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We developed a method for highly selective synthesis of two benzofuran isomers, by rearranging and
subsequently transforming 2-hydroxychalcones. Depending on the reaction conditions, synthesis of 3-
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Introduction

Benzofuran and its derivatives are present as scaffolds in many
natural products and biologically active compounds.* These
compounds have attracted much attention in the pharmaceu-
tical and pesticide industries because of their promising anti-
bacterial, antimicrobial, antitumor, and antidiabetic activities.?
Hence, the synthesis of benzofurans has aroused considerable
interest and various methodologies have been reported and
applied for the synthesis of natural products.?

Our current research focuses on the development of
methods for synthesizing various heterocycles used for the
rearrangement of chalcones.* Combination of chalcones and
rearrangement reactions has been reported, but has limited
utility for the construction of isoflavones.® We also reported the
synthesis of pterocarpin via isoflavones, through hypervalent
iodine-mediated oxidative rearrangement of 2,2-hydrox-
ychalcone derivatives. In this study, we found that 3-acylben-
zofuran was formed from 2-hydroxychalcone derivatives.*” The
synthesis of 3-acylbenzofurans is an unexplored topic; little is
known about routes to effective synthesis. For example, Friedel-
Crafts acylation of benzofurans results in low C2/C3 regiose-
lectivity,’ and most existing methods can synthesize 3-acylben-
zofurans with substituents at the C2 position.”

We recently developed a method for concise one-pot
synthesis of 3-acylindoles. This method first rearranges the N-
COCF;-protected 2-aminochalcone with phenyliodine diacetate
(PhI(OAc),); 3-acylindoles are then produced under basic
conditions via deprotection and a cyclization reaction
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formylbenzofurans, unconventional products, and 3-acylbenzofurans was achieved through cyclized

the rearranged products. The facile synthesis of 3-

formylbenzofurans facilitated synthesis of the natural product, puerariafuran, from the corresponding

(Scheme 1A).* To apply the chalcone-rearrangement strategy for
the synthesis of 3-acylbenzofurans, we investigated the reaction
of the protected 2-hydroxychalcone. Unexpectedly, our
approach produced not only 3-acylbenzofuran, but also 3-for-
mylbenzofuran (with high selectivity) from 2,3-dihy-
drobenzofuran (Scheme 1B).

Results and discussion

We started by testing the rearrangement conditions using 2-
hydroxychalcone 1 with a hypervalent iodine reagent
(Scheme 2). No rearrangement product 2 was obtained without
the protecting group (R = H). Attempts were made to synthesize
chalcones protected with the trifluoroacetyl group used in our
previous indole synthesis, but the chalcones were unstable and

A) Our previous study

(o} Oy R 0] R
A PhI(OR
R (OR), CH(OMe), K,CO4 {
N- PG CH(OMe)3 .PG THF/H,0 N
H H H
PG = COCF;, 3-acylindole
B) This work
(o} O R
Az _PhIOR),
> CH(OMe),
O’PG MeOH o PG o R
l — A\
o
(e} R 3-acylbenzofuran
@\/zom ] CHO
o \
2,3-dihydrob furan R
o

3-formylbenzofuran

Scheme 1 Chalcone rearrangement strategies for synthesis of
heterocycles.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d2ra06080a&domain=pdf&date_stamp=2022-10-25
http://orcid.org/0000-0002-4469-6519
http://orcid.org/0000-0003-1580-1110
https://doi.org/10.1039/d2ra06080a
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06080a
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA012047

Open Access Article. Published on 25 October 2022. Downloaded on 10/21/2025 10:56:22 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

O OMe
O CH(OMe),
OR

2
R = MOM (2a) 64%
R =H, Boc Ac, Bz N. D.

PhI(OH)OTs
‘\/\)J\‘\ (2 equlv )
MeOH
OR OMe 1 25h

Scheme 2 Rearrangement of protected chalcone 1.

could not be isolated. Then, the reaction was evaluated with
chalcones bearing various protecting groups, such as ¢-buty-
loxycarbonyl (Boc), acetyl (Ac) and benzoyl (Bz), but no rear-
ranged products were obtained. The desired product was
obtained with methoxymethyl (MOM) protection. The reaction
of MOM-protected hydroxychalcone with two equivalents of
hydroxy(tosyloxy)iodobenzene (PhI(OH)OTs) gave the corre-
sponding rearranged product 2a in 64% yield.

We next examined deprotection followed by simultaneous
cyclization to the corresponding 3-acylbenzofuran under acidic
conditions (Table 1). With excess AcOH, no reaction was
observed, even with reflux (entry 1). The desired benzofuran 4a
was not obtained using trifluoroacetic acid (TFA), whereas 2,3-
dihydrobenzofuran 3a, the precursor of 4a, was isolated in 56%
yield (entry 2). The use of p-toluenesulfonic acid (p-TsOH)
increased the yield of 3a slightly to 62% (entry 3), but 3a was not
obtained, and nor was 4a with heating (entry 4). The use of the
solvents CH,Cl,, THF, and MeOH did not yield the desired 4a.
We finally optimized the conditions to obtain 3a in 80% yield
using 0.1 equivalent of p-TsOH (entry 5).

