biological information.

3.6. Comparison with popular models

In this section, we compare the proposed method with ve
state-of-the-art methods DCRNN,42 CNN_BIGRU,43 Deep-
ACLSTM,44 MUFOLD-SS45 and ShuffleNet_SS46 on seven test sets
CullPDB, CASP10, CASP11, CASP12, CASP13, CASP14 and
CB513. The DCRNN model utilizes a multi-scale convolutional
neural network to extract local features and a bidirectional
neural network composed of gated units to extract global
features. The CNN_BIGRU model utilizes convolutional
networks and bidirectional gating units to improve the accuracy
of PSSP. The DeepACLSTM model predicts secondary structure
using local and long-range dependencies extracted by asym-
metric convolutional and bidirectional long short-termmemory
networks. The MUFOLD-SS predictor utilizes the deep
inception-inside-inception method for prediction. Shuf-
eNet_SS introduces label distribution-aware margin loss in
lightweight convolutional networks to improve rare class
recognition. For the purpose of fair comparison, we use our
dataset to train all models in the experiments, where the hybrid
feature PSSM + one-hot is used as input.

To evaluate the prediction performance of the proposed
model for 3-state and 8-state secondary structure, we employ Q3

accuracy, Q8 accuracy and SOV score as evaluation measures.
The 3-state and 8-state PSSP comparison results of the proposed
model and ve existing popular models on seven benchmark
datasets are shown in Tables 4 and 5. The comparison of Q3

accuracy and SOV score in Table 4 shows that DLBLS_SS
exhibits better prediction performance in most cases compared
to ve popular methods. Table 5 shows that the 8-state PSSP
performance of DLBLS_SS consistently outperforms the ve
state-of-the-art models on the seven test sets. This is mainly
even datasets. Bold indicates the best performance

CASP12 CASP13 CASP14 CB513

Q3 Q8 Q3 Q8 Q3 Q8 Q3 Q8

80.13 69.28 80.22 67.31 80.17 68.95 84.74 76.05
72.79 62.01 71.92 59.57 72.41 61.21 75.02 65.97
81.28 70.54 81.39 68.59 81.32 70.24 85.90 77.35
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Table 4 Performance comparison with state-of-the-art models on seven datasets in 3-state PSSP. Bold indicates the best performance

Models

CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Q3 SOV Q3 SOV Q3 SOV Q3 SOV Q3 SOV Q3 SOV Q3 SOV

DCRNN 82.12 78.51 82.57 75.71 80.57 75.53 80.41 74.75 80.49 77.09 80.27 71.46 84.65 79.63
CNN_BIGRU 82.32 78.68 82.42 76.20 81.05 76.58 80.38 75.62 80.66 76.94 80.46 71.92 84.83 79.90
DeepACLSTM 82.64 79.45 83.43 77.76 81.32 76.04 80.49 75.56 80.92 77.43 80.79 71.73 85.02 80.12
MUFOLD-SS 83.02 79.62 83.28 78.04 81.67 77.41 80.92 77.47 81.15 78.02 81.13 70.97 85.30 80.23
ShuffleNet_SS 83.06 78.79 83.85 76.27 81.70 76.37 80.87 76.39 81.41 77.46 81.24 71.32 85.61 79.98
DLBLS_SS 83.10 79.15 84.06 78.13 81.76 77.71 81.28 75.98 81.39 77.18 81.32 72.55 85.90 80.67

Table 5 Performance comparison with state-of-the-art models on seven datasets in 8-state PSSP. Bold indicates the best performance

Models

CullPDB CASP10 CASP11 CASP12 CASP13 CASP14 CB513

Q8 SOV Q8 SOV Q8 SOV Q8 SOV Q8 SOV Q8 SOV Q8 SOV

DCRNN 72.06 70.42 72.10 69.74 70.51 68.44 69.40 67.24 68.05 68.01 68.87 63.27 75.63 73.06
CNN_BIGRU 72.30 70.15 71.89 69.17 70.95 69.05 69.68 68.06 67.84 67.92 68.69 62.95 75.55 72.84
DeepACLSTM 72.87 71.34 73.08 71.42 71.24 69.93 69.82 68.18 68.46 69.31 69.55 63.46 76.02 73.46
MUFOLD-SS 73.32 71.59 72.99 71.51 71.59 69.84 70.22 69.32 68.23 68.89 69.24 62.69 76.64 74.04
ShuffleNet_SS 73.30 71.12 73.62 70.23 71.55 69.17 70.21 68.73 68.52 68.36 69.89 63.17 76.87 73.32
DLBLS_SS 73.35 71.96 73.95 72.07 71.65 70.04 70.54 69.34 68.59 69.33 70.24 63.58 77.35 75.08
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because the powerful analytical ability and broad receptive eld
of DLBLS_SS can effectively capture the key local and long-range
dependencies in high-dimensional protein sequences, which
can optimize the problem of insufficient feature extraction and
enhance the ability of secondary structure recognition.
Furthermore, we performed a paired t-test47 on the Q8 accuracy
of each protein of these models on the CB513 dataset with
a condence level of 0.05. In the t-test, there are signicant
differences between DLBLS_SS and the other ve state-of-the-art
models. Among them, our model is the closest to the mean of
ShuffleNet_SS.

4 Conclusions

In this paper, we combine deep learning and BLS to propose
a novel model DLBLS_SS for 3-state and 8-state PSSP. In
DLBLS_SS, the BLSTM module can extract global features in
protein sequences, the SEBTCN module can bidirectionally
capture key deep long-range dependencies in residue
sequences, and the BLS module can further capture local
interactions between residues while rapidly optimizing the
extracted features. SEBTCN is our proposed sequence-to-
sequence prediction network based on TCN and channel
attention mechanism. We test the prediction performance of
the proposed DLBLS_SS on the public test sets CASP10,
CASP11, CASP12, CASP13, CASP14 and CB513 using the eval-
uation metrics Q3 accuracy, Q8 accuracy and SOV score.
Experimental results show that the proposed DLBLS_SS
exhibits state-of-the-art prediction performance compared to
ve popular models. The proposed model has powerful
feature extraction ability, which can comprehensively utilize
local and global optimal features for prediction to improve
secondary structure recognition. In the future, we will
33486 | RSC Adv., 2022, 12, 33479–33487
continue to study techniques such as feature extraction and
fusion in PSSP while exploring complex sequence–structure
relationships.
Data availability

The dataset and code for this study are at https://github.com/
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