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gregation number of cationic
surfactants based on ANN-QSAR modeling
approaches: understanding the impact of
molecular descriptors on aggregation numbers†

Behnaz Abdous, S. Maryam Sajjadi * and Ahmad Bagheri

In this work, a quantitative structure–activity relationship (QSAR) study is performed on some cationic

surfactants to evaluate the relationship between the molecular structures of the compounds with their

aggregation numbers (AGGNs) in aqueous solution at 25 °C. An artificial neural network (ANN) model is

combined with the QSAR study to predict the aggregation number of the surfactants. In the ANN

analysis, four out of more than 3000 molecular descriptors were used as input variables, and the

complete set of 41 cationic surfactants was randomly divided into a training set of 29, a test set of 6, and

a validation set of 6 molecules. After that, a multiple linear regression (MLR) analysis was utilized to build

a linear model using the same descriptors and the results were compared statistically with those of the

ANN analysis. The square of the correlation coefficient (R2) and root mean square error (RMSE) of the

ANN and MLR models (for the whole data set) were 0.9392, 7.84, and 0.5010, 22.52, respectively. The

results of the comparison revealed the efficiency of ANN in detecting a correlation between the

molecular structure of surfactants and their AGGN values with a high predictive power due to the non-

linearity in the studied data. Based on the ANN algorithm, the relative importance of the selected

descriptors was computed and arranged in the following descending order: H-047 > ESpm12x > JGI6>

Mor20p. Then, the QSAR data was interpreted and the impact of each descriptor on the AGGNs of the

molecules were thoroughly discussed. The results showed there is a correlation between each selected

descriptor and the AGGN values of the surfactants.
1. Introduction

Surfactants are among the most versatile chemical products
and are widely used in the manufacture of cosmetics, deter-
gents, pharmaceuticals, and in the textile industry, and so on.1

These materials have twomain parts: a hydrophilic group (polar
head) and a hydrophobic group (hydrocarbon chain). Based on
the nature of the polar head, surfactants can be classied as:
anionic, cationic, zwitterionic and non-ionic. Indeed, the
amphiphilic structure of surfactants makes them highly suit-
able for surface activity. Among the surfactants, cationic mole-
cules offer some additional advantages over the others. They
show antibacterial properties apart from their surface, a fact
which makes them applicable in the synthesis of cationic so-
eners, retarding agents, lubricants, and in some cases in
consumer uses.2–5
mnan, Iran. E-mail: sajjadi@semnan.ac.
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The solution behaviors of cationic surfactants are commonly
estimated using critical micelle concentration (CMC), aggrega-
tion number (AGGN) and degree of counter ion binding (a). The
AGGN is the average number of surfactant molecules in
a micelle unit and practically, the increase in AGGN leads to the
formation of micelles which show great potential for use in
many applications.6 For example, micelles with a greater AGGN
have a greater capacity to transfer a drug in drug delivery
systems or remove hydrocarbon contaminants in wastewater
treatment processes.7 Therefore, measuring and establishing
a AGGN is very signicant.

There are versatile techniques to determine the AGGN of
amphiphilic compounds including stepwise thinning of foam
lms,8 freezing point and vapor pressure methods,9 NMR
spectroscopy,10 static light scattering,11 small-angle neutron
scattering,12 small angle X-ray scattering,13 uorescence probing
methods,14,15 and electron paramagnetic resonance.16 Some of
these are only applicable for AGGN determination at a surfac-
tant concentration equal to CMC which only estimates the
micelle AGGN for isolated non-interacting particles. In partic-
ular, the static light scattering method determines the AGGN
values by calculating the molecular weight of the surfactant
© 2022 The Author(s). Published by the Royal Society of Chemistry
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aggregate at the surfactant CMC. The static light scattering
technique is rather complicated as it needs to determine the
refractive index increment of the measured surfactant solution
independently, and extrapolate the data to the CMC which does
not let measuring the concentration dependence of the aggre-
gation number. The small angle neutron scattering method
allows the determination of the average micelle AGGN12 as well
as providing information on the micelle shape. However, this
technique is not easily available for a routine determination of
micelle AGGN because of its complexity and the high cost of the
neutron scattering experimental facilities.

