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uration determination for DFT
and AIMD calculations using an integrated
optimization strategy†

Byung Do Lee,‡a Jin-Woong Lee,‡a Joonseo Park,a Min Young Cho,a

Woon Bae Park*b and Kee-Sun Sohn *a

When constructing a partially occupied model structure for use in density functional theory (DFT) and ab

initio molecular dynamics (AIMD) calculations, the selection of appropriate configurations has been

a vexing issue. Random sampling and the ensuing low-Coulomb-energy entry selection have been

routine. Here, we report a more efficient way of selecting low-Coulomb-energy configurations for

a representative solid electrolyte, Li6PS5Cl. Metaheuristics (genetic algorithm, particle swarm

optimization, cuckoo search, and harmony search), Bayesian optimization, and modified deep Q-

learning are utilized to search the large configurational space. Ten configuration candidates that exhibit

relatively low Coulomb energy values and thereby lead to more convincing DFT and AIMD calculation

results are pinpointed along with computational cost savings by the assistance of the above-described

optimization algorithms, which constitute an integrated optimization strategy. Consequently, the

integrated optimization strategy outperforms the conventional random sampling-based selection strategy.
Introduction

Alkali superionic conductors (solid electrolytes for use in all-
solid-state rechargeable alkali-ion batteries) have recently
attracted a great deal of attention for their improved safety and
potentially higher energy density in comparison to traditional
organic liquid electrolytes.1–3 In parallel with the experimental
development of solid electrolytes, theoretical approaches also
deserve to be highlighted to facilitate the development of more
promising solid electrolytes. In this context, density functional
theory (DFT) and ab initio molecular dynamics (AIMD) calcu-
lations have been actively pursued for solid electrolyte
materials.4–6 A well-known solid electrolyte material, Li6PS5Cl
(argyrodite),7–15 has a partially occupied structure that gives rise
to conguration issues when constructing the input model
structure for use in DFT and AIMD calculations. The congu-
ration issue is one of the most exasperating problems in the
theoretical approach to partially occupied inorganic
compounds.

When the conguration issue is to be considered, virtual
crystal approximation (VCA)16–20 and coherent pseudopotential
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approximation (CPA)21 are viable solutions. The VCA (i.e., an
effective pseudopotential represented as a weighted sum of
different pseudopotentials) has been suggested for solid solu-
tions, but the VCA is available only for limited compounds that
are composed of metallic elements with similar electronic
congurations. The CPA approximates a random conguration
with an effective medium that is determined self-consistently
from the condition of stationary scattering.21 Although the
CPA has actually outperformed the VCA,21 it is not well suited to
total energy calculations and geometry optimization.22 Likewise,
the congurational average approximation also seems unreal-
istic for relatively large supercells because the enhanced
congurational diversity in a large supercell would lead to more
scattered ab initio calculation results.23,24 In addition, the
congurational average strategy could increase both cost and
time.25–28 The cluster expansion method (CEM)29–33 could be an
alternative approach to address the conguration issue in
a solid electrolyte material. Since the cluster expansion is tted
using a DFT-calculated property for a set of representative
congurations, the CEM still requires extra and expensive DFT-
calculated data in the regression tting procedures. Therefore,
none of the strategies described above seems ideally suited to
address the congurational issue in solid electrolyte materials.

A general and simple solution to address the conguration
issue, which has been widely accepted in the eld,34–39 is
random sampling from the large number of viable congura-
tions (for instance, the total number of viable congurations for
Li6PS5Cl amounts to∼1013 even for a single unit cell model) and
the ensuing choice of some congurations based on a certain
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Finally, optimized Coulomb energy for every optimization
algorithm and the minimum obtained from the random sampling. The
hyperparameters used for each optimization algorithm are also
presented

Method Hyperparameter
Coulomb energy
(eV f.u.−1)

Random — −247.20
GA Mutation probability: 0.1, elite size: 0.01,

crossover probability: 0.5
−249.27

PSO C1: 2, C2: 2, w: 0.85 −248.10
HS HMCR: 0.7, PAR: 0.3, bw: 0.01 −248.72
CS Pa: 0.25, b: 1.5 −248.80
BO a: 10−5, b: 10−7 −247.54
DQN Episode length: 2500, learning rate: 0.001 −248.01
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selection criterion. The criterion utilized for the conguration
selection following the random sampling is the electrostatic
energy (Coulomb potential or energy),34–39 which can be evalu-
ated by a very fast, low-cost computation and is reliable enough
to roughly approximate the DFT-calculated total energy,
although the structure that minimizes the electrostatic energy is
not always the lowest energy structure based on DFT calcula-
tions. Despite the swi evaluation of the Coulomb energy that is
much faster than the DFT calculations, the complete enumer-
ation for the huge number of congurations is practically
impossible. The selection of a few low-Coulomb-energy entries
from the nominal number (∼1000) of random congurations,
which is a current method in the eld, would be inefficient to
nd the lowest-Coulomb-energy congurations that might be
better matched with real-world ground state structures.

