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sed 3D-QSAR and molecular
simulation studies to design potent pyrimidine–
sulfonamide hybrids as selective BRAFV600E

inhibitors†
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Suresh Thareja,a Prateek Pathak,e Maria Grishina,e Amita Verma,f Jagat Pal Yadav,fg

Habibullah Khalilullah,h Vikas Pathania,i Hemraj Nandanwar,i Mariusz Jaremko, j

Abdul-Hamid Emwask and Pradeep Kumar *a

The “RAS-RAF-MEK-ERK” pathway is an important signaling pathway in melanoma. BRAFV600E (70–90%) is

the most common mutation in this pathway. BRAF inhibitors have four types of conformers: type I (aC-IN/

DFG-IN), type II (aC-IN/DFG-OUT), type I1/2 (aC-OUT/DFG-IN), and type I/II (aC-OUT/DFG-OUT). First-

and second-generation BRAF inhibitors show resistance to BRAFV600E and are ineffective against

malignancies induced by dimer BRAF mutants causing ‘paradoxical’ activation. In the present study, we

performed molecular modeling of pyrimidine–sulfonamide hybrids inhibitors using 3D-QSAR, molecular

docking, and molecular dynamics simulations. Previous reports reveal the importance of pyrimidine and

sulfonamide moieties in the development of BRAFV600E inhibitors. Analysis of 3D-QSAR models provided

novel pyrimidine sulfonamide hybrid BRAFV600E inhibitors. The designed compounds share similarities

with several structural moieties present in first- and second-generation BRAF inhibitors. A total library of

88 designed compounds was generated and molecular docking studies were performed with them. Four

molecules (T109, T183, T160, and T126) were identified as hits and selected for detailed studies.

Molecular dynamics simulations were performed at 900 ns and binding was calculated. Based on

molecular docking and simulation studies, it was found that the designed compounds have better

interactions with the core active site [the nucleotide (ADP or ATP) binding site, DFG motif, and the

phospho-acceptor site (activation segment) of BRAFV600E protein than previous inhibitors. Similar to the

FDA-approved BRAFV600E inhibitors the developed compounds have [aC-OUT/DFG-IN] conformation.

Compounds T126, T160 and T183 interacted with DIF (Leu505), making them potentially useful against

BRAFV600E resistance and malignancies induced by dimer BRAF mutants. The synthesis and biological

evaluation of the designed molecules is in progress, which may lead to some potent BRAFV600E selective

inhibitors.
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1. Introduction

Melanomas arise from uncontrolled proliferation of melano-
cytes, which are found throughout the body and determine the
color of the skin, eye, inner ear, iris, rectum, leptomeninges,
and basal layer of the hair bulb matrix.1,2 For all sight of skin
cancer melanoma account for only 4% but have death rate
higher than 50%.3 In 2020, 19 292 789 new cases were estimated
worldwide for all cancers, including 324 635 (1.7%) melanoma
cases. The total number of cancer deaths was 9 958 133, of
which 57 043 (0.6%) were due to melanoma.4

The “RAS-RAF-MEK-ERK” pathway is the main component of
a signal transduction pathway that regulates gene expression
and supports mammalian cells' proliferation and survival.5 The
RAS-RAF-MEK-ERK pathway is responsible for the activation of
BRAF and regulates cell proliferation and differentiation.6

Activation of the small G protein Ras leads to activation of
BRAF.7 BRAF activates the MAP kinase/ERK signaling pathway
for normal cell control and proliferation.8 Normal and onco-
genic BRAF signaling pathway is depicted in Fig. 1a.
Fig. 1 (a) Normal and oncogenic BRAF signaling pathway notes: norma
survival. Oncogenic BRAF signaling causes an increase in cell proliferatio
mutation in BRAF protein structure (c) BRAF inhibitor binding mode with

30182 | RSC Adv., 2022, 12, 30181–30200
BRAF is the most frequently mutated protein kinase in
human melanomas.9 The prevalence of BRAF mutations in
human malignancies varies, with melanoma having between
70–90% of all mutations,10,11 5–20% in colon cancer,12 30–50%
in thyroid cancer, ∼10% in papillary thyroid cancer,13 5–20% in
colorectal cancer, and 5–30% in ovarian cancer.14 Among BRAF
gene mutations, the BRAFV600E gene is the most common
mutation in melanoma, accounting for 70–90%.15,16 It occurs at
position 600 with a single point mutation (Val600 / Glu), in
which the hydrophobic valine is replaced by polar, hydrophilic
glutamic acid.17 BRAFV600WT is the second most common
mutation of BRAF in this BRAFV600K, (10–30%).18 The rarer
codon mutations BRAFV600R,V600D (6–3%), BRAFV600E2,600-
MandV600G (<1%)19 occur in a small percentage of patients and
are considered 8% to 10% of all BRAF mutations.20