Fluorescence probing strategies are commonly applied to
estimate micelle AGGN where the estimation is inuenced by
neither the micellar shape nor by the interactions between the
micelles. There are two types of uorescence strategies: time-
resolved uorescence quenching (TRFQ) and a steady-state
uorescence method. The TRFQ technique calculates the
micelle AGGN easily and accurately from the uorescence decay
curves.17 The steady-state uorescence measurement has the
benets of conventional spectrophotometers, but it needs the
application of single-photon counting equipment, and analysis
by suitable non-linear tting algorithms.

Overall, the uorescent technique possesses the following
advantages over the others: (i) it allows the quantication of
AGGN at a given surfactant concentration, and in the presence
of additives, (ii) it is not inuenced by the phenomena of
preferential adsorption, which greatly complicates the inter-
pretation of the results, and (iii) it is applicable to all types of
surfactants.14,15

The AGGNs of a large number of surfactants have been re-
ported in the literature, based on uorescence strategy, as these
large volumes of data can be combined with modelling tech-
niques to interpret the results, and can even be used to predict
the AGGNs of new surfactants. Over the last 50 years, chemo-
metrics has developed a powerful set of multivariate data
modeling tools to help the “owner” of data nd, plot and
interpret statistically reliable patterns of data, and obtain
maximal information from the studied system with minimal
experimental effort.18,19

The QSAR modeling is one of the most versatile computa-
tional techniques for predicting the physical and biological
properties of molecules, developed over the past decades. This
technique has been widely recognized in a variety of elds such
as medicinal chemistry, pharmacy, toxicology and material
science.20–22 In fact, QSAR modelling can be used to nd the
relationship between the structure of chemical compounds,
and their physical or biological properties to estimate the
properties of new chemical compounds without the need for
synthesis and testing. In QSAR analysis studies, molecular
descriptors are numerical indices assigned to the molecular
structure, and encode some information about the structure.
Descriptors are theoretical indices which are computed by
mathematical formulas or computational algorithms. The
Dragon soware is one of best, for nding the descriptors of
a molecular structure; and it introduces a large variety of
descriptors such as constitutional, topological and 3D-MoRSE
© 2022 The Author(s). Published by the Royal Society of Chemistry
descriptors, walk and path counts, and functional group
counts.23–28

The predictive ability of a QSAR model is affected by the
modeling techniques employed to nd the mathematical model
between the descriptors and their molecular activities. Basi-
cally, there are two general modelling methods used to analyze
chemical science data, linear and non-linear. Linear approaches
include MLR,29 principal component regression (PCR)30 and
partial least-squares regression (PLS).31 Non-linear approaches
include ANN,32–35 the support vector machine algorithm,36 the
self-organizing map (SOM),37 radial basis functions neural
networks (RBF),38 and multivariate adaptive regression
splines.39

The ANN methods are known as non-linear learning math
systems which construct a mapping of the input and output
variables, and then the map is used to predict an unknown
output as a function of suitable inputs.32,40–42 The main advan-
tage of ANNs is that they can combine and incorporate both
literature-based and experimental data to solve different prob-
lems such as predicting the toxicological and physical proper-
ties of surfactants.43–45

So far as is known, there is no report on predicting AGGNs of
surfactants using linear or non-linear modeling techniques,
and here, the non-linear ANN algorithm is proposed as
a promising technique for this. A data set including 41 surfac-
tant molecules was selected as a target study, and Dragon
soware was employed to compute the molecular descriptors of
the surfactants and their experimental AGGNs were taken from
previously published papers.46–59

In this study, rstly, the QSAR analyses of the surfactants
were performed using MLR and ANN methods to compare the
results of linear and non-linear models, and it was shown that
the non-linear ANN model could nd a satisfactory relationship
between molecular descriptors and their AGGNs. Secondly,
because the lengths of the hydrophobic group and polar head
group are two important factors which strongly affect the
AGGN,55,56 an explanatory study was conducted to interpret the
impact of these factors on AGGNs based on the selected
descriptor values such as H-047, ESpm12x, JGI6 and Mor20p.