While the computationally inexpensive Coulomb energy is
still being utilized as a selection criterion, we propose a more
systematic methodology to nominate plausible congurations
for use in the ensuing DFT and MD calculations—an optimi-
zation algorithm that enables us to nominate a greater number
of low-Coulomb-energy congurations with incredible cost
savings. This optimization algorithm makes it possible to
search the enormous conguration search space and nominate
a number of congurations that could represent real-world
ground state structures for argyrodite. A series of optimization
algorithms are applied in parallel to select argyrodite congu-
rations that have minimum Coulomb energy values and thus
could be used as input model structures for the subsequent DFT
and MD calculations.

The adopted optimization algorithm includes four well-
known metaheuristics: the genetic algorithm (GA),40–42 particle
swarm optimization (PSO),43,44 harmony search (HS),45 and
cuckoo search (CS).46 In addition to metaheuristic algorithms,
we introduce Bayesian optimization (BO).47,48 Although the deep
Q-network (DQN)49 is not dogmatically designed for optimiza-
tion tasks, we modify it for use in a simple optimization task
such as the argyrodite conguration search. The metaheuristic,
which is inspired by generally acknowledged disciplines such as
biology, ethology, and music, is known to outperform the
traditional Jacobian/Hessian-based optimization.50 The meta-
heuristic has the merit of offering a higher possibility of
escaping from local optima. We take on the four most
frequently utilized metaheuristics: GA, PSO, HS, and CS. Along
with the metaheuristic, we also employ Bayesian optimization,
which has been known to be more efficient for optimization
tasks that require the extremely expensive evaluation of an
objective function. DQN, a recently devised reinforcement
learning algorithm, represents a merger between traditional Q-
learning and a more recent deep neural network.51 In principle,
the DQN is not designed for use in such a simple optimization
but for more complicated dynamic problems such as games.
The DQN capability is far beyond a simple optimization. A
truncated (or modied) DQN algorithm, called a single-episode
DQN, is fully adapted to the optimization task.

We systematically compare all the above-described optimi-
zation algorithms for the argyrodite conguration search. In
addition, the validity of each optimization algorithm is
© 2022 The Author(s). Published by the Royal Society of Chemistry
preconrmed using well-known benchmark test functions.
Although some previous reports have dealt with a single opti-
mization algorithm, such as a genetic algorithm or particle
swarm optimization, for a similar conguration selection
task,52–55 we introduce six optimization algorithms, involving
four metaheuristics, a Bayesian optimization, and a reinforce-
ment learning algorithm (=DQN), which constitute an inte-
grated optimization strategy.
Computational methods
Metaheuristics

The GA, PSO, HS, and CS algorithms are coded by referring to
the general fundamentals.56–58 We heavily borrowed GA and PSO
codes from others57,58 but the HS and CS codes originated from
this work. Hyperparameters are also inherited from the original
algorithms.56 We also tested other sets of hyperparameters
using benchmark functions, but they never outperformed the
original set of hyperparameters. The nal adopted hyper-
parameters are given in Tables 1 and S2.† The codes for all the
metaheuristics, such as the GA, PSO, HS, and CS algorithms, are
available at https://github.com/socoolblue/optimization.
BO

BO works best for many expensive optimization tasks, the
objective function evaluation for which is time-consuming. Two
optimization steps are required for BO: one for maximum
likelihood estimation (MLE) for the hyperparameter determi-
nation process during Gaussian process regression (GPR) and
the other for acquisition function optimization for the deter-
mination of the next position to be evaluated. Well-known
gradient- and Hessian-based optimization algorithms were
used for both optimization processes in BO execution. Both
optimization processes do not guarantee global optimization,
and the choice of acquisition functions is also heuristic. Even
a single-objective BO execution does not always yield an
acceptable result when the objective function terrain is not
continuous and smooth. Even worse performance would be
expected in the case of multiobjective optimization problems.48
RSC Adv., 2022, 12, 31156–31166 | 31157
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The BO performance depends signicantly on the objective
function terrain; if a continuous and smooth benchmark
function is of concern, the GPR works better; on the other hand,
if a benchmark function has a nonsmooth terrain with abrupt
transitions, then the GRP would not be appropriate as a surro-
gate function. Very recently, Lei et al.59 reported a much more
improved BO performance using different surrogate functions
rather than GPR, so-called Bayesian multivariate adaptive
regression splines (BMARS)60,61 and Bayesian additive regres-
sion trees (BART).62 However, Lei et al.59 adopted a truncated
search space in the decision variable range [−2, 2] with 4D (for
Rosenbrock) and 10D (for Rastrigin) search spaces. The deci-
sion variable ranges that Lei et al.59 adopted are far narrower
than those generally recommended. We adopted the decision
variable range [−5, 5] with a 6D search space for six benchmark
functions: the Ackley, Egg Crate, Griewank, Rastrigin, Rose-
nbrock, and Sphere functions. More importantly, since the
metaheuristics, such as GA, PSO, HA, and CS, greatly out-
performed BO, the improved BO algorithms would make no
sense in the present investigation. However, we also adopted
alternative surrogate functions, which are four ensemble-
learning algorithms such as random forest, AdaBoost,
gradient Boost, and extreme gradient (XG) Boost.
DQN

It is obvious that the DQN is a sort of early-stage reinforcement
learning algorithm that is generally used for dynamic problems.
Its use in such a simple optimization that we are dealing with in
the present investigation seems to be a waste of computational
resources. The conventional DQN capability is far beyond such
a simple optimization task. If a standard DQN model was fully
trained and thereaer the ensuing test was executed, a start at
any point in the decision variable space would denitely end up
with the convergence to the global optimum. However, such
a standard training process must require a large number of
episodes, which means that a huge number of object function
evaluations are needed.