Subsequently, the transformation of 2,3-dihydrobenzofuran
3a into 4a was studied under basic and acidic conditions
(Table 2). When the reaction was performed using K,COs,
aromatization proceeded at room temperature affording 3-
acylbenzofuran 4a in 97% yield (entry 1). Pyridine was

Table 1 The transformation of 2a under acidic conditions®

O Ar (6] o

acid (X equiv.) Ar Ar
CH(OMe),  ioon oMe * Q
OMOM temp., time o o
2a Ar = p-MeOCgH, 3a 4a

Yield” [%]

X Temp. Time
Entry  Acid [equiv.] [eC] [h] 3a 4a
1 AcOH 5 80 12 —- —
2 TFA 1 r.t. 3 56 —
3 p-TsOH 1 r.t. 0.5 62 —
4 p-TsOH 1 80 0.5 — —
5 p-TsOH 0.1 r.t. 2 80 —

% The reactions were performed with 2a (0.2 mmol) in 2 ml of solvent.
b Isolated yield.
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Table 2 The transformation of 3a to benzofurans®

o reagent
Ar (2 equiv.)
OMe solvent ©j\$7 Ar
(¢} temp., time
3a Ar = p-MeOCgH,
Yield® [%]
Entry Reagent Solvent Temp. [°C] Time [h] 4a 5a
1 K,CO; THF Lt 4 97 —
2 Pyridine THF 70 12 Trace —
3 AcOH 110 3 98 —
4 PPTS PhCH;3 110 7 95 Trace
5 TFA PhCH;3 110 4 95 Trace
6 p-TsOH  (CF;),CHOH r.t. 0.5 — 98

The reactions were performed with 2a (0.2 mmol) in 2 ml of solvent.
b 1solated yield.

ineffective and only trace amounts of 4a were obtained upon
reflux (entry 2). However, 4a was obtained in 98% yield in AcOH
(entry 3). Other acids (pyridinium p-toluenesulfonate (PPTS)
and TFA) in toluene also gave 4a in high yields under reflux
conditions (entries 4 and 5). Surprisingly, unexpected formation
of 3-formylbenzofuran 5a was observed with p-TsOH when
1,1,1,3,3,3-hexafluoro-2-propanol was used as a solvent. 3-For-
mylbenzofurans are found in the skeletons of natural products,®
and few synthetic methods are known.’

On optimizing the conditions for the selective synthesis of
benzofuran isomers, the transformation was extended to
various 2,3-dihydrobenzofurans 3 with aryl or alkyl groups on
the ketone moiety (Table 3). A series of electron-donating groups
(e.g, p-methyl and o-methoxy) and electron-withdrawing
substituents (e.g., p-chloro) on the phenyl ring reacted
smoothly to give the respective 3-acylbenzofurans (4b-4d) and
3-formylbenzofuran (5b-5d) in excellent yields. The reaction
with 2,3-dihydrobenzofuran with a thiophenyl group afforded 4e
and 5e in yields of 96% and 90%, respectively. During the
transformation of 3f and 3g with alkyl groups, 3-acylbenzofur-
ans (4f and 4g) and 3-formylbenzofuran 5f were obtained in high
yields, whereas the yield of 3-formylbenzofuran 5g was
decreased slightly.

Next, we applied this novel 3-formylbenzofuran synthesis
method to natural products (Scheme 3). Puerariafuran was
chosen as the synthetic target, as it exhibits biological activities
such as the inhibition of advanced glycation end products
(AGEs).” Recently, Lin et al. synthesized puerariafuran,' but
the number of steps and total yield could be improved. First,
chalcone 8 was prepared by condensing MOM-protected alde-
hyde 6 and acetophenone 7 in 93% yield. Oxidative rearrange-
ment with hypervalent iodine reagent was achieved by
[bis(trifluoroacetoxy)iodo]benzene (PhI(OCOCF;),), affording 9
in 69% yield. To synthesize 2,3-dihydrobenzofuran 10, we
attempted to perform simultaneous deprotection and cycliza-
tion reactions under acidic conditions. Partial decomposition

RSC Adv, 2022, 12, 30426-30431 | 30427
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Scheme 3 Synthesis of puerariafuran.

was observed as the reaction progressed, but adding an excess
of EtOH suppressed the decomposition and dihydrobenzofuran
10 was obtained in 56% yield."* Final conversion to the 3-for-
mylbenzofuran skeleton was achieved on treatment with p-
TsOH in (CF3),CHOH, giving puerariafuran in 80% yield. Our
protocol for puerariafuran synthesis has seven steps and an
overall yield of 18% from commercial aldehyde and acetophe-
none; it is more efficient than the previous synthesis method (11
steps and 5.3% total yield).

The reaction mechanism for obtaining two types of benzo-
furan from 2,3-dihydrobenzofurans 3 under acidic conditions
was thought to be as follows (Scheme 4). Using relatively weak
acids, 3-acylbenzofurans 4 were obtained via aromatization in
association with methanol elimination (path i). The mechanism
of 3-formylbenzofuran 5 formation is via a diprotonated inter-
mediate A (path ii),"* which is stabilized with (CF;),CHOH.****
Subsequent THF ring opening of intermediate A gives B, and the
ring-closure at the ketone moiety then lead to 5 after

30428 | RSC Adv, 2022, 12, 30426-30431
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Scheme 4 Possible reaction mechanism.

aromatization and hydrolysis. According to Zanatta,' another
possible pathway for the formation of 5 is isomerization from 4.
However, the reaction of 4 with p-TsOH and some MeOH in
(CF3),CHOH resulted in no reaction.'®

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Conclusions

In summary, we developed a new method for highly selective
synthesis of two benzofuran isomers based on rearrangement of
the MOM-protected 2-hydroxychalcone. The key intermediates,
2,3-dihydrobenzofurans, could be selectively transformed into
different benzofuran isomers using different reaction condi-
tions. 3-Acylbenzofurans were obtained under basic or weakly
acidic conditions in THF. Using (CF;),CHOH as a solvent with
p-TsOH generated 3-formylbenzofurans selectively. A variety of
2,3-dihydrobenzofurans were selectively converted into benzo-
furan isomers in high yields, and the efficient total synthesis of
puerariafuran proves the practicality of this method. Currently,
we are developing this methodology for application to other
heterocycles.
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