2. Molecular database and software

In this study, a data set including 41 surfactant molecules was
used and these structures are shown in Table 1. We took two
points into account when collecting this data set: rstly, all the
AGGNs of the molecules were obtained using the same strategy
and experimental conditions. They were estimated by uores-
cence decay curves of a micelle-solubilized pyrene method in
aqueous solutions at 25 °C.46–59 Secondly, we struggled to collect
the surfactant molecules with the same polar head group but
a different length of the hydrophobic groups such as the
following sets: (C16TAB, C14TAB, C12TAB, C10TAB, C6TAB); and
([C16MIM][Br], [C14MIM][Br], [C12MIM][Br], [C10MIM][Br],
[C9MIM][Br]); and (C16E2TAB, C14E2TAB, C12E2TAB, C10E2TAB);
and ([BisDec(MIM)2][2Br], [BisOct(MIM)2][2Br], [BisHex(MIM)2]
[2Br]). However, the structure of some molecules was only
different in their polar head groups such as (C16TAB, [C16MIM]
RSC Adv., 2022, 12, 33666–33678 | 33667
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Table 1 The molecular structure and AGGN value of each cationic surfactant used in the ANN-QSAR studies

No. Symbol Molecular structure
Predicted
AGGN

Experimental
AGGN Set of data Ref.

1 m-X-3 15.06 16 Training 46

2 EO-2 30.99 31 Validation 46

3 t-B-2 29.16 31 Training 46

4 o-X-2 25.02 25 Test 46

5 BDDAC C21H38ClN 25.40 27 Training 46

6 [BisDec(MIM)2] [2Br] 65.82 70 Training 47

7 [BisOct(MIM)2] [2Br] 36.68 39 Training 47

8 [BisHex(MIM)2] [2Br] 15.99 16 Validation 47

9 ValC3LS 76.99 77 Validation 48

10 ProC3LS 41.38 44 Training 48

33668 | RSC Adv., 2022, 12, 33666–33678 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 (Contd. )

No. Symbol Molecular structure
Predicted
AGGN

Experimental
AGGN Set of data Ref.

11 AlaC3LS 76.16 81 Training 48

12 GlyC3LS 94.02 94 Test 48

13 [C16hpim]Br 23.52 25 Training 49

14 L-UCPB 89.32 95 Training 50

15 LUCLB 91.20 97 Training 50

16 [C8mim][Cl] 21.64 23 Training 51

17 [C4mpy][Cl] 12.24 13 Training 51

18 [C4mim][Cl] 7.99 8 Validation 51

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 33666–33678 | 33669
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Table 1 (Contd. )

No. Symbol Molecular structure
Predicted
AGGN

Experimental
AGGN Set of data Ref.

19 PH 9.41 10 Training 52

20 C16E2TAB 30.10 32 Training 53

21 C14E2TAB 21.64 23 Training 53

22 C10E2TAB 9.02 9 Test 53

23 C12E3TAB 15.06 16 Training 53

24 C12E2TAB 20.70 22 Training 53

25 DAC 107.99 108 Validation 54

26 DMAC 89.02 89 Test 54

27 DDMAC 62.06 66 Training 54

28 [C9MIM][Br] 42.32 45 Training 56

33670 | RSC Adv., 2022, 12, 33666–33678 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 (Contd. )

No. Symbol Molecular structure
Predicted
AGGN

Experimental
AGGN Set of data Ref.

29 BHDC 45.14 48 Training 57

30 C12DAB 60.02 60 Test 58

31 C16TAB 89.32 95 Training 59

32 C14TAB 63.94 68 Training 59

33 C12TAB 53.60 57 Training 59

34 C10TAB 36.68 39 Training 59

35 C6TAB 3.78 4 Training 52

36 CTAC 106.24 113 Training 54

37 [C16MIM][Br] 93.08 99 Training 56

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 33666–33678 | 33671
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Table 1 (Contd. )

No. Symbol Molecular structure
Predicted
AGGN

Experimental
AGGN Set of data Ref.

38 [C14MIM][Br] 74.28 79 Training 56

39 [C12MIM][Br] 58.02 58 Test 56

40 [C10MIM][Br] 39.99 40 Validation 56

41 CPC 48.90 52 Training 59
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[Br], CPC); and (C12TAB, [C12MIM][Br], C12DAB, DDMAC, DAC,
DMAC).

