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Human serum albumin (HSA) has been shown to be a promising tumor targeting vector and target for
generating theranostics by bioconjugation. Unstable chemical conjugation to HSA via a cysteine (Cys34)
by reversible Michael additions is most commonly applied for this purpose. Herein, we describe
utilization of our recently developed site-selective irreversible SyAr conjugation to Cys34 using
perfluorobenzene sulfonyl derivatives to introduce a trans-cyclooctene (TCO) handle. The TCO could
then be bioorthogonally ligated within minutes through an inverse-electron demand Diels—Alder
reaction (IEDDA) to tetrazines (Tzs) containing a radionuclide. The methodology opens up a wide range
of chemistries including pretargeting, ‘click-to-release’ tumor selective drug delivery or ultra-fast and
complete conjugation of any drug. The proof-of-principle study demonstrated that the conjugation
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Introduction

Human serum albumin (HSA) is the most abundant protein in
the blood serum. It has emerged as a versatile targeting vector
for theranostic (diagnostic and therapeutic) strategies. HSA has
for example been used to diagnose and treat rheumatoid
arthritis, cancer, diabetes, and infectious diseases. With respect
to imaging, HSA found widespread application in blood
imaging and angiography.! For example, *'I-labeled human
serum albumin is a Food and Drug Administration approved
drug to measure the blood volume.? Recently, HSA has also been
used to locate sentinel lymph nodes (LNs) in various animal
models including a metastatic breast cancer model.>* The
ability to accurately locate sentinel LNs using non-invasive
imaging technologies such as single-photon emission
computed tomography (SPECT) or positron emission tomog-
raphy (PET) would greatly assist tumor staging.>® From
a general point of view, HSA accumulates in leaky cancerous
tissues due to the enhanced permeability and retention (EPR)
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studies as well as selective drug delivery using HSA.

effect (Fig. 1A).” Even though controversial, the EPR effect has
recently been shown to be present in some cancer patients - in
an interpatient and intratumor dependent manner; tumor
uptake varied from 5% to 50% ID per kg within the same tumor
type.* ™ Interestingly, HSA is able to image LNs and EPR posi-
tive tumors using an in vivo labeling strategy (Fig. 1A)."** In this
approach, endogenous albumin is targeted in vivo with Evans
blue (EB). This is possible as EB possesses a high affinity
towards HSA." However, the selectivity over other proteins is
low. For example, EB also binds plasma proteins in the post-
albumin fraction and not all EB injected binds to proteins, i.e.,
there is also unbound EB present in blood.*

The inverse-electron demand Diels-Alder reaction (IEDDA)
of a tetrazine (Tz) with a trans-cyclooctene (TCO) is a bio-
orthogonal “click” reaction which has attracted great interest
for pretargeted strategies.'>*>'® This ligation is ultrafast, used
agents can easily be modified, and the ligation has already
successfully been applied in vivo for imaging and targeted
radionuclide therapies. For example, Tzs with radionuclide
theranostic pairs, e.g carbon-11, fluorine-18, gallium-68,
scandium-44, technetium-99m, actinium-225, lead-212,
iodine-125, and lutetium-177, exist.">® Furthermore, the liga-
tion has also attracted interest for conventional labeling
approaches as it allows to tag a peptide or protein within
seconds, at room temperature — even at tracer doses (uM
precursor concentrations).”” These conditions allow to label the
target vector without additional purification. Finally, the Tz
ligation has been used for ‘click-to-release’ drug delivery
approaches - even in the clinic.”®*° In an animal model, ‘click-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) PET images of *Cu-labeled human serum albumin (HSA) show the ability to accumulate in tumorous leaky tissue. (Figure adapted
from Niu et al.%). (B) Challenges of current thiol-maleimide Michael additions used to functionalize cysteines. (C) Objective of this study: stable
functionalization of HSA via conjugation of a perfluoro-benzene sulfonyl derivative to Cys34 is displayed. A subsequent Tz ligation allows for
a wide range of chemistries including pretargeting and ultra-fast and complete conjugation of any drug. The illustration shows the synthesis of an
HSA-TCO construct based on the SyAr reaction and subsequent Tz ligation with a radiolabeled tetrazine probe.

to-release’ increased median survival from 26 days to 50 days
compared to conventional therapy.*

Introducing a trans-cyclooctene (TCO) handle to a protein of
interest requires mild orthogonal chemistries avoiding acidic
conditions. Herein, we describe a novel strategy to label HSA
easily and selectively for conventional and pretargeted
purposes. For this purpose, we aimed to use the free and highly
nucleophilic cysteine handle (Cys34) available in HSA. Most
commonly, conjugation to this Cys residue is conducted via
a Michael addition to an electrophilic maleimide.** However,
these reactions are reversible, frequently providing low yields,
and the succinimide product requires a subsequent hydrolysis
step to attain stability (Fig. 1B). We have recently shown that
nucleophilic aromatic substitutions (SyAr) between Cys resi-
dues and electrophilic perfluorobenzene sulfonyl derivatives are
quick, robust, compatible with biological conditions, and irre-
versible (Fig. 1C).** Furthermore, these fluoroaryls react site-
selectively with the free thiol of Cys34. In order to provide
a bioorthogonal handle to HSA, we envisioned to link a trans-
cyclooctene (TCO) moiety to this perfluorobenzene sulfonyl
derivative. This TCO would allow a subsequent Tz ligation and
as such, the possibility to introduce any radionuclide, drug or
imaging probe within seconds, allow possibly for pretargeting

© 2022 The Author(s). Published by the Royal Society of Chemistry

with higher selectivity than EB approaches and in a slightly
modified version for drug delivery ‘click-to-release’ approaches.

