
RSC Advances

PAPER

View Article Online
View Journal | View Issue

Cite this: RSC Adv., 2022, 12, 31056

Received 11th October 2022 Accepted 24th October 2022

DOI: 10.1039/d2ra06402b

rsc.li/rsc-advances

Annulated carbamates are precursors for the ring contraction of the adamantane framework†

Radim Hrdina, 60 ** Oksana M. Holovko-Kamoshenkova, ad Ivana Císařová, Filip Koucký and Oldřich Machalický (**)

We report a protocol for the one-pot two-step synthesis of noradamantane methylene amines. The first step is the triflic acid-promoted decarboxylation of adamantane carbamates, which causes rearrangement of the adamantane framework to form noradamantane iminium salts, which are reduced to amines in the second separate step.

Introduction

Noradamantane (adamantane lacking one methylene unit) derivatives such as amines,¹ acids,² methylene alcohols,³ and others⁴ are useful building blocks in organic synthesis. Together with adamantane derivatives,⁵ they are typically used to make target molecules more lipophilic, bulky or conformationally rigid, which is exploited in drug⁶ and catalyst design⁻ or in materials science for preparation of polymers, dendrimers, and light emitting and other special devices.⁶ Noradamantane compounds can also serve as precursors for the synthesis of adamantane derivatives *via* ring expansion methods.⁶ Various simple noradamantane derivatives (*e.g.* containing methylene amine group) exhibit biological activity and were tested as inhibitors (Fig. 1).¹⁰

Compared to adamantane ($T_{\rm d}$ point group), the noradamantane skeleton ($C_{\rm 2v}$) has a lower symmetry and exhibits different reactivity towards oxidation reactions, which complicates the synthesis of on cage-substituted derivatives. Noradamantane framework can be prepared by skeletal rearrangement of deltacyclane, from 4-protoadamantanone or from suitable adamantane precursors such as 1,3-adamantane diols. Most syntheses of noradamantane cage compounds start from adamantan-2-one. This substantially limits the preparation of (on cage)-substituted derivatives as there are not many C_2 symmetric substrates available or easily synthesizable (Fig. 2).

Results and discussion

In this work, we focus on the triflic acid promoted decarboxylation of N-unsubstituted carbamates, which leads to the ring contraction of the adamantane framework by nucleophilic 1,2alkyl shift¹⁶ producing noradamantane carbaldiminium salts, and the one-pot reduction of the resulting iminium salts to noradamantane methylene amines was performed in the same pot subsequently using LiAlH₄ (Fig. 2). The decarboxylation of the carbamate with triflic acid in the presence of HX was performed to get a halogen in the position next to an amino group on the adamantane framework to have possibility to study all steps of the cascade process (decarboxylation and 1,2-alkyl shift) separately. The ring contraction of the adamantane framework containing a leaving group in the position next to an amine is now described in acidic and basic media and is analogical to aziridine formation17 for non-bridged flexible aliphatic systems (Fig. 3).

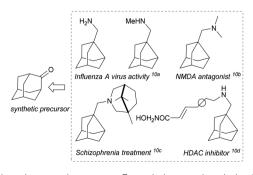


Fig. 1 Bioactive noradamantane-3-methylene amine derivatives.

We have recently contributed with a new method for the preparation of noradamantane carbaldehydes based on the decarboxylation of annulated *N*-methylated adamantane carbamates followed by a nucleophilic 1,2-alkyl shift and hydrolysis of the resulting iminium salts.¹⁵

[°]Charles University, Faculty of Science, Department of Organic Chemistry, Hlavova 8, 12840 Praha, Czech Republic. E-mail: hrdina@natur.cuni.cz

^bCharles University, Faculty of Science, Department of Inorganic Chemistry, Hlavova 8, 12840 Praha, Czech Republic

^cUniversity of Pardubice, Faculty of Chemical Technology, Studentská 573, 53210 Pardubice, Czech Republic

^dUzhhorod National University, Narodna Ploshcha 3, 88000 Uzhhorod, Ukraine

[†] Electronic supplementary information (ESI) available. CCDC 2194850-2194852. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d2ra06402b

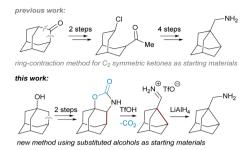


Fig. 2 New approach to noradamantane-3-methylene amines from adamantan-1-ol.