2.1 Molecular modeling

The structure of each compound was drawn with GaussView
5.0.8 (Table 1), and optimized by the semi-empirical method,
PM6, available in the Gaussian 09 soware package,60 and the
optimization goal was to achieve the structures with the lowest
energy level. Due to the space limitation, the optimized struc-
ture of the molecules are shown in Table S1 (ESI).† Because the
molecules were large, we preferred to use semi-empirical PM6
for optimization purposes rather than the density functional
theory (DFT) as a quantum mechanical method. Indeed, PM6
can be employed for systems with thousands of atoms while
retaining the benets of the DFT calculations: they are based on
a proper physical description of the molecular structure and do
not depend on system-specic parameters.61 Moreover, the
computational speed of the PM6 method is more rapid than
that of DFT.

Finally, for each optimized structure, the molecular
descriptors were computed using the Dragon 5.5-2007 soware
designed as a user-friendly soware.62 In this soware,
descriptor calculations are conducted according to these simple
steps: rstly, the molecular le obtained from Gaussian is
loaded; secondly, the descriptors are selected; thirdly, the
descriptors are computed; and fourthly, the calculated
descriptors are saved. In this study, the QSAR data obtained
33672 | RSC Adv., 2022, 12, 33666–33678
were collected in an Excel le (see ESI† for further information).
All the calculations were conducted inMATLAB, version 7 (Math
Works), and the ANN was performed using the MATLAB Neural
Network Toolbox.63
3. Artificial neural network

The ANNs are computer programs inspired by the human
brain. They have been designed to simulate the processing
information in the brain and are widely used in different
branches of science such as analytical, physical, organic,
inorganic chemistries, and medicinal material
sciences.43–45,64,65 The ANNs obtain their knowledge by nding
the patterns and relationships in data through experience.66

They are made of articial neurons which are connected with
coefficients (weights), constituting the neural structure and
organized in layers.

In ANNs, each neutron possesses weighted inputs, transfer
function and one output. The behavior of an ANN depends on
the transfer functions of its neurons, the learning rule, and
the architecture itself. The signal of the neuron is established
by the weighed sum of the inputs and passed through the
transfer function to create a single output of the neuron. The
role of the transfer function is to introduce non-linearity to
the network. The ANN algorithm is a two-step processing
technique, involving training and validation steps. During
training, the weights are optimized until the prediction error
© 2022 The Author(s). Published by the Royal Society of Chemistry
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is minimized, and the network gains an acceptable level of
accuracy. When the network is trained and tested, it can be
applied for predicting the output using new input
information.67

A variety of types of ANNS have been designed up to now,
however, the majority of today's applications apply back-
propagation feed-forward ANN (BPFF-ANN).67 This network
consists of at least three layers including input, hidden and
output layers. The rst one is the input layer which simply
serves to enter the input variables, which are the selected
descriptors in this investigation. The output layer is the last one
where the output variables are handled, here, the number of
nodes of this layer is set to one assigning the AGGN of each
surfactant. The layers between the input and output ones are
called hidden layers, each of which may function independently
and may transfer its results to the other one. The most crucial
step in designing the ANN is optimizing the number of nodes in
the hidden layer, apart from adjusting the weights, as described
in the following section.
4. Optimization of ANN

In an ANN algorithm, there is a connector neuron between an
input and a hidden layer, as well as between the neurons and
the output layer, called the weight (Wij), which represents the
“articial synapses”.68 The input signals (In) are processed in
the “body” of the neuron as follows:

Zj ¼
Xn

i

WijAi (1)

where Zj andWij are the values of the j
th hidden neuron and the

weight linking the ith input neuron to the jth hidden neuron,
respectively. Aj is the value of the ith input neuron, which is
a normalized value of the ith independent variable.

In ANN analysis, each variable (input or output values) is
rescaled to a new range of values between −1 to +1 as follows:69

Ai ¼ Xi � Xmin

Xmax � Xmin

� ðrmax � XrminÞ þ rmin (2)

where Xi is i
th real variable, Ai is the normalized value of Xi, Xmin

and Xmax are the minimum and maximum values of Xi,
respectively, and rmin and rmax are attributed to the limits of the
range where Xi should be scaled.

In the ANN algorithm, the initialization is conducted with
random weights and a different initialization is done to
diminish the probability of a convergence to a local minimum.
The total data is divided into three sets: training, test and
validation. The training set is employed to adjust the weight
factors on the ANN, and the test set is used to overcome the
over-tting problem and to nd the optimal number of neurons
in the hidden layer. The validation set is applied to conrm the
actual predictive power of the ANN.