We altered the operation method to make it possible to use
the DQN algorithm for a simple optimization task. A so-called
one-episode training scheme was developed to save computa-
tional cost. It is unnecessary to fully train the DQN, but instead
it would be satisfactory as far as we canmanage to reach (or pass
through) the global optimum (or one of promising local optima)
in the course of the one-episode training. Since it is highly likely
to nd the global optimum (or one of promising local optima)
during an episode at the expense of minimum computational
costs, we do not need to learn the complete terrain of the
objective function.

The state was dened as decision variable vectors in a six-
dimensional decision variable space. The action was dened
as small-step movement from the current state. A remarkable
measure that we newly took for our modied DQN approach is
the inclusion of the step length in the output layer of the deep
neural network, such that it can be adjustable during the
training, and depending on the state of concern (i.e., the step
length differed for every position in the decision variable space,
31158 | RSC Adv., 2022, 12, 31156–31166
presumably, the step length would be shorter if we get closer to
the optimum, otherwise longer). The reward was dened as two
xed numbers; if the action from the current state to the next
state gives rise to an improvement in the objective function,
then the reward is +0.1; otherwise, it is −100. More details for
the one-episode DQN can be recognized from the code available
at https://github.com/socoolblue/optimization.
DFT & AIMD calculations

First-principles calculations were performed using conven-
tional lab-scale computational inventories based on the Vienna
Ab initio Simulation Package (VASP5.4).63–67 The generalized
gradient approximation (GGA) parameterized by Perdew, Burke,
and Ernzerhof (PBE)63 was employed for the entire computa-
tional process. Projector-augmented wave potentials,68,69

a cutoff energy of 520 eV and a k-mesh interval maintained
below 0.2 Å−1 were adopted using the Monkhorst–Pack scheme
for all input model structures, which ensured that the total
energy converged at less than 10−6 eV. All structural aspects
(atomic position, lattice size, and shape) were allowed to relax
until the nal force on all relaxed atoms was less than 0.01 eV
Å−1 for structure relaxation. To evaluate the room-temperature
ionic conductivity of the selected candidates, AIMD70,71 calcu-
lations were implemented at 600, 700, 800, 900, 1,000, 1,100,
and 1200 K. Each candidate was heated to the desired temper-
ature for 2 ps in the microcanonical (NVE) simulations. The
AIMD simulation for 150 ps, with a time step of 2 fs, and was
based on the canonical ensemble (NVT) and Nosé–Hoover
thermostat algorithm.
Results and discussion
Problem setting

Fig. 1 schematically shows the entire concept for the integrated
optimization strategy, i.e., the integrated optimization platform
consisting of the GA, PSO, HS, CS, BO, and DQN algorithms.
The decision variable and objective function setting is the rst
prerequisite for the optimization task. The decision variable
setting and its simplied graphical representation, which can
be utilized instead of actual unit cell structures for brevity, is
well described in Fig. 2a. Six decision variables designating the
conguration were extracted from the argyrodite structure.
There are four Li cages with the same shape in the argyrodite
unit cell. Fig. 2a shows a cage partially lled with Li ions, rep-
resenting an arbitrary conguration. The partially occupied Li
distribution in a cage was assigned to a decision variable, which
means that four decision variables were assigned to the Li
distribution in the four cages in a unit cell. For both practicality
and brevity, an equal number of Li ions was assigned to every
cage, such that a total of 7 × 1011 Li congurations were viable
in the unit-cell-based model structure for argyrodite. If this
restriction (i.e., the equal number of Li ions for each cage) was
removed, the total number of available congurations would
skyrocket to nearly innity, and the decision variable extraction
would be unviable. It is fortunate, however, that an uneven
starting Li distribution in the four cages would mostly result in
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematically shows the entire concept for the integrated optimization strategy, i.e., the integrated optimization platform consisting of
the GA, PSO, HS, CS, BO, and DQN algorithms. The decision variable and objective function setting is the first prerequisite for the optimization
task.

Fig. 2 (a) The decision variable setting and its simplified graphical representation and (b) a plot of Coulomb energy vs. DFT-calculated total
internal energy for randomly selected argyrodite configurations and 10 high-Coulomb-energy configurations nominated by the integrated
optimization strategy, marked in red.
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an even distribution in the four cages when Coulomb energy
minimization was completed by the optimization
algorithms.40–51 The other two decision variables are extracted
from the Cl/S distribution. There are four S sites assigned to
each of the 4a and 4d sites, and two for each can be occupied by
Cl. In this regard, the h and sixth decision variables repre-
sent the Cl/S distribution at sites 4a and 4d, respectively. The
total number of viable congurations that these six decision
variables constitute amounts to 1013.