Results and discussion

In order to conjugate TCOs to HSA, we decided to synthesize two
pentafluorobenzene TCO-bearing moieties. Linker length was
varied in order to investigate if the linker length or polarity
influences the ability of Tzs to interact with the HSA conjugated
TCOs. The lipophilic linker was based on a simple, linear tri-
methylene structure whereas the more polar linker was addi-
tionally based on three PEG units and a triazole moiety.
Compound 1 was synthesized from commercially available
amine-functionalized TCO and pentafluorobenzenesulfonyl
chloride. In contrast, compound 2 was prepared from N-(2-(2-(2-
(2-azidoethoxy)ethoxy)ethoxy)ethyl)-2,3,4,5,6-

pentafluorobenzenesulfonamide (2a), which was synthesized
according to Psimadas et al.*>* and propiolic acid in a yield of
approx. 25% via a copper(i)-catalyzed azide-alkyne cycloaddi-
tion, CuAAC (not shown).***” Compounds 1 and 2 were then
conjugated with HSA without further purification. The SyAr
proceeded in 3 : 7 mixture of acetonitrile and PBS buffer, pH 8.5,
to yield HSA1 and HSA2. Fig. 2A and B display the applied
strategy. LC-MS analysis revealed full conversion of HSA after

RSC Adv, 2022, 12, 35032-35036 | 35033


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06406e

Open Access Article. Published on 08 December 2022. Downloaded on 2/7/2026 7:52:21 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

View Article Online

Paper

Synthetic Strategy to Functionalize and Radiolabel Human Serum Albumin

A)
F Fo H R o

Q. cl H k. g NN
F g HN AN O %
o . X @ — o
F F o a  F F
£

F o nm (
\NH
9s

H H
F \\S\‘,N\/\/N\n/o
0 o
c/\s F
)
[*n]Tz-HSAL

HSA1

Analysis of the Human Serum Albumin Functionalization
q)

1+
564407827 1+
66875.1444

HSA1

HSA

).

|

B)
F o H '."’\N/)—/Z)
—_— o .
b) F F 9
I 2

Fo X ¥ H
AT oA AR O C-
) 0 —_
E E 3 ) b)
r

Q H

NH\/\/N “4 N“R”' o
I?[ o+ =

;
66250 65500 6750 67000 66500 67000

Computational simulations of the TCO sites

HSA2 [MIn]Tz-HSA2
D) 15000
—HSA —HSAe1
10000
" o HSAe2
671486203 [}
g 5000 |
=
i i
HSA2 S
& -5000
3
_£-20000 -
@
— 15000 -
-20000
——————ff——— — 195 215 235 255
66250 68500 67000 67250

Wavelength [nm]

Tetrazine Ligation Analysis between [*''In]Tz and HSA1 and HSA2

'S

f) A ! )
BOE g Os
ko) S NH NANH
C/\s F I c !
NN 67361. 7151U | -
67086.9870 N [*4In]Tz-HSAL
HSA4 S [M1In]Tz-HSA2
|
66879.2695
67149.8410
HSA3 [*'1n]z

Binding of 1 into Binding of 2 into

HSA HSA J‘
TCOs are accessible to

| rove T

h 56|7

TR 4,

—

Tz in both structi Tel=d- L T
z in both structures R

Fig. 2

67000 67250

57000 67250 67500

(A + B) Synthetic scheme to functionalize and label human serum albumin (HSA); (a) CH,Cl,, 2,6-lutidine, room temperature, 0.5 h, (b)

MeCN/PBS (3 :7), 31 °C for 24 h, (c) MeCN, room temperature for 15 min, (d) TCO-amine, PyBOP, DIPEA, CH,Cl,, room temperature for 50 min;
(C) deconvoluted MS spectrum of HSA, HSA1 and HSA2 displays full conversion of HSA during the SyAr; (D) the circular dichroism (CD) spectra of
HSA, HSA1, and HSA2 confirms that the a-helical structure of HSA was retained after modification with 1 or 2. (E) Computational simulations of
the spatial arrangement of the linkers 1 and 2 within HSA1 and HSA2 show that TCOs are accessible for Tz ligations. The structures of HSA1 and
HSA2 are based on the HSA crystal structure PDB 1N5U.38 (F) Deconvoluted MS spectra of Tz-HSA1 and Tz-HSA2; (G) radioactive SDS-PAGE gels
with *In-Tz after exposure to a phosphor plate reveal that ''In-Tz can react with HSA1 and HSA2. Lane 1-3: HSA1 with *!In-Tz, Lane 5-6: HSA2
with "In-Tz, Lane 4 & 7: Native HSA (control) with *!In-Tz; HSAL, HSA2, and native HSA were mixed with *In-Tz for 1 hour at 37 °C prior to

application to the SDS-PAGE gel.

