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In this work we demonstrate a new approach towards the electroless deposition of tellurium nanowires in
deep eutectic solvents. Unlike most electroless deposition where the substrate is sacrificed to drive the
reduction, our process uses immobilised silver epoxy islands on gold films to give localised galvanic

displacement of the silver, resulting in an even growth of wires across the entire gold electrode surface.
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Introduction

Tellurium (Te) nanostructures are leading materials in
a number of fields in a broad range of applications thanks to
their interesting thermoelectric, piezoelectric and optoelec-
tronic properties.”* Te nanostructures outperform analogous
bulk materials, leading to a sizeable interest in developing new
means of producing low-dimensional materials.**

Nanowires are commonly made via solvothermal synthesis,
which give low order structures at good yields, but also requires
complex and costly high temperature and vacuum conditions to
achieve a reasonable efficiency.” Electrodeposition through
a porous template can produce ordered arrays of similar wires,
though challenges of pore filling can hinder growth, particularly
for depositions into pores on the order of tens of nanometers.®

Template-free electrodeposition is a promising alternative
that can produce small diameter nanowires without complex
templates, high temperatures or vacuum apparatus. Reaction
conditions are chosen to guide growth favoured crystal direc-
tion by dissolved species such as SiCl, (ref. 7) or halides.®®
Unfortunately, this requirement leads to examples of template-
free Te nanowire fabrication being limited to costly ionic
liquids.

In this work, we use deep eutectic solvents (DES) as a cost
effective alternative to produce arrays of tellurium nanowires.
DES offer the same advantages as ionic liquids (high solubility,
wide solvent window and high conductivity) but at a reduced
cost.’ Only a handful of works have investigated Te electrode-
position in DES,"** which were able to produce interesting
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a promising synthetic route towards low-dimensional tellurium nanostructures.

nanostructures but were unable to extend this to significant
wire growth.

We addressed this challenge by producing Te nanowire films
using electroless deposition, where galvanic displacement
facilitates Te nanowire growth. In this process, a solid metal is
immersed in a solution of a precursor cation, where the
precursor has a more positive standard potential compared to
the solid. The difference in standard potential provides a ther-
modynamic driving force that causes the solid metal to oxidise
and dissolve and the precursor cation to reduce and deposit.

Traditionally, it is the substrate itself that dissolves to facil-
itate the electroless deposition on that same surface.” We have
taken a novel approach to achieve this same reaction with
immobilised silver epoxy on the surface of a gold electrode. The
high conductivity of both the silver epoxy and gold layer allowed
galvanic displacement of the silver to drive the formation of Te

Fig.1 Schematic electroless deposition. (A) The commonly employed
method - a sacrificial substrate undergoes galvanic displacement. (B)
The new proposed method where immobilised Ag islands on an inert
Au substrate drives the same reaction. Charge balance is not repre-
sented for simplicity.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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nanowires across the entirety of the gold surface, producing an
even coating (Fig. 1). This is analogous to the use of sacrificial
zinc on steel components for marine applications, where zinc
provides galvanic protection against steel corrosion, since the
zinc will preferentially oxidise."* However, in our case the
bolted-on sacrificial material is being used to drive an electro-
deposition. Although galvanic deposition of Te in general is well
known, to the best of our knowledge, this is the first time that
electroless deposition has been achieved on an inert substrate
in this way, where electrically connected sacrificial material
drives electrodeposition on an inert conductive substrate.

We present the impact of Te concentration, temperature and
produce bromide and iodide analogues of a popular chloride-
based DES to show the impact of halides on wire growth.
Although some works have investigated the impact of low
concentrations of different halides by changing the tellurium
halide precursor,®® we believe this is the first example where
DES is produced entirely with the alternative halide salt to show
the impact of larger concentrations of the halide in question.
We propose DES electroless deposition is a facile route to high
quality Te nanowire arrays.