In the BPFF-ANN algorithm, the weights change during each
iteration with the aim of minimizing the difference between the
actual outputs and the model predicted ones, and the change of
each weight can be written as:
© 2022 The Author(s). Published by the Royal Society of Chemistry
DWij + Wij / Wij

DWij = h(t − o)Ini (3)

where, for each sample, t and o are the target and the output
value of ANN, respectively, and, h is the learning factor whose
role is controlling the amount of weight change at each itera-
tion. The value of h is usually small (e.g., 0.1) and it diminishes,
and would have less and less effect as the number of iterations
increases.

In the ANN studies, models with fewer variables result in
diminishing the complexity of the analysis, preventing
overtting/overtraining and reducing the computational time
and improving the prediction power for new samples. Here,
rstly, the descriptors of the surfactant molecules with zero
values were omitted, and then the descriptors showing a high
correlation coefficient with each other were eliminated, and
nally based on stepwise regression analysis, four signicant
descriptors were selected for further analysis (Table 2). These
variables had high correlation with the response and less
correlation with each other.

The four selected descriptors (Table 2) were applied as input
neurons in the ANN modeling, and the AGGN of the surfactant
molecule was considered as a neuron in the output layer. The
number of hidden layers and their neurons were chosen by
optimizing the model in the ANN-Matlab toolbox (Matlab
nntool) using a BPFF-ANN algorithm. The important network
parameters in the toolbox such as topology, number of data
values in each classied set (training, validation and test set),
and the training algorithm and its parameters are shown in
Table 3.

The performance of the ANN model was evaluated based on
some statistical parameters such as mean square error (MSE),
square of correlation coefficient (R2), root mean square error
(RMSE) introduced in the following equations:70

MSE ¼
P
i

�
yANN;i � yexp;i

�2
n� 1

(4)

RMSE ¼

0
BB@
Pn
i¼1

�
yANN;i � yexp;i

�2
n� 1

1
CCA

1
2

(5)

R2 ¼ 1�
P
i

�
yANN;i � yexp;i

�2
P
i

�
yANN;i � ym

�2 (6)

where yANN,i and yexp,i are predicted, and the experimental value
of AGGN for the ith cationic surfactant molecule, respectively, ym
is the mean of yexp in eqn (4)–(6), and, n is the number of
molecules in each data set (training, test or validation set).

The main goal in the training step was minimizing the MSE
of the test set as data which were not used during the training
iterations, a fact which conrmed the ANN ability for the
RSC Adv., 2022, 12, 33666–33678 | 33673
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Table 2 The selected structural descriptors for QSAR analysis

ID Name Description Block

1 JGI6 Mean topological charge index of order 6 2D autocorrelations
2 H-047 H attached to C1(sp3)/C0(sp2) Atom-centred fragments
3 Mor20p Signal 20/weighted by atomic polarizability 3D-MoRSE descriptors
4 ESpm12x Spectral moment 12 from edge adjacency matrix weighted by edge

degrees
Edge adjacency indices

Table 3 Network parameters (in the ANN-Matlab toolbox) in the QSAR analysis of the cationic surfactants

Topology Four inputs, one output and one hidden layer with ve neurons (4 × 5 × 1)

Data Training set: 70% randomly selected observation data (29 data values)
Test set: 15% randomly selected observation data (6 data values)
Validation set: 15% randomly selected observation data (6 data values)

Beginning function Log–sigmoid
Training algorithm Levenberg–Marquardt algorithm
Loss function conditions Minimum MSE
Stopping conditions The network stops in one of three ways:

Validation check > 10
Minimum gradient < 10−7

Momentum speed > 1010
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prediction of the new data. Here, the optimal ANN architecture
was achieved according to the minimum value of the MSE and
the maximum value of R2 of the test set. A network (4 × 5 × 1)
was the optimal model whose topology is illustrated in Fig. 1.

