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Hatef Sadeghi *d and Ahmed A. Wabdane

Since the synthesis of graphene–boron nitride heterostructures, their interesting electronic properties have

attracted huge attention for real-world nanodevice applications. In this work, we combined density

functional theory (DFT) with a Green's function approach to examine the potential of graphene–boron

nitride–graphene heteronanosheets (h-NSHs) for discriminating single molecule sensing. Our result

demonstrates that the graphene–boron nitride–graphene (h-NSHs) can be used for discriminate sensing

of the 2,4-dinitrotoluene (DNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), pentaerythritol

tetranitrate (PENT), and 2,4,6-trinitrotoluene (TNT) molecules. We demonstrate that as the length of the

BN region increases, the sensitivity of the heteronanosheets to the presence of these explosive

substances increases.
1. Introduction

The ability to detect explosive materials and their compounds is
a major challenge, which has recently become an important
priority for security applications.1–5 A variety of laboratory-based
approaches have been employed for discriminated sensing of
explosives,4–7 for instance, non-portable devices for detecting
such as gas chromatography,6,8,9 ion-mobility spectrometer,
electronic noses,3,10–12 mass spectrometer,3,4,6,13 high pressure
liquid chromatography-diode array detection,14,15 radiation,2–4,6,8

and Raman spectroscopy.16,17

To meet the challenge of designing effective, portable and
less expensive discriminating sensing nanodevices, there is
a need to develop novel nanostructure materials and concepts,
with devising new strategies for managing and developing on
sensor chips. Nanomaterials might be promising nominees to
design chemical sensors with high sensitivity.18–23 To avoid the
high costs and preclude the need for chemical amendment or
separation of the analytes, the label free techniques for
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discriminating sensing of molecules are coveted targets in
technology.24 Graphene–boron nitride heterostructures have
attracted the attention of scientists and research groups due to
their unique electrical, mechanical, morphological, thermal
properties and optoelectronics.25–29 In-plane junctions between
single layer boron nitride and graphene are already
synthesised,30–33 but the heterostructure materials are chal-
lenging to recognise experimentally. Doping graphene deriva-
tives with heteroatoms are promising materials for high-
performance sensing,34 for example gas and toxic gas
sensors.35–39 The detection of target analytes using graphene
materials is mostly depend on the changes of the conductance
aer the adsorption of analytes to be sensed.34 Graphene–boron
nitride heterostructures have been utilised as gas sensor.40–43

For example, it has been reported that graphene–boron nitride
heterostructure is stable structure, and also the Fermi level,
work function, and conductivity are remarkably changed upon
adsorption of the analytes on them compared to the pristine
graphene–boron nitride heterostructures. Other studies44–46

demonstrated the potential of graphene–boron nitride hetero-
structures for biosensors. For example, it was shown that the
nanopore formed from graphene–boron nitride heterosheet can
be used for discriminating sensing of the four nucleotides of
DNA.

The 2,4-dinitrotoluene (DNT), octahydro-1,3,5,7-tetranitro-
1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PENT),
and 2,4,6-trinitrotoluene (TNT) molecules (shown in Fig. 1,
middle sub-gure) are common explosives. The development of
suitable detector to sense this materials has received attention
from research groups.5,7,47–54 In this paper, we demonstrate that
graphene–boron nitride–graphene heteronanosheet (h-NSHs)
RSC Adv., 2022, 12, 35151–35157 | 35151
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Fig. 1 Shows (a–c) the h-NSH junctions constructed from graphene joined by a perfect insulator BN, ranging from 1BN strip to 3BN strips. (Right)
An example of h-NSH with 1BN junction with four explosive molecules (DNT, HMX, PENT and TNT) on 1BN scatterer.
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can be a promising candidate for discriminating sensing of
these explosive materials. h-NSHs are formed from two gra-
phene nanosheets as le/right leads connecting via equivalent
boron nitride nanosheet as scattering region as shown in
Fig. 1a–c. Electrical current ows from le lead (G, graphene) to
the right lead (G, graphene) through the scattering region (BN,
boron nitride). To understand the change in conductance of the
h-NSHs when single explosive molecule binds to the h-NSHs, we
perform rst principal computations. In what follows, by anal-
ysis the results of the response of the h-NSHs junctions to
Fig. 2 Shows (a) the characterisation of the bare h-NSH junctions and (

35152 | RSC Adv., 2022, 12, 35151–35157
different BN-region with varied lengths, a notable ngerprint of
each analyte is obtained which can be used for sensing.
2. Characterising of the junctions

Fig. 1 shows the three h-NSHs (labelled a–c) which are
composed of graphene (G) nanosheet as le/right leads and
connected by boron nitride (BN) nanosheet scatterer of length
varying from one strip to three strips (1BN to 3BN, respectively).
b) their electronic transmission coefficients T(E).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Shows the I–V curves for the junctions in Fig. 2a.