Experimental
Materials

All solutions were weighed and prepared in a nitrogen flow box
(Cleaver Scientific). Deep eutectic solvents (DES) were produced
by stirring 1 mol% choline chloride (99%, Acros Organic) with
2 mol% ethylene glycol (99%, Fisher) at 60 °C until fully dis-
solved. The choline chloride-based eutectic was designated
12CE-CL* Bromide and iodide analogues were made using the
same procedure with choline bromide (98%, TCI) and choline
iodide (98% Alfa Aesar) and were designated 12CE-Br and 12CE-
I respectively. Working solutions were produced by dissolving
either TeCl, (99%, Aldrich), TeBr, (99.9%, Alfa Aesar) or Tel,
(99%, Alfa Aesar) in the DES with the matching halide at 60 °C
with magnetic stirring.

Electrode fabrication

Gold film electrodes were produced in house. Glass slides were
first cleaned by sonicating for 30 min sequentially in Decon®
detergent, deionised water and isopropyl alcohol and then dried
under nitrogen. A 20 nm chromium layer was first sputtered in
order to aid the adhesion between glass and gold, before
a 100 nm gold layer was sputtered on top. The glass slides were
cut into 1 cm x 1.5 cm pieces with a glass scribe. Electrodes for
the deposition were prepared by immobilising silver in the form
of silver epoxy (RS components) as a thin strip onto the edge of
surface of the gold film electrode.

Electroless deposition

Electroless deposition was achieved by first warming the DES to
the desired temperature in a sealed glass vial immersed in an oil
bath. Once the desired temperature was reached, the electrode
was gently lowered into the vial and resealed. A dark grey
deposit was seen to rapidly form, which became progressively
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thicker over time. Once the required length of time had passed,
the electrode was removed and sequentially washed in deion-
ised water and isopropyl alcohol and then dried with nitrogen.

Images and elemental analysis of the nanowire films were
recorded on a Jeol JSM-7200F scanning electron microscope
(SEM) equipped with energy dispersive X-ray (EDX) capability.
The crystalline structure was investigated by Xray diffraction
(XRD) using a Bruker D2 Phaser benchtop diffractometer
(300 W Cu sealed tube) at 45 kV and 150 mA.

Results and discussion
Electroless deposition from chloride-based DES

Preliminary investigations into the Te nanowires growth were
carried out in 5 mM TeCl, DES made up of 1:2 choline chlo-
ride : ethylene glycol (12CE-Cl) at 80 °C (Fig. 2). Electrodes were
removed from the deposition bath after 5 minutes, 30 minutes
and 4 hours in order to demonstrate the phases of wire growth.

After only 5 minutes deposition time (Fig. 2A) a thin film was
produced across the entire surface of the electrode featuring the
nucleation sites for further growth into nanowires. The progress
can be seen after 30 minutes (Fig. 2B) where short nanorod
structures are seen on the electrode, which continue to grow
into wires after 4 (Fig. 2C) and 16 hours of immersion (Fig. 2D).
Diameters of the rods at 30 min were in the range of 20 to
40 nm, which increased as the wires grew in length to 30 to
70 nm after 4 hours and 50 to 90 nm after 16 hours. The aspect
ratio (wire length/diameter) was between 20 and 30 for the
observed nanostructures. As a brief note, the distinction
between nanorods and nanowires has been defined as wires
having an aspect ratio greater than 20, so these nanostructures
could be defined as long rods or short wires, though there is
potential for continued growth here by extending the deposition
time.

The slight increase in thickness with increased deposition
time is likely highlighting the level of effectiveness of the 12CE-
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Fig. 2 Te nanowires from electroless deposition on a gold electrode
in5mM TeCl, in 12CE-Clat 80 °C. Deposition was for 5 min (A), 30 min
(B) 4 h (C) and 16 h (D).
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Cl DES in guiding the formation of nanowires as opposed to
other structures. Longer deposition times give a slight increase
in wire thickness but a large increase in wire length, suggesting
the DES can favourably produce wires but the coordination
effect does not prevent all lateral growth.