Coulomb energy is assigned to the objective function to be
minimized. The Coulomb energy could be a rough measure of
the total internal energy, although a complete coincidence
would not be viable. A plot of Coulomb energy vs. DFT-
calculated total internal energy is shown in Fig. 2b, wherein
some randomly chosen conguration data were presented
along with the ideal linear t. It is reasonable to recommend
Coulomb energy as a rough measure of total energy and thereby
© 2022 The Author(s). Published by the Royal Society of Chemistry
to use it as an objective function for the optimization process,
wherein the appropriate ground state conguration can be
found. The use of Coulomb energy has an economical merit in
comparison to the use of DFT-calculated total energy, since it
takes less than a second to complete the Coulomb energy
calculation for a single conguration. We adopted Okhotnikov
et al.'s Coulomb energy calculation code.72

There have been well-established codes for crystal structure
prediction such as USPEX73,74 and CALYPSO.75,76 These codes
exhibit either the similarity or the dissimilarity in comparison
to our approach. In view of the optimization algorithm, an
evolutional algorithm is adopted for USPEX73,74 and a PSO
algorithm for CALYPSO.75,76 Presumably, both the well-
established codes would give a similar result to what we
produced. It should be noted, however, that we employed six
optimization algorithms even including both the PSO and
evolutionary algorithm that the USPEX and CALYPSO adopted.
RSC Adv., 2022, 12, 31156–31166 | 31159
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Brief discussion of optimization algorithms and benchmark
function test results

The metaheuristics are a series of optimization algorithms
inspired by well-known disciplines such as biology, ethology,
psychology, and music. There are a number of metaheuristics,
among which we adopted four relatively popular algorithms for
the argyrodite conguration optimization task. The GA has
been known as the most renowned metaheuristic,40–42 and its
applicability has recently spanned to multiobjective optimiza-
tion tasks.77 Natural selection in the evolution process for
organisms is a backbone principle for the GA, which makes the
system of concern articially evolve in a desirable (pre-
determined) direction. The decision variable is treated as
a chromosome in organisms. The social behavior of a swarm is
a backbone principle for PSO. PSO is as popular as the GA,
although its establishment lagged behind the GA.43,44 Although
all kinds of decision variables, such as real numbers, integers,
booleans, etc., are available for PSO as well as in the GA, PSO
works best in the continuous real number decision variable
space. The HS algorithm is inspired by jazz musician improvi-
sations, wherein the decision variable is treated as a note in
music.45 The CS algorithm is the most recently developed
among those used here and inspired by the obligate brood
parasitism of some cuckoo species by laying their eggs in the
nests of host birds of other species, wherein a nest can be
treated as a decision variable.46 In addition to metaheuristic
algorithms, the BO algorithm has recently attracted a great deal
of attention due to its outstanding merit, i.e., low-cost optimi-
zation with a relatively small number of samples to be evalu-
ated.47,48 DQN is also introduced for use in the optimization,
although DQN, a sort of early-stage reinforcement learning
algorithm, is not a typical optimization algorithm but instead
a sort of dynamic programing that was devised to sort out more
complicated problems such as computer games.49 More details
on each of the algorithms introduced above will be described in
the Computational methods section.

In advance of their use in the argyrodite conguration opti-
mization task, we tested all the optimization algorithms using
several well-known benchmark test functions, such as the
Ackley,78 Egg Crate,79 Griewank,80 Rastrigin,81 Rosenbrock,82 and
Sphere83 functions, each of which is schematically described in
Fig. S1, ESI.† The search space constituted by the 6-dimensional
decision variable vector span with each vector component was
restricted in the range [−5, 5]. This preliminary benchmark
function test was executed in hopes that the same codes could
work for the argyrodite conguration optimization as well.
Table S1, ESI,† shows the nal optimized objective function
(benchmark function) values that were reached by each of the
metaheuristic (GA, PSO, HS, and CS), BO, and DQN algorithms.
All the algorithms worked out, although it is not clear whether
the minimum objective function value at the last generation
was close to the global optimum. Although the PSO algorithm is
conspicuously superior to others in terms of the nal optimized
objective function value in the last generation for most bench-
mark functions, it is not possible to nd a denite relative
dominance among those optimization algorithms by
31160 | RSC Adv., 2022, 12, 31156–31166
considering all the benchmark function test results on average,
as evidenced in Table S1.† In principle, the performance of
optimization algorithms strongly depends on the benchmark
test function. Although we can roughly predict the terrain of all
the benchmark functions, no one knows what the Coulomb
energy terrain in the argyrodite conguration space looks like.
That is why we have to pretest more than several benchmark
functions that dramatically differ from one another. Moreover,
we have to employ as many optimization algorithms as possible
because it would be thoroughly impossible to know which
algorithm works for which benchmark function. In this context,
we employed the six optimization algorithms for Coulomb
energy minimization over the large argyrodite conguration
space, and these six optimization algorithms were pretested
using six benchmark functions. Thus, the integrated optimi-
zation strategy we propose here would be more promising than
a typical single-algorithm strategy.