Table 1 The binding energy (EBin) of the DNT, HMX, PENT and TNT
molecules place on BN region of the h-NSH with 1BN/2BN/3BN
junctions

Junction

EBin (eV)

+DNT +HMX +PENT +TNT

h-NSH with 1BN −0.301 −0.387 −0.410 −0.312
h-NSH with 2BN −0.411 −0.460 −0.540 −0.480
h-NSH with 3BN −0.570 −0.490 −0.460 −0.510
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To nd the ground state geometry of the h-NSHs, we
employed the SIESTA55 implementation of density functional
theory (DFT). For all structures, we used the local density
approximation (LDA)56 with Ceperley–Alder (CA) parameter-
isation, the double zeta polarized (DZP) basis sets of pseudoa-
tomic orbitals with norm-conserving pseudopotentials. The
Fig. 4 Shows the T(E) of the relaxed junctions (a) h-NSH with 1BN + DN
with 1BN + TNT. In all figures, the Fermi energy (EF) is shifted at zero.

© 2022 The Author(s). Published by the Royal Society of Chemistry
initial h-NSHs were relaxed until the forces below 0.01 eV Å−1.
For lead calculations, a k-point grid of 1× 30× 30 is sampled in
the Brillouin zone. All the h-NSHs are innite in Y and Z
directions, whereas a vacuum space of 50 Å has been chosen
along the X direction to avoid the interaction between neigh-
bouring h-NSHs.

Aer obtaining the relaxed geometry of each analyte, the
analytes were placed on 1BN, 2BN and 3BN scatters, as shown in
Fig. S1,† which shows the relaxed h-NSHs with 1BN, 2BN and
3BN scatterer aer placing the explosive molecules on BNs
regions. To investigate electrical conductance and current
through the junctions, we employ Landauer approach,57 and
calculate transmission coefficients T(E) for electrons of energy
(E) passing from le lead to the right lead through the boron
nitride (BN) scatterer using the Green's function based
quantum transport code GOLLUM58 combined with the mean
eld Hamiltonian (MFH) that obtained from SIESTA.

3. Discriminating single-molecule
sensing of the h-NSH junctions

In this section, we investigate the electron transmission coeffi-
cients T(E) of the bare h-NSH junctions with varied BN length as
shown in Fig. 2a.

Fig. 2b shows the corresponding T(E). We note that the
energy gap progressively increases as the BN region length
increases, and also the T(E) drops exponentially with the length
of the BN region when the energy (E) lies within the energy gap
of the BN scatterer.24,59

We also calculate the maximum current (I) at room
temperature for small nite voltage of the three bare h-NSH
junctions, which carried by the system from the le lead to
the right lead using the following equation:57
T, (b) h-NSH with 1BN + HMX, (c) h-NSH with 1BN + PENT, (d) h-NSH

RSC Adv., 2022, 12, 35151–35157 | 35153
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Fig. 6 Shows the current of the h-NSH with 1BN junction after place
the DNT, HMX, PENT and TNT on the 1BN scatterer.
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I ¼ e

h

ð
dE TðEÞðf ðE � mLLÞ � f ðE � mRLÞÞ (1)

where e= jej is the electron's charge, h is Planck's constant, T(E)
is the electronic transmission coefficient, f is Fermi–Dirac

distribution function f ðE � mÞ ¼ 1
ð1þ eðE�mÞ=KBTÞ, which asso-

ciated with the electrochemical potential m, kB is Boltzmann's
constant, and T is temperature. The obtained current shown in
Fig. 3.

From Fig. 3, we can see that the current decreases as the BN
length increases.

Next, we examine the h-NSH with 1BN junction for
discriminating sensing. For this we rst nd the ground state
geometry of the DNT, HMX, PENT and TNT molecules by
calculating the binding energies (EBin) and performing geom-
etry optimisation of molecules on 1BN, 2BN and 3BN as shown
in Fig. S1.† To calculate the EBin, we use eqn (2) to minimise the
basis set superposition error (BSSE):60,61

EBin = Eh-NSH+mol − (Eh-NSH + Emol) (2)

where the total energy of the system (h-NSH with molecule) is
Eh-NSH+mol, Eh-NSH (h-NSH) and Emol (molecule) are the total
energies of the isolated subsystems. Table 1 shows the obtained
binding energies of the h-NSH with 1BN/2BN/3BN aer placing
the DNT, HMX, PENT and TNT molecules on the 1BN/2BN/3BN
regions.