The molecules in each data set were analyzed by the optimal
ANN algorithm, and their AGGN values were estimated to clarify
the prediction ability of this non-linear model. All the results
were converted to the original state and plotted versus the cor-
responding experimental AGGNs as shown in Fig. 2. Table 4
shows a summary of statistical parameters such as the values of
R2, MSE and RMSE for training, validation, and test sets using
the ANN method. The R2 values between the experimental and
Fig. 1 Artificial neural network architecture in QSAR studies of the catio

33674 | RSC Adv., 2022, 12, 33666–33678
predicted results reveal that the ANN model was highly efficient
for the analysis of the QSAR data studied.

Moreover, the studied data was analyzed by MLR method-
ology and the results were compared with the ANN strategy to
reveal the necessity of employing non-linear modeling in this
investigation. Fig. 4 illustrates the MLR coefficients versus the
descriptors. Some statistical parameters of the MLR model are
given in Table 4 and the correlation between the experimental
and predicted results of the MLRmodel are shown in Fig. 3. The
compared results showed that ANN is a powerful tool for
detecting the relationship between the surfactant molecules
and their AGGNs. This could be attributed to the non-linear
nic surfactants.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The plots of predicted AGNNs determined by ANN analysis versus experimental AGNNs of cationic surfactants molecules for the three
data sets used in the ANN analysis.
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relationship between the molecular structures of the surfac-
tants and their AGGNs. To investigate this claim for each
selected descriptor, the AGGN values of the surfactants mole-
cules were plotted against the values of the descriptor, as shown
in Fig. S1 (ESI).† This gure illustrates the non-linearity in this
data, furthermore, Fig. S2 (ESI)† shows the non-linear rela-
tionship between the AGGNs of a set of molecules with the same
hydrocarbon chain length but different polar head groups (CPC,
[C16MIM]Br, C16TAB, [C16hpim]Br, and C16E2TAB).
5. Effect of input variables

The weight values in the ANN network can be employed to
estimate the relative importance of each input variable on the
output target using the Garson method, a numerical approach,
as follows:71
Table 4 Statistical parameters of the ANN and MLR models in the QSAR

Set of data

R2 MSE

ANN MLR ANN

Total 0.9392 0.5010 8.7070
Training 0.9256 0.4578 12.4385
Test 0.9526 — 4.80 × 1
Validation 0.9762 0.6053 8.67 × 1

© 2022 The Author(s). Published by the Royal Society of Chemistry
Qmd ¼
Ph
n¼1

jwmnvnd j
� PN

t¼1

jwtnj
PN
m¼1

Ph
n¼1

jwmnvnd j
�PN

t¼1

jwtnj
(7)

where wtn is the weight between the mth input and the nth
hidden neuron, and vnd represents the weight between the nth
hidden neuron and the dth output target.

In this study, the percentage of inuence of the input vari-
ables on the AGGNs was estimated by incorporating input-
hidden and hidden-output connection weights based on eqn
(7), and the results are reported in Table 5. The trend of
importance of the input descriptors was in the following order:
H-047 > ESpm12x > JGI6> Mor20p.

In MLR analysis, the distribution coefficients of these
descriptors were assigned by their importance. Although the
importance trend in MLR analysis did not coincide with the
studies of cationic surfactants

RMSE

MLR ANN MLR

507.1145 2.9508 22.5192
528.9620 3.5268 22.9992

0−4 — 0.0219 —
0−5 2.4595 × 103 0.0093 49.5936
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Fig. 3 The scatterplot of predicted AGNNs by MLR analysis versus
experimental AGNNs of cationic surfactants molecules in different
data sets.

Fig. 4 The plot of coefficients of descriptors in MLR modeling versus
descriptors' names for QSAR study of the cationic surfactants.
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previous trend, the sign of the coefficient gives complementary
information about the descriptors. Indeed, the signs can help
us interpret the relationship between the AGGNs of the mole-
cules and the descriptors and provide more relevant informa-
tion, as will be discussed next.