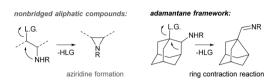


Fig. 3 Nucleophilic rearrangement reaction of the adamantane framework containing a leaving group next to the amino group.

The cyclic carbamate **3a** was prepared in two steps from adamantan-1-ol **1a** and was used as a model compound for optimisation of the reaction conditions. The optimal conditions; 2 equivalents of trifluoromethanesulfonic acid, 1,2,4-trichlorobenzene as a solvent, 0.06 M dilution, 120 °C and 4 h reaction time for the decarboxylation and rearrangement step.

The reduction of the *in situ* formed iminium salt (**Int1-OTf**, Fig. 5A) was performed by adding LiAlH₄ and THF to the reaction mixture and stirring at 25 °C for three hours. This method was used for the rearrangement and reduction of four various starting materials substituted on the adamantane cage leading to compounds **5**, **9**, **11**, **13** (Fig. 4). For the decarboxylation and reduction of *N*-substituted carbamates (Me and 2,2'-dichlorobenzyl) the reaction conditions (dilution 0.5 M, temperature 140 °C and reaction time 16 h) were changed.

Scheme 1 Rearrangement reaction of 17 at basic media to imine intermediate, which is *in situ* hydrolysed to aldehyde 18 and amination reaction of 18 to amine hydrochloride salt 19. (a) TfOH/KBr/CH₂Cl₂, 40 °C; (b) K₂Co₃/H₂O, 100 °C; (c) (1). PhCH₂NH₂/MgSO₄/THF, 25 °C; (2).LiAlH/THF/25 °C; (3) HCI/Et₂O.

Compound 7 was crystallised and characterised by X-ray crystallography (Fig. 4). Starting materials 3e, 4ea (*N*-Me carbamate), and 4eb (*N*-CH₂Ar carbamate) undergo the reaction sequence, but the final products are not obtained in required purity and the final amine 19 was prepared by reductive amination from the aldehyde 18 (Scheme 1). The amines can be stored as hydrochloride salts or protected with *e.g.* Boc group (compounds 6 and 10). Diastereomers of 9 were resolved by fractional crystallisation of the Boc-protected compound 10 in pentane. Is somer 10-I1 was recrystallised and its configuration was determined using X-ray crystallography (Fig. 4).

The proposed mechanism of the ring contraction reaction cascade is the triflic acid promoted decarboxylation of 3 to form intermediate **IntA-OTf**, followed by a nucleophilic 1,2-alkyl shift to form the iminium salt **Int1-OTf**. The calculated (DFT method) difference in stability of the intermediate cations **IntA**⁺ and **Int1**⁺ is $\Delta G = 16.5$ kcal mol⁻¹ (Fig. 5E).

The iminium salt intermediate Int1-OTf is reduced in the next step using LiAlH₄ to form the product 5 (Fig. 4) or it can be trapped by other nucleophiles such as a nitrile using the Strecker reaction with TMSCN to form compound 15, precursor for non-biogenic α -amino acids²⁰ as demonstrated on the synthesis of compound 16 (Scheme 2).

The ring-contraction reaction was then studied using compounds containing halogens as a leaving group next to an

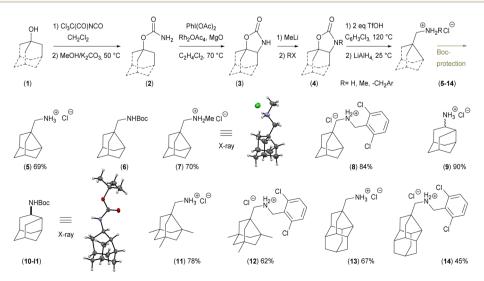


Fig. 4 Scope of the new transformation. Yields of isolated products are stated.

RSC Advances Paper

Scheme 2 Trapping of the iminium intermediate (Int1-OTf) by TMSCN and preparation of the α -amino acid hydrochloride salt 16.

amine group mimicking the reactive intermediate **IntA-OTf**, which is obtained after the decarboxylation step (Fig. 5A).

First, we performed the ring contraction of **24** using MeLi to deprotonate an amine group, to generate imine **25**, which was isolated and characterised (Fig. 5C).

Then we prepared compounds 20, 21, 22 (ref. 18) and studied the ring contraction reaction in a polar solvent in analogy to S_N 1-substitution reactions. Thermal cleavage of 1-iodo derivative 20 in a polar solvent mixture (1,4-dioxane/ K_2 CO $_3$ water solution), provided the ring contracted imine Int1-I, which was *in situ* hydrolysed to aldehyde 23 (Fig. 5D).