For a systematic comparison among those optimization
algorithms, the same number of objective function evaluations
was applied for every algorithm, that is, the population size was
25 and the generation number was 100, leading to the total
number of evaluations xed at 2500. In the exceptional case of
the DQN algorithm, however, a higher number of objective
function evaluations was required to obtain a similar level of
optimization in comparison to the other optimization algo-
rithms. Although it appears that a much higher number of
evaluations is required for the DQN algorithm, the required
number of evaluations varies on a case-by-case basis. The initial
decision variable vector (the starting point) that is to be deter-
mined randomly had a great inuence on the performance of
the DQN-based optimization, since we adopted a single episode
training, as discussed in the Computational methods section.
Fig. S1, ESI,† shows the instantaneous objective function
(benchmark function) value versus the generation number
(which equals the number of objective function evaluations
multiplied by the population size of 25) for every optimization
algorithm. Fig. S1† also shows that there is no obvious superi-
ority or inferiority among the optimization algorithms for all
the benchmark functions, and every algorithm ultimately leads
to an acceptable convergence close to the global optimum. For
some optimization algorithms (in particular, for BO and DQN),
neither the global optimum nor one of promising local optima
was reached, but this sort of incomplete optimization is
customary for the heuristic nature of the algorithm. The
benchmark function test results shown in Table S1 and Fig. S1†
imply that some of the aforementioned algorithms with the
same hyperparameters rened from these benchmark function
tests should denitely work out for the argyrodite conguration
optimization problem as well. The hyperparameter screening
results are also given in Table S2.†
Argyrodite conguration optimization

There might be a common misunderstanding that random
sampling is appropriate for the selection of argyrodite cong-
urations for use in the ensuing DFT and AIMD calculations.
According to the fundamental statistics, even sampling
© 2022 The Author(s). Published by the Royal Society of Chemistry
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approximately 2500 congurations would be sufficient to
represent the total congurations, the number of which
amounts to 1013, since the sample mean and variance would not
deviate considerably from the ground truth for all congura-
tions. It should be noted, however, that we are not concerned
with the mean and variance prediction but instead with the
search for an extreme value from the sample, namely, in pursuit
of the lowest Coulomb energy. Accordingly, random sampling
cannot catch up with this sort of extreme (minimum) search.
We have to focus on only an extreme entry out of a sample batch
that is randomly selected, and thereaer, we have to repeat this
kind of extreme-targeted sampling procedure countless times.
For instance, we have to reiterate the random sampling of 2500
congurations 100 times and the nomination of an extreme
entry from every sample, which will nally secure 100 congu-
rations with relatively low Coulomb energy values. The resultant
average of these extremes was−247.20 eV f.u.−1 with a standard
deviation of 0.35 eV f.u.−1. Fig. 3a shows violin plots for the
distribution for an extreme sample nominated out of the 100
random samples (the size of each sample is 2500). This random-
based extreme sampling process is hereinaer referred to
simply as random sampling. Fig. 3a also shows the other data
distributions produced by all the optimization algorithms. The
conguration selection from the random sample distribution
would be time-consuming, and the selected entries would not
represent the ground state conguration. Violin plots for the
data produced by the GA, HS, and CS algorithms are located
toward the lower Coulomb energy side, while the others,
including the random sample, distribute upward. It appears
that the PSO, BO, and DQN algorithms did not work out by
Fig. 3 The metaheuristic algorithm execution result. (a) Violin plots for
mization algorithms. (b) The instantaneous Coulomb energy (objectiv
algorithm.

© 2022 The Author(s). Published by the Royal Society of Chemistry
considering the fact that the data distributions produced by
these three optimization algorithms do not seem to be
improved from the random sample distribution. However, the
extreme value (the minimum) obtained by these three algo-
rithms is slightly lower than that for the random sampling, as
shown in Table 1. This nding is extraordinarily differs from the
benchmark function test result. The violin plot for the bench-
mark function data distribution exhibits the ordinary propen-
sity, namely, where all the distributions produced by the
optimization algorithms are located toward the far lower
Coulomb energy side than that for the random sampling, as
evidenced in Fig. S3.†

Rather than the nomination of minimum Coulomb energy
from a single random sampling, the 100 extreme (minimum)
values were extracted from the 100 random samples, each of
which consists of 2500 congurations. This means that we
reached the averaged minimum of −247.20 eV f.u.−1 from the
100 samples (250 000 congurations in total), but a conven-
tional single random sampling (even if we enhanced the
number of congurations in the sample) would never make it
possible to reach this level. The optimization algorithm should
be employed to reach as close to the global minimum as
possible. The use of the optimization algorithm would be more
appropriate in nding energetically stable congurations than
the present random sampling that is evenmore reasonable than
the conventional single random sampling. On this ground,
Table 1 shows the Coulomb energy values that were minimized
by every optimization algorithm and includes a random
sampling result at the same expense of computational costs
(that is, the same number of objective function evaluations). All
randomly selected data, along with the data selected by all the opti-
e function) value versus generation number for each optimization

RSC Adv., 2022, 12, 31156–31166 | 31161

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra05889h


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

1/
4/

20
25

 4
:5

5:
40

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the optimization algorithms gave rise to lower Coulomb energy
than random sampling. In particular, GA exhibits an
outstanding record (−249.27 eV f.u.−1), which might be
presumed to be close to a global optimum. Despite the 100
times greater number of evaluations, random sampling could
never reach this level.