Cross sectional imaging across a 200 pm section of the 4
hour sample revealed an average film thickness of approxi-
mately 1.3 um corresponding to a growth rate of 325 nm h™*,
although the actual rate in terms of wire length is faster since
the wires are slanted and interwoven. Elemental analysis using
energy dispersive X-ray spectroscopy (EDX, ESI Fig. S1) showed
strong signals for tellurium, but no signal for silver, which gives
confidence that galvanically displaced silver from the epoxy
does not contaminate resultant nanostructures. Further crys-
tallographic analysis (ESI Fig. S41) confirms the production of
a pure Te phase, with sharp peaks suggesting a high degree of
crystallinity.

Influence of concentration and temperature

Further parameterisation of the electroless deposition proce-
dure revealed a strong dependence of the obtainable nano-
structure on the precise conditions used. Electroless Te
nanowire growth in identical 12CE-Cl solutions at 40, 60 and
80 °C (Fig. 3A-C) shows that in increase in bath temperature

Temperature Concentration

-

1 mM

-
100 nm

Increasing

Fig. 3 Tellurium nanowires formed via electroless deposition on
a gold film electrode in TeCly in 12CE-Cl where key parameters were
modified. (A—C) Deposition was done in 5 mM TeCl, at 40 °C (A) 60 °C
(B) and 80 °C (C) for 16 hours. (D—F) Deposition was done at 80 °C with
1 mM (D), 5 mM (E) and 10 mM (F) TeCly for 4 hours.
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lead to an increase in growth rate, most likely due to the
enhanced mass transfer rate of Te*" to the gold surface. The
lower temperature deposits also showed features with smaller
diameters in the range of 20 to 40 nm at 40 °C vs. 50 to 90 nm at
80 °C. The lower temperature deposits also showed a greater
degree of fusion between neighbouring wires, whereas the 80 °C
sample showed more distinct and ordered wires, suggesting
that the higher mass transport rate is needed for wire growth.

Similarly, wire growth was strongly dependent on concen-
tration (Fig. 3D-F). Lower concentrations led to features that
were thin and needle like with diameters 20 to 30 nm, whereas
higher concentrations produced much larger features that more
resembled platelets than wires, with a broad variance in
geometries well in excess of 100 nm. The lower concentration
also produced wires that were more likely to be fused as
opposed to freestanding. These trends are similar to those
produced by varying the bath temperature, which agrees with
the rate of Te*" transport being key in determining the nature of
the nanostructure formed by electroless deposition.

Electroless deposition from bromide and iodide-based DES

Analogous DES to 12CE-Cl using choline bromide (12CE-Br) and
iodide (12CE-I) were used to dissolve TeBr, and Tel, respectively

Fig. 4 Tellurium nanowires formed via electroless deposition on
a gold film electrode in 5 mM TeX,4 in 12CE-X at 80 °C where the halide
‘X" was varied. Deposition was for 4 hours with TeCly (A), TeBry4 (B) and
Tely (C).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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for electroless deposition (Fig. 4). The nanowire growth is seen
to be strongly impacted by the choice of halide in this case.
Nanowires grown in 12CE-Cl and 12CE-Br are comparable in
terms of size and length, although the 12CE-Br bath produced
wires with slightly smaller geometries in the 25 to 40 nm range
compared to 30 to 70 nm in 12CE-Cl. 12CE-], on the other hand,
lead to a highly erratic deposition, with a few extremely large
wires dispersed over the electrode surface. The adhesion of
films grown in 12CE-I was also significantly poorer than in both
the 12CE-Cl and 12CE-Br cases, resulting in a large amount of
tellurium mass loss when the sample was removed from the
deposition bath.

The difference in deposition when varying the halide also
provides insights into the nature of the galvanic displacement
reaction. The driving force for electroless deposition is the
difference in standard potentials of the immobilised Ag versus
the dissolved Te."” In order for Te deposition to be spontaneous,
the standard potential (E®) for the Ag couple must be more
negative than for the Te.