Kinetics of the thermal rearrangements were studied with compounds **20**, **21** and **22** in 1,4-dioxane/K₂CO₃ water solution mixture using ¹H-NMR measurements at various temperatures and concentrations (Scheme 3).

These reactions resemble S_N1 -substitution reactions following the same trend: iodo-derivative **20** undergoes the ring contraction reaction already at room temperature, slower ring-contraction reaction proceeds with bromo-derivative **21** and the slowest reaction occurs with chloro-derivative **22**. The product of a substitution side reaction, 2-amino adamantane-1-ol **26** was detected, isolated and characterised (Scheme 3). Apparent first order kinetic constants estimated for solvolysis of 1-halogeno-2-amine adamantanes to the main product at 50 °C are within the range: $k = (130 \pm 20) \times 10^{-5} \, \mathrm{s}^{-1}$ for $\mathrm{X} = \mathrm{II}$; $k = (125 \pm 20) \times 10^{-5} \, \mathrm{s}^{-1}$ for $\mathrm{X} = \mathrm{Br}$; and $k = (3 \pm 0.2) \times 10^{-5} \, \mathrm{s}^{-1}$ for $\mathrm{X} = \mathrm{CI}$. For determination of kinetic constants of solvolysis of individual 1-halogen-2-amine adamantanes see ESI.†

Taking all data into account, the rate limiting step of the ring contraction reaction is the decarboxylation of compound 3 to the intermediate IntA-OTf. The computed barrier of the next step 1,2-alkyl shift between IntA⁺ and Int1⁺ is only 0.79 kcal mol⁻¹ (Fig. 5E).²¹ This is in line with an experiment where intermediate IntA-OTf was generated from compound 22 by adding AgOTf to the solution at room temperature and instantaneous formation of the imine Int1-OTf was observed (Fig. 5B).⁹

Scheme 3 Kinetics of the thermal rearrangement reactions in a polar solvent mixture. (a) TfOH/KX/CH₂Cl₂, 40 °C and neutralisation; (b) $K_2CO_3/H_2O/1.4$ -dioxane, VT-exp.

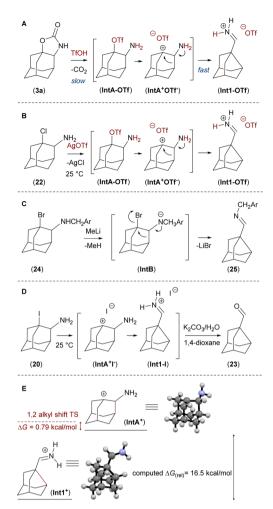


Fig. 5 (A): Ring-contraction reaction of the adamantane framework in acidic medium; (B): generation of the reactive intermediate IntA-OTf from chloro-derivative 22; (C): ring-contraction reaction of 24 with strong base; (D): ring-contraction reaction of 20 in polar basic medium; (E): computed relative stability of intermediate IntA+ versus target structure Int1+ using DFT method B3LYP/deF2-TZVPP and computed ΔG for transition state of the 1,2-alkyl shift.

Conclusions

We have shown that adamantane based cyclic carbamates are suitable precursors for ring contraction of the adamantane framework and that the formed iminium moiety can be reduced or trapped by a nucleophile gaining access to noradamantane amino derivatives. The ring contraction reaction can be performed under acidic or basic conditions from suitable starting materials, and proceeds through imine intermediates. The ring contraction reaction of adamantane based 2-amino-1-alcohols as starting materials is part of our future studies.

Author contributions

R. H. and O. H. performed the synthetic work. I. C. is responsible for X-ray crystallographic analysis, F. K. for NMR measurements and O. M. for kinetic studies.

Conflicts of interest

Paper

There are no conflicts to declare.

Acknowledgements

We thank Dr Artur Mardyukov for DFT analyses and for manuscript proofreading.