Fig. 3b shows the argyrodite conguration optimization
execution results for all the algorithms, namely, the plot of
Coulomb energy (objective function) as a function of the
generation number. The Coulomb energy gradually decreases
as the algorithm proceeds toward later generations. The term
‘generation’ originated from the GA, but we used it in common
for every algorithm for convenience since all the algorithms are
population-based. Of course, both the BO and DQN algorithms
are not population-based. The generation can be, however,
regarded simply as the 25 evaluations of the objective function
in these cases. The plot of Coulomb energy versus the genera-
tion number is in a typically decreasing form, similar to those
for the benchmark function-based optimization shown in
Fig. S1, ESI.† The initial drastic drop was followed by a retarded
decrease for all the metaheuristics, as shown in Fig. 3b. In
particular, the GA appears to outperform the other meta-
heuristics, but it was proven that every metaheuristic worked
out to a certain extent and thereby gave acceptable Coulomb
energy values that are lower than those from random sampling.
While PSO outperforms the other metaheuristics for most
benchmark function tests, as shown in Fig. S1, ESI,† the GA is
the best for the argyrodite conguration optimization, as evi-
denced in Fig. 3a and b, wherein the objective function value
converged earlier for the GA and the converged value is lower
than any other algorithms. In contrast to the benchmark
function test, PSO gave a disappointing result, namely, the PSO-
nominated minimum Coulomb energy is relatively high in
comparison to the GA-nominated, and the PSO data distribu-
tion, shown in Fig. 3a, also looks to be the worst, which is
almost identical to the random data distribution. Although the
minimum objective function values obtained from the PSO, BO,
and DQN algorithms are still lower than the minimum from
random sampling, the overall data distribution for the PSO, BO,
and DQN data never appears to be improved from the random
data distribution, as shown in Fig. 3a. This sort of disappointing
performance for the PSO algorithm seems unusual when
referring to the benchmark function-based optimization shown
in Fig. S1, ESI.† By invoking the fact that the optimization
performance is strongly dependent on the shape of the objective
function, the successful benchmark function test never guar-
antees success for a real-world optimization task since the
objective function terrain for the real-world optimization task
always remains unknown. That is why we had a discrepancy
between the benchmark function test result and the real-world
argyrodite conguration optimization result.

Rather than using the comparison between the optimization
algorithms adopted in the present investigation, it is more
important to refer to the result from the conventional random
sampling and to mention the superiority of the optimization
algorithm to the random sampling. We eventually sampled 250
000 congurations (2500 congurations/sample× 100 samples)
31162 | RSC Adv., 2022, 12, 31156–31166
in total through the random process, and the minimum
Coulomb energy among all those samples was −248.18 eV
f.u.−1. As described above, the average of minimum values that
were extracted from 100 random samples, each of which
includes 2500 congurations, was −247.20 eV f.u.−1. A
comparison should be made between the optimization algo-
rithm result and the averaged minimum from the 100 random
samples, including 250 000 congurations, to secure a more
consistent rationale for using the optimization algorithms. Note
that all the optimization algorithms were equally executed
based on 2500 evaluations. The random sampling results, at
−247.20 eV f.u.−1 (the average of the minimums from 100
samples), are higher than those recommended by any of the
optimization algorithms, although the PSO and DQN algo-
rithms yielded aminimized Coulomb energy that is only slightly
improved from the random sampling result.

It should be noted that the total number of objective func-
tion evaluations for all the adopted optimization algorithms
was equally 2500 (population sizes of 25 and 100 generations).
Even DQN reached −248.1 eV f.u.−1 with less than 500 evalua-
tions (Fig. 3b). The BO algorithm yielded a slightly worse
performance in comparison to the other optimization algo-
rithms. As shown in Fig. 3b, the minimum Coulomb energy
obtained from the BO execution was slightly higher than those
obtained from the other optimization algorithms, as shown in
Table 1 and Fig. 3b, although it is still better than the random
sampling result. There is no doubt that all the optimization
algorithms used in the present investigation led to argyrodite
congurations that exhibit lower Coulomb energy than the
minimum obtained from the random sampling at the expense
of the same computational cost, which implies that an equal
number of evaluations on average led to a better outcome when
adopting the integrated optimization strategy rather than the
conventional random sampling.