From Table 1, it is clear that the obtained binding energies
for the h-NSH with 1BN are from−0.410 eV to−0.301 eV, for the
Fig. 5 Shows the room-temperature thermopower (S) of the junctions w
h-NSH with 3BN. In all figures, bare junctions are in black line and the F

35154 | RSC Adv., 2022, 12, 35151–35157
h-NSH with 2BN are ranging from −0.540 eV to −0.411 eV, and
for the h-NSH with 3BN are from −0.570 eV to −0.460 eV. PENT
has the highest binding energy to 1BN and 2BN regions, while
DNT molecule shows highest binding energy to 3BN.

Now we calculate transmission coefficient T(E) of electrons
with energy E traversing from one electrode to the other through
h-NSH with 1BN junction in the absence and presence of
analyst.

Form Fig. 4a–d, we can see that a notable ngerprint for each
molecule around the EF comparing to the bare h-NSH with 1BN.
Similarly, we calculate the T(E) of the h-NSHs with 1BN/2BN in
the presence of analytes (DNT, HMX, PENT and TNT) on 2BN
and 2BN scatterers as shown Fig. S2 and S3 in the ESI.† Once
ith/without molecules, (a) h-NSHwith 1BN, (b) h-NSHwith 2BN, and (c)
ermi energy (EF) is shifted at zero.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Shows the current of the h-NSH junctions (a) with 2BN and (b) with 3BN junctions after place the DNT, HMX, PENT and TNT on the BN
scatterer.
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again, we obtain remarkable ngerprints for each molecule
around EF. These new peaks around the EF due to the present of
explosive molecules can lead to enhancement the Seebeck
coefficient (S) as shown in Fig. 5, which can be used for sensing
molecules using Seebeck effect (Seebeck sensing). For more
clarity, see Table S1,† which shows the values of the Seebeck
coefficient of the h-NSHs with 1BN/2BN/3BN junctions intro-
ducing the analytes.

To conrm the ability of the h-NSH with 1BN junction for
discriminating sensing of the analytes (shown in Fig. S1a†), we
used eqn (1) to calculate the current (I) as shown in Fig. 6.

From Fig. 6, we can see that each molecule has a specic
value of current comparing with the current through the bare h-
NSH with 1BN junction (black line). These results reinforce that
the h-NSH with 1BN system can be used for discriminating
sensing of the explosive molecules.

We repeated the same strategy with the h-NSHs with 1BN/
2BN junctions shown in Fig. S1b and c,† the resulting I shown
in Fig. 7.

Again, from Fig. 7, we can see obviously that each molecule
has a particular value of the current comparing with the bare h-
NSH with 2BN/3BN. The result show that the h-NSH with 1BN/
2BN/3BN junctions are potential materials for discriminating
sensing nanodevice of the explosive molecules, and the most
preferable junctions for selective sensing are the h-NSH with
2BN/3BN junctions comparing with the h-NSH with 1BN
junction.

When analyte physiosorbed on the membrane, it acts like
a locale gate andmodies the potential energy of themembrane
locally. Due to the charge transfer between the analyte and the
membrane, the charge density on the membrane can also be
affected. These can lead to the changes on the electrical
conductance. Our calculations show that unlike graphene,
these effects signicantly inuence the electrical conductance
of membranes formed by graphene–hBN heterostructures.
4. Conclusions

We demonstrate that the h-NSH with BN (ranging from 1BN
strip to 3BN strips) junctions are potential material for
© 2022 The Author(s). Published by the Royal Society of Chemistry
discriminating sensing of four explosive molecules (DNT, HMX,
PENT, and TNT). We also show that an energy gap is formed by
introducing BNs in graphene as scatterers, and can be turned by
changing the length of the BN region. Our result demonstrates
that the T(E) decay exponentially with increasing the length of
the BN scatterer. Furthermore, our result show that the new
peaks appear around the EF in the T(E) due to the presence of
the explosive molecules lead to enhancement the Seebeck
coefficient, which can be used for discriminating Seebeck
sensing of molecules. Since both electrical current, and the sign
and amplitude of Seebeck coefficient are changing upon
translocation of analytes on the heterostructures, a combina-
tion of these factors can be used to reduce the error in the
detection process. This provides a powerful tool for selective
sensing of explosive materials with similar electronic nger
print.
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