Notes and references

- 1 (a) E. Torres, R. Fernandez, S. Miquet, M. Font-Bardia, E. Vanderlinden, L. Naesens and S. Vazquez, ACS Med. Chem. Lett., 2012, 3, 1065–1069; (b) S. Codony, E. Valverde, R. Leiva, J. Brea, M. I. Loza, C. Morisseau, B. D. Hammock and S. Vázquez, Bioorg. Med. Chem., 2019, 27, 115078; (c) C.-M. Chan, Q. Xing, Y.-C. Chow, S.-F. Hung and W.-Y. Yu, Org. Lett., 2019, 21, 8037–8043; (d) F. Li, C. Ma, W. F. DeGrado and J. Wang, J. Med. Chem., 2016, 59, 1207–1216.
- 2 (a) S. Jin, G. C. Haug, V. T. Nguyen, C. Flores-Hansen, H. D. Arman and O. V. Larionov, ACS Catal., 2019, 9, 9764-9774; (b) L. Wang, V. S. Guillen, N. Sharma, K. Flessa, Min, K. Ε. Carlson, W. Toy, Katzenellenbogen, Ţ. A. Katzenellenbogen, S. Chandarlapaty and A. Sharma, ACS Med. Chem. Lett., 2018, **9**, 803–808; (c) Y. Liang, X. Zhang D. W. C. MacMillan, *Nature*, 2018, **559**, 83-88; (d) G.-T. Zhu, F. Liu, S. He, X.-M. He, S.-K. Zhu and Y.-Q. Feng, RSC Adv., 2018, 8, 19486-19493.
- 3 R. A. Moss, F. Zheng, J.-M. Fedé, L. A. Johnson and R. R. Sauers, *J. Am. Chem. Soc.*, 2004, **126**, 12421–12431.
- 4 (a) K. i. Takeuchi, I. Kitagawa, F. Akiyama, T. Shibata,
 M. Kato and K. Okamoto, *Synthesis*, 1987, 612–615; (b)
 I. R. Likhotvorik, E. L. Tae, C. Ventre and M. S. Platz,
 Tetrahedron Lett., 2000, 41, 795–796.
- 5 (a) R. C. Fort and P. v. R. Schleyer, Chem. Rev., 1964, 64, 277–300; (b) R. Yasue and K. Yoshida, Adv. Synth. Catal., 2021, 363, 1662–1671; (c) R. Hrdina, Synthesis, 2019, 51, 629–642.
- 6 (a) L. Wanka, K. Iqbal and P. R. Schreiner, Chem. Rev., 2013, 113, 3516–3604; (b) E. De Clercq, Nat. Rev. Drug Discovery, 2006, 5, 1015–1025; (c) C. Tzitzoglaki, K. McGuire, P. Lagarias, A. Konstantinidi, A. Hoffmann, N. A. Fokina, C. Ma, I. P. Papanastasiou, P. R. Schreiner, S. Vázquez, M. Schmidtke, J. Wang, D. D. Busath and A. Kolocouris, ACS Chem. Biol., 2020, 15, 2331–2337; (d) R. Hrdina, F. M. Metz, M. Larrosa, J. P. Berndt, Y. Y. Zhygadlo, S. Becker and J. Becker, Eur. J. Org. Chem., 2015, 2015, 6231–6236; (e) V. V. Bakhonsky, A. A. Pashenko, J. Becker, H. Hausmann, H. J. De Groot, H. S. Overkleeft, A. A. Fokin and P. R. Schreiner, Dalton Trans., 2020, 49, 14009–14016.
- 7 (a) K. A. Agnew-Francis and C. M. Williams, Adv. Synth. Catal., 2016, 358, 675–700; (b) J.-P. Berndt, Y. Radchenko, J. Becker, C. Logemann, D. R. Bhandari, R. Hrdina and P. R. Schreiner, Chem. Sci., 2019, 10, 3324–3329; (c) A. Zapf,