We do not blindly trust the capabilities of BO, since it is our
opinion that BO capability has been slightly exaggerated due to
its outstanding merit that BO signicantly reduces the
computational cost for some expensive optimization problems.
The expensive optimization problem represents a time- and
cost-consuming objective function evaluation. Although the BO
execution yielded an acceptable result and remarkably out-
performed the random sampling when using the simple
benchmark functions (Table S1†), it showed no such conspic-
uous improvement in comparison to the random sampling for
the real-world argyrodite conguration optimization. The use of
GPR seems inappropriate to simulate the Coulomb energy
terrain over the congurational space. GPR is only suitable in
smooth, continuous objective function terrain. However, the
Coulomb energy terrain over the argyrodite conguration is
supposed to be neither smooth nor continuous. The introduc-
tion of other surrogate functions would improve the BO
performance for real-world argyrodite conguration optimiza-
tion, as suggested by Lei et al.59 However, the alternative
surrogate functions that we adopted did not outperform the
existing GPR-based BO for the Coulomb energy optimization for
the argyrodite conguration determination, as shown in
Fig. S4.† More importantly, since the metaheuristics, such as
© 2022 The Author(s). Published by the Royal Society of Chemistry
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GA, PSO, HA, and CS, greatly outperformed BO, the improved
BO algorithms would make no sense in the present
investigation.
DFT and MD calculations for selected argyrodite
congurations

In advance of the DFT and AIMD calculations, it is a prerequi-
site to conrm a strong correlation between the Coulomb
energy and the DFT-calculated total energy since we employed
the easy-to-evaluate Coulomb energy instead of the expensive
DFT-calculated total energy as an objective function for the
conguration optimization process. Fig. 2b shows a clear linear
relationship between the Coulomb energy and the DFT-
calculated total energy for some randomly chosen argyrodite
congurations. The DFT-calculated total energy for the ten
nominated congurations are also included in Fig. 2b and
marked with red dots. Based on this nding, it was proven that
the Coulomb energy is acceptable as a surrogate criterion for
use in conguration selection, and thereby, we secured the ten
argyrodite congurations with the lowest Coulomb energies,
regardless of which optimization algorithm recommended
them. Eight of them came from the GA algorithm, and the other
two came from HS and CS. Fig. 4 shows the ten nominated
congurations in the simplied schematic manner. These low-
Coulomb-energy entries were further DFT-relaxed and nally
used for the ensuing AIMD calculations.

The ten nally nominated argyrodite congurations are
utilized for the ensuing DFT and AIMD calculations, and
Fig. 4 Ten configurations in the simplified schematic manner, nominate

© 2022 The Author(s). Published by the Royal Society of Chemistry
thereby, we validated that the calculated result is more
convincing in comparison with those from the random
sampling. The AIMD calculations for the ten selected argyrodite
congurations enabled us to estimate the Li+ ionic conductivity.
Seven temperatures were selected for the calculation of mean-
squared displacement (MSD) as a function of time interval
(Dt). The diffusivity was obtained from the slope of the MSD
over Dt by referring to the Einstein relation. The Li+ ionic
conductivity was also obtained from the diffusivity calculated
according to the Nernst–Einstein relation. The activation energy
was obtained from the Arrhenius plot of diffusivity vs. temper-
ature, and thereby, the Li+ ionic conductivity at room temper-
ature was nally evaluated through the extrapolation process.
Fig. 5 shows the Arrhenius plot of diffusivity vs. temperature for
the ten nominated congurations. We used pymatgen34,84 and
mostly followed the protocol for the AIMD-based diffusivity
calculation suggested by Ong et al.34 and He et al.84 The
extrapolated room temperature diffusivity is marked in red, and
the blue pentacle with an error bar stands for the average room
temperature diffusivity obtained from the ten extrapolated data
points (the mean and standard deviation for all ten red dots in
Fig. 5). Table 2 shows the calculated room-temperature Li+ ionic
conductivity values for the ten low-Coulomb-energy congura-
tions along with some other calculated and experimental results
reported in the literature. We suggest that the average
conductivity value from the ten Li+ ionic conductivity values
should be a more representative value for argyrodite. Since the
previously reported values from the literature are lacking and
even the calculated and experimental values are scattered,
d by the integrated optimization strategy.
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Fig. 5 Arrhenius plot for ten selected low-Coulomb-energy configurations. The error bar stands for the uncertainty for the diffusivity at each
temperature.

Table 2 Calculated room-temperature ionic conductivity for ten
selected low-Coulomb-energy configurations along with some other
calculated and experimental results from the literaturea

Material Ea (meV)
Diffusivity
(cm2 s−1)

Conductivity
(mS cm−1) Source

Li6PS5Cl (GA-1) 243 4.63 × 10−8 7.08 Ab initio (MSD)
Li6PS5Cl (GA-2) 235 6.33 × 10−8 9.68 Ab initio (MSD)
Li6PS5Cl (GA-3) 263 3.06 × 10−8 4.67 Ab initio (MSD)
Li6PS5Cl (GA-4) 202 1.36 × 10−7 20.87 Ab initio (MSD)
Li6PS5Cl (GA-5) 253 3.93 × 10−8 6.01 Ab initio (MSD)
Li6PS5Cl (GA-6) 247 4.41 × 10−8 6.75 Ab initio (MSD)
Li6PS5Cl (GA-7) 234 6.00 × 10−8 9.19 Ab initio (MSD)
Li6PS5Cl (GA-8) 230 6.71 × 10−8 10.27 Ab initio (MSD)
Li6PS5Cl (HS-1) 262 2.80 × 10−8 4.28 Ab initio (MSD)
Li6PS5Cl (CS-1) 225 7.64 × 10−8 11.69 Ab initio (MSD)
Li6PS5Cl