Descriptor H-047 belongs to atom-centered fragments (ACF)
class descriptor which shows a structural fragment, H, attached
to C1(sp3)/C0(sp), in a molecular structure, where the super-
script of C denotes the formal oxidation number of the carbon
atom.72 This oxidation number is the sum of the conventional
bond orders with electronegative atoms. The fewer hydrogen
atoms that are attached to sp or sp3 hybridized carbon atoms
there are, the higher H-047 descriptor observed.72 As shown in
Fig. 4, this descriptor has a negative effect on the AGGN as ex-
pected because fewer hydrogen atoms lead to a higher AGGN.
Therefore, the H-047 descriptor recommends fewer hydrogen
atoms be attached to sp or sp3 hybridized carbon atoms to
increase the AGGN of the titled compounds. For example, here,
increasing the number of hydrogen atoms attached to sp or sp3

hybridized carbon atoms for DMAC (−0.81 of H-047), DDMAC
(−0.63 of H-047), and [C16MIM][Br] (−0.81 of H-047), C16TAB
(−0.45 of H-047) molecules causes the AGGN to decrease from
89 to 66, and 99 to 95, respectively.
Table 5 Effective weight matrix of the ANN modeling in the QSAR
studies of cationic surfactants

Input descriptors

Hidden neurons
Hidden to
outputJGI6 H-047 Mor20p ESpm12x

2.8220 −3.1771 −2.1059 −2.2939 H1 2.4575
1.2441 −1.3730 3.3333 0.7633 H2 −1.2424
1.7163 2.5627 −0.8406 −4.1556 H3 −4.2588
1.8402 2.8236 0.8486 −0.2216 H4 −4.9700
2.8215 8.2460 0.7830 −3.1571 H5 3.8160
22.15 38.57 16.78 22.47 Relative importance (%)

33676 | RSC Adv., 2022, 12, 33666–33678
ESpm12x is the spectral moment of the edge-weighted
adjacency matrix which is represented by the structural frag-
ments present in the molecules.73 This descriptor has been
widely used for the interpretation of physical and physico-
chemical properties of alkanes and has presented powerful
signicant models from the statistical point of view. Indeed, the
molecules with higher ESpm12x values belong to the higher
length of the hydrocarbon chain.75 As shown in Fig. 4, this
descriptor has a positive effect on the AGGN property, indi-
cating that the ESpm12x is directly related to the AGGN.

JGI6 is a mean topological charge index of order 6 which can
assess both the charge transfer between pairs of atoms and the
global charge transfer in a molecule.74 This descriptor repre-
sents the total charge transfer between atoms at a topological
distance of 6 which are closely related to substitutions at the
peripheral molecular sites, and molecular polarity. In a mole-
cule, the higher the charge transfer is, the higher the JGI6 value
observed.74 In this study, the JGI6 descriptor showed a negative
impact on AGGN and it is expected that a smaller AGGN will be
observed for a molecule with higher polarity and, in turn,
a higher charge transfer. For example, both C16TAB (−0.44 of
JGI6) and CPC (−0.75 of JGI6) molecules have the same
hydrocarbon chain length but in CPC, due to the resonance and
charge distribution on the molecule surface, the charge transfer
is higher and the molecule has a smaller AGGN.

The Mor20p descriptor expresses the 3D structure of
a molecule and encodes information about the polarizability
and is similar to the JGI6 descriptor, but the Mor20p value of
a molecule is directly related to the polarizability of the mole-
cule. As discussed, previously, the increase in polarizability of
a molecule results in the decrease in AGGN. For example,
C16TAB (−1 of Mor20p) and CPC (−0.3694 of Mor20p) mole-
cules have the same hydrocarbon chain length but a different
polar head group and the Mor20p of CPC molecule is higher
than that of C16TAB, and as expected, its AGGN is lower due to
its higher polarity.75

Overall, it can be concluded that the decreased values for H-
047, JGI6 and Mor20p, together with the increased value for the
ESpm12x descriptor will provide higher values for the AGGN
property of the studied cationic surfactants.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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6. Conclusions

In this study, the QSAR study was performed on some cationic
surfactants to correlate the molecular structure of the surfac-
tants with their AGGNs. Among more than 3000 molecular
descriptors that were considered in generating the QSARmodel,
four descriptors resulted in a statistically signicant model.

The QSAR data was analyzed based on both linear (MLR) and
non-linear (ANN) modelling techniques and the results of these
methods were compared statistically. A higher R2 and a lower
RMSE of the ANN method were achieved, a fact which supports
the efficiency of ANN in detecting relationships between
surfactant molecules and their AGGNs with a high predictive
power.

In summary, the QSAR-ANN was proposed as a promising
technique to predict the AGGNs of surfactants and to obtain
extract maximal information about the surfactant systems with
minimal experimental effort.
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