Te** +4e = Te’, E° = 0.568 V vs. RHE
Ag"+e” = Ag’, E°=0.800 V vs. RHE
AgCl+e = Ag’+ Cl7, E°=0.222 V vs. RHE
AgBr+e” = Ag’ + Br—, E°=0.071 V vs. RHE

Agl+e” = Ag’+ 17, E°=—0.152V vs. RHE

Based on this, the appropriate Ag component must be the
halide, not Ag", since only the reaction with AgCl would be
spontaneous. We can also use this to rationalise the main
differences between Te deposition in Cl7, Br~ and I -based
DES. Moving to the larger halides makes E° for the Ag couple
progressively more negative, resulting in a larger thermody-
namic driving force for the electroless deposition; E° of the
reaction increases from 346 mVin Cl™ to 497 mV and 720 mV in
Br and I, respectively. The difference between Cl™ and Br™ is
relatively minor, suggesting that there is a reasonably wide
potential window where nanowires can be formed via electro-
less deposition. However, moving to I" makes the driving force
larger enough to completely change the nature of the deposit,
resulting in a few extremely large wires dispersed across the
electrode surface. This has implications for the future electro-
less deposition of alternative materials by the same methods,
with a preliminary upper limit of 500 mV for E° of the overall
reaction.

Interestingly, the production of smaller geometry wires in
Br seems to be at odds with the observed impact of concen-
tration and temperature. Increasing concentration or tempera-
ture to increase the mass transport of Te*" led to features with
larger diameters, whereas the increased driving force due to the
AgBr/Ag + Br~ redox couple appears to produce smaller diam-
eters. This may indicate a further role of the halides on nano-
wire growth as capping agents to help direct growth along the
wire rather than growing outwards and broader.'® This would

© 2022 The Author(s). Published by the Royal Society of Chemistry
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make the bromide analogue of the more commonly employed
choline chloride DES a promising target for producing low
diameter nanowires.

This could potentially be employed to nanowires of other
strategically interesting metals by replacing the tellurium halide
with the corresponding metal salt. It is worth mentioning that
a fair amount of optimisation is needed in terms of deposition
bath conditions and precursor concentrations, and so moving
to an alternative metal is not facile. However, with due
consideration to the deposition bath conditions and by select-
ing an appropriate redox couple based on the standard poten-
tials, we believe this technique could be expanded to a broader
range of materials. To date, we have demonstrate this only with
commercial silver epoxy, but the immobilisation of alternative
sacrificial metals could also open this technique to an even
wider range of materials by offering a broader scope of electrode
potentials.

Conclusions

In summary, we have demonstrated the electroless deposition
of tellurium nanowires using in DES. For the first time, we have
used silver epoxy on gold electrodes as a simple means of
immobilising silver for galvanic displacement, allowing elec-
troless deposition at a noble gold surface. Using a 12CE-CI as
a standard DES, we demonstrated that taking steps to decrease
the availability of Te"" to the electrode surface, such as through
decreased concentration of temperature, leads to smaller
geometries in the resultant nanostructures, although this also
allows neighbouring nanostructures to become fused leading to
a more complex film structure.

We have also showed that halide analogues of 12CE-Cl
employing Br~ and I" choline salts result in vastly different
nanostructures, with Br~ reducing the wire diameter but I~
massively increasing it. We believe this relationship is due to
the complex balance between two factors. A difference in the
standard potentials for the AgBr and AglI redox couples leads to
a greater driving force for deposition in 12CE-I vs. 12CE-Br. This
alone would give a diameter trend where CI~ < Br~ <1 but the
observed trend is actually Br~ < Cl™ <1, suggesting that Br™ is
able to act as a capping agent to drive the formation of small
diameter nanowires and counter this impact. This presents
DES, particularly those with high concentrations of Br—, as
promising solvents for template-free production of metallic
nanowires by electroless, and potentially also by electro-
chemical methods.
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