a 524 — 2 × 10−3 Ab initio (MSD)
Li6PS5Cl

b 130–270 — 40 Ab initio (MSD)
Li6PS5Cl

c 190 — — Ab initio (MSD)
Li6PS5Cl

d 350 — 3.1 Experimental
Li6PS5Cl

e 340 — 2.5 Experimental
Li6PS5Cl

f 330 — 1.33 Experimental
Li6PS5Cl

g 160 — 4.96 Experimental
Li6PS5Cl

h — — 2.4 Experimental
Li6PS5Cl

i 380 — 1.9 Experimental

a a: ref. 4, b: ref. 5, c: ref. 6, d–i: ref. 10–15.
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a legitimate Li+ ionic conductivity value for argyrodite is not
clearly dened. However, the Li+ ionic conductivity values for
some of the suggested congurations (4.67 and 4.28 mS cm−1)
were similar to the experimental values (2.7 � 1.26 mS cm−1),
despite the overall overestimation of the calculated conduc-
tivity, which is a general trend. The proposed strategy would be
a starting guideline for future computational Li+ ionic
conductivity.
Conclusions

Based on the correlation between the Coulomb energy and DFT-
calculated total internal energy, we pursued the ground-state
energy of argyrodite by screening the large congurational
31164 | RSC Adv., 2022, 12, 31156–31166
space in terms of the easy-to-evaluate Coulomb energy. The
screening process was greatly facilitated by adopting several
optimization algorithms, such as the GA, PSO, HS, CS, BO and
DQN. The usability and validity of these algorithms was
conrmed by employing six well-known benchmark test func-
tions: the Ackley, Egg Crate, Griewank, Rastrigin, Rosenbrock,
and Sphere functions.

Although the benchmark function test resulted in an
acceptable result for all the optimization algorithms, the real-
world argyrodite conguration optimization resulted in
a disappointing result for some optimization algorithms. The
GA, HS, and CS exhibited promising optimization performances
both for the benchmark function test and the real-world
argyrodite conguration optimization. However, PSO gave
a disappointing performance for the real-world argyrodite
conguration optimization, while an excellent performance was
observed for the benchmark function test. In particular, the BO
algorithm was worst among all the optimization algorithms for
real-world argyrodite conguration optimization. It was found
that the optimization performance is extremely dependent
upon the objective function terrain, but no one method can
surmise the objective function terrain in advance of the adop-
tion of optimization algorithms. In this regard, the integrated
optimization strategy that we suggested in the present investi-
gation would work out rather than the use of a single specic
optimization algorithm only.

Ten nal argyrodite conguration candidates exhibiting the
lowest Coulomb energies were identied by the GA, CS, and HS
(eight from the GA and two from CS and HS). Although the
lowest-Coulomb-energy entry could not directly lead to a ground
state conguration corresponding to the lowest DFT-calculated
total internal energy, several lowest-Coulomb-energy entries
were recommended, and their averaged DFT-calculated total
internal energy could represent a real-world ground state.

The diffusivity at several temperatures was calculated via
AIMD calculations to constitute the Arrhenius plot, from which
the activation energy and eventually the room temperature Li+

ionic conductivity were evaluated. A representative room
temperature Li+ ionic conductivity value was ultimately esti-
mated to be 9.05 � 4.82 mS cm−1 by averaging the ten nal
© 2022 The Author(s). Published by the Royal Society of Chemistry
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argyrodite congurations. Although it is not possible to
pinpoint a denite true conductivity value since all the reported
values are diverse irrespective of whether they are experimental
or computational, it is worth appreciating our averaged
conductivity value thanks to the concrete rationale behind the
evaluation procedures.
Code availability

The code used for this study is available at https://github.com/
socoolblue.
Data availability

The data used for this study are available in the ESI.†
Author contributions

K.-S. S. andW. B. P. conceived the concept for the entire process
and directed the computational process. W. B. P. and B. D. L.
performed DFT and AIMD calculations. B. D. L., J. P., and J. W.
L. participated in coding optimization algorithms. W. B. P., M.-
Y. C., and B. D. L. prepared the gures and tables. K.-S. S. wrote
the paper. All authors discussed the results and commented on
the manuscript.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

This research was supported by the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science, ICT,
and Future Planning (2021R1A2C1009144),
(2021R1A2C1011642) and (2021M3A7C2089778) and partly by
the Alchemist project (20012196) funded by MOTIE, Korea.
Byung Do Lee and Jin-Woong Lee contributed equally to this
work.
References

1 J. O. Besenhard, Handbook of Battery Materials, Wiley-VCH,
New York, 1999.

2 D. Linden and T. B. Reddy, Handbook of Batteries, McGraw-
Hill, New York, 3rd edn, 2002.

3 G. Pistoia, Lithium Batteries: New Material, Developments and
Perspectives, Elsevier, New York, 1994.

4 Z. Deng, Z. Y. Zhu, I. H. Chu and S. P. Ong, Chem. Mater.,
2017, 29, 281–288.
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