- A. Ehrentraut and M. Beller, Angew. Chem., Int. Ed., 2000, 39, 4153-4155.
- (a) H. Nasrallah and J.-C. Hierso, *Chem. Mater.*, 2019, 31, 619–642; (b) R. Ma, Z. Ma, X. Wang, Z. Si, Q. Duan and S. Shao, *Chem. Eng. J.*, 2022, 47, 137517; (c) J. Belz, J. Haust, M. J. Müller, K. Eberheim, S. Schwan, S. Gowrisankar, F. Hüppe, A. Beyer, P. R. Schreiner, D. Mollenhauer, S. Sanna, S. Chatterjee and K. Volz, *J. Phys. Chem. C*, 2022, 126(23), 9843–9854.
- 9 B. Zonker, E. Duman, H. Hausmann, J. Becker and R. Hrdina, *Org. Biomol. Chem.*, 2020, **18**, 4941–4945.
- 10 (a) G. Zoidis, N. Kolocouris, L. Naesens and E. De Clercq, Bioorg. Med. Chem., 2009, 17, 1534-1541; (b) P. Camps, M. D. Duque, S. Vázquez, L. Naesens, E. DeClercq, F. X. Suredac, M. López-Ouerol, A. Camins, M. Pallàs, S. R. Prathalingam, J. M. Kelly, V. Romero, D. Ivorra and D. Cortés, Bioorg. Med. Chem., 2008, 16, 9925-9936; (c) N. Takahashi and D. Mochizuki, Daisuke, Preparation and formulation of azepine derivatives as central nervous Patent WO9406773, agents,WO 1994; (d) Gopalan, T. Ponpandian, Kachhadia, V. K. Bharathimohan, R. Vignesh, V. Sivasudar, S. Narayanan, B. Mandar, R. Praveen, N. Saranya, S. Rajagopal and S. Rajagopal, Bioorg. Med. Chem. Lett., 2013, 23, 2532-2537.
- 11 J. S. Wishnok, P. v. R. Schleyer, E. Funke, G. D. Pandit, R. O. Williams and A. Nickon, *J. Org. Chem.*, 1973, 38, 539.
- 12 Z. Majerski, R. Šarac-Arneri, D. Škare and B. Lončar, *Synthesis*, 1980, 74.
- 13 M. Eakin, J. Martin and W. Parker, *Chem. Commun.*, 1965, 206.
- 14 R. M. Black and G. B. Gill, Chem. Commun., 1970, 972.
- 15 B. Zonker, J. Becker and R. Hrdina, Org. Biomol. Chem., 2021, 19, 4027–4031.
- 16 For Wagner-Meerwein reaction see: (a) F. Romanov-Michailidis, L. Guénée and A. Alexakis, Angew. Chem., Int. Ed., 2013, 52, 9266-9270; (b) D. J. Cram, J. Am. Chem. Soc., 1949, 71, 3863-3870; (c) Z. Pakulski, P. Cmoch, A. Korda, R. Luboradzki, K. Gwardiak and R. Karczewski, J. Org. Chem., 2021, 86, 1084-1095; (d) V. A. Shadrikova, E. V. Golovin, V. B. Rybakov and Y. N. Klimochkin, Chem. Heterocycl. Compd., 2020, 56, 898-908; (e) H. A. Sharma, K. M. Mennie, E. E. Kwan and E. N. Jacobsen, J. Am. Chem. Soc., 2020, 142, 16090–16096; (f) Y.-Y. Liu, Z. Ao, G.-M. Xue, X.-B. Wang, J.-G. Luo and L.-Y. Kong, Org. Lett., 2018, 20, 7953-7956; for Demjanov-Tiffeneau reaction see: (g) S. M. Kohlbacher, V.-S. Ionasz, L. Ielo and V. Pace, Monatsh. Chem., 2019, 1-9; for Meinwald reaction see: (h) D. Ma, C.-B. Miao and J. Sun, J. Am. Chem. Soc., 2019, 141, 13783-13787; (i) R. Hrdina, C. E. Müller, R. C. Wende, K. M. Lippert, M. Benassi, B. Spengler and P. R. Schreiner, J. Am. Chem. Soc., 2011, 133, 7624-7627; for semi-pinacol reaction see: (j) B. Wang and Y. Q. Tu, Acc. Chem. Res., 2011, 44, 1207-1222.
- 17 (a) A. Weissberger and H. Bach, Ber. Dtsch. Chem. Ges. B,
 1931, 64B, 1095-1108; (b) M. S. Kharasch and
 H. M. Priestley, J. Am. Chem. Soc., 1939, 61, 3425-3431.

- 18 R. Hrdina, M. Larrosa and C. Logemann, *J. Org. Chem.*, 2017, **82**, 4891–4899.
- 19 M. Horvat, L. Uzelac, M. Marjanovic, N. Cindro, O. Frankovic, K. Mlinaric-Majerski, M. Kralj and N. Basaric, *Chem. Biol. Drug Des.*, 2012, **79**, 497–506.
- 20 J. Müller, R. A. Kirschner, J. P. Berndt, T. Wulsdorf, A. Metz, R. Hrdina, P. R. Schreiner, A. Geyer and G. Klebe, *ChemMedChem*, 2019, 14, 663–672.
- 21 D. T. Stoelting and V. J. Shiner Jr, *J. Am. Chem. Soc.*, 1993, **115**, 1695–1705.