conjugation with 1 or 2 (Fig. 2C). This shows that the SyAr
reaction is orthogonal to the chemistry of the TCO moiety.
Moreover, construction of 1 and 2 demonstrates that SyAr is
orthogonal to peptide coupling and CuAAC. To investigate if
conjugation with linker 1 and 2 had caused denaturation of
HSA, circular dichroism (CD) spectroscopy was carried out of
HSA, HSA1, and HSA2 and compared to each other. CD spec-
troscopy confirmed that conjugation of both linkers did not
cause denaturation of HSA, as the a-helical structure of HSA was
conserved in HSA1 and HSA2 (Fig. 2D).*

To model the spatial arrangement of the linkers 1 and 2
within HSA1 and HSA2 and to investigate if conjugated TCOs

35034 | RSC Adv, 2022, 12, 35032-35036

are accessible for Tz ligations, a molecular dynamics simulation
was conducted. The HSA crystal structure used for the simula-
tions was PDB 1N5U.** The structure of HSA was fixed except for
the Cys34 residue (including the protein backbone part) and 1
or 2, respectively. A solvent sphere with a diameter of 30 A was
placed around the Cys34 residue and 1 or 2. Repeated cycles of
heating/cooling were then conducted to elucidate the preferred
conformation of 1 and 2. The simulations showed that 1 had its
olefin double bond at a distance of 17.0 A from the Cys34
sulfhydryl, whereas for 2, wrapping of the linker around itself
caused the distance between the olefin double bond and the
Cys34 sulthydryl to be 15.0 A. These simulation results

© 2022 The Author(s). Published by the Royal Society of Chemistry
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supported that the linkers indeed had the required lengths and
flexibilities for the TCOs to be accessible for Tz ligations
(Fig. 2E). Encouraged by these simulations, we aimed to
confirm that TCOs are indeed accessible and that TCO moieties
still exist in their reactive trans-configurations within HSA1 and
HSA2 after coupling to HSA and purification. We confirmed this
by reacting HSA1 and HSA2 with 3,6-di(pyrimidin-2-yl)-1,2,4,5-
tetrazine to form HSA3 and HSA4, respectively. LC-MS anal-
ysis confirmed presence of reactive TCOs and the formation of
HSA3 and HSA4 (Fig. 2F). Since properties of the linker between
the TCO moiety and HSA can influence the kinetics and reac-
tivity of the Tz ligation, both HSA1 and HSA2 were examined.*
Quantification of the reactive TCO load per HSA succeeded via
SDS-PAGE of HSA1 and HSA2 with "'In-labeled Tz ([*"'In]Tz).
On average 0.2 reactive TCO per HSA were available indepen-
dent on the used shorter, lipophilic linker 1 or the longer,
hydrophilic linker 2. This number is relatively low, but still high
enough to selectively introduce any drug or radionuclide into
HSA. A 1:1 ratio would be preferred but for imaging or radio-
nuclide therapy purposes, a load of 0.2 reactive TCOs per HSA
molecule is sufficient as ultra-low concentrations of the radio-
active agent are applied.**** For tumor pretargeting, usually 5-7
TCOs per targeting vector are used. With this respect, the TCO
load should be further increased for example via dendrimers
bearing 4-8 TCOs similar to the work published by Zeglis et al.**
The same considerations apply to ‘click-to-release’ drug release
strategies. Native HSA mixed with '*'In-labeled tetrazine was
used as control and showed only a radioactive band for the
"1n-Tz. Fig. 2G displays the images of radioactive gel. The gel
was exposed on a phosphor screen (MultiSensitive Phosphor
Screens) to visualize the radioactive bands on the gel. A band at
the molecular weight of ~68 kDa was observed, corresponding
to the weight of HSA.

Conclusion

Herein, we have shown that TCO moieties can easily be intro-
duced using a SyAr of pentafluorobenzene derivatives. The
conjugation did not affect the structural integrity of HSA. LC-MS
and SDS-PAGE analysis confirmed that TCOs were active and
with an average loading of 0.2 reactive TCOs per HSA molecule.
In conclusion, the proposed conjugation strategy is suitable for
conventional labeling approaches. For pretargeted strategies as
well as for prodrugs strategies the TCO load per HSA has most
likely to be increased. Future work is directed into the possi-
bility to introduce more TCOs via the proposed method, for
example by applying TCO-bearing dendrimers.

Abbreviations

CD Circular dichroism

HSA Human serum albumin

IEDDA  Inverse-electron demand Diels-Alder reaction
LC-MS  Liquid chromatography-mass spectrometry
MRE Molar residual ellipticity
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SDS- Sodium dodecyl sulfate-polyacrylamide gel
PAGE electrophoresis

SNAT Nucleophilic aromatic substitution

TCO Trans-cyclooctene

Tz Tetrazine
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