1.1 BRAF kinase conformations

The BRAF kinase domain contains two lobes: small N and large
C-terminal lobe, which are connected by a catalytic cle or
exible hinge region. The catalytic site is located in the cle
l activation of RAS-RAF pathway shows normal cell proliferation and
n and survival from benign nevus to metastatic melanoma (b) V600E
conformations (aC-helix and DFG motif).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Important amino acid sequence in BRAF protein

BRAF protein region Amino acid sequence
Different binding pocket between N-
and C-lobe Amino acid sequence

CR1 150–290 RBD 155–227 Glycine-rich ATP-phosphate-binding
loop (P-loop) and ribose pocket

463–471
CRD 234–280

CR2 360–375 aC-Helix 492–504
CR3 (protein kinase domain) 457–717 RAF selective pocketa DIF 504–511

DFG motif 594–596
Gatekeeper residue T529
Hinge region (adenine region) 530–535
Catalytic loop 574–581
Activation segment 599–623

a Raf selective pocket contain (DIF and DFG motif).
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between two lobes and contains the ATP-binding site. This
region is divided into a front cle (containing the ATP-binding
site), a gate area, and a back cle. The small N-terminal domain
lobe has an aC-helix, predominantly antiparallel b-sheet
anchors, a glycine-rich ATP-phosphate-binding loop (P-loop),
and ATP orients. The large C-terminal lobe consists of a-
helices.

At the interface of the N-and C-terminal lobes, the nucleotide
(ADP or ATP) binding site, the magnesium binding site (DFG
[Asp594–Phe595–Gly596] motif), and the phospho-acceptor site
[activation segment (AS)] are located near the DFG motif, which
are three major active sites.8,21

The ATP pocket consists of the following main regions.
Adenine region (1) is similar to the hinge region. Sugar region
(2) is where ATP ribose is located, while other three regions
include hydrophobic (3), type-I (4) and type-II (5) regions. The
solvent-accessible region is also part of the ATP region, but
generally, ATP is not located in this region.22,23 The structural
domain of the BRAF between the N-terminal and C-terminal
lobes contains three conserved regions (CR): CR1, CR2, and
CR3.24 In humans, the BRAF protein kinase contains 766 amino
acids, with key amino acid residues listed in Table 1.25,26 BRAF
protein structure and different binding conformations (aC-
helix and DFG) motif with inhibitors are depicted in Fig. 1b
and c.
1.2 Different binding modes of BRAF protein with inhibitors

The DFG motif and the aC-helix represent an important struc-
tural element of kinases. In physiological kinase activation, the
DFG motif plays a fundamental role as it shis from the
DFG-OUT (inactive or closed state occupying part of the ATP-
binding site) to the DFG-IN (active or open state), where it
moves towards the base of the aC-helix, which occupies part of
the allosteric binding site and inuences the catalytic process.

When the DFGmotif is in the IN position, the Asp594 residue
faces the active site of the kinase. In this condition, the glycine-
rich loop and the activation segment of the BRAF kinase are
separated from one another, the hydrophobic connection
between these two areas is disrupted. As a result, the catalytic
cle accessible to ATP. In this conformation, the inhibitors
© 2022 The Author(s). Published by the Royal Society of Chemistry
form interactions with the hinge region (ATP-binding site) by
forming ∼1–3 hydrogen bonds and hydrophobic interaction
around the adenine regions of the ATP-binding site of the
protein. The inhibitors also interact with other different regions
of ATP, including hydrophobic regions adjacent to the adenine
region, the ribose region, and solvent accessible region.

When the DFG motif is in the OUT position the aspartate
residue (Asp594) displaced from the active site, therefore
hydrophobic connection between the glycine rich loop and
activation section of the BRAF kinase domain, which is brought
near to one another. This contact renders ATP unavailable to
the catalytic cle of BRAF. DFG-OUT conformation, Asp594
residue supports allosteric movement extending outward from
the ATP-binding site, and inhibitors bind to allosteric site that
is close to the ATP binding pocket. The aC-helix near the ATP
site is called the aC-IN position, the aC-helix away from the ATP
site is called the aC-OUT position.27–33 Based on aC-helix and
DFG motif, four structural types of inhibitors are currently
being developed. (1) Type I, (aC-IN/DFG-IN). (2) Type II, (aC-IN/
DFG-OUT). (3) Type I1/2, (aC-OUT/DFG-IN). (4) Type I/II, (aC-
OUT/DFG-OUT).34–37
1.3 Pyrimidine–sulfonamide hybrids BRAF inhibitors

Dabrafenib mesylate type I1/2, (aC-OUT/DFG-IN) inhibitor is an
FDA-approved pyrimidine-thiazole based diphenyl sulfonamide
derivative for the treatment of metastatic melanoma in patients
with BRAFV600E mutation.38,39 Dabrafenib was rst developed by
GlaxoSmithKline (GSK) under the name GSK2118436. It is an
ATP-competitive inhibitor of BRAF kinases. Dabrafenib inhibits
BRAFV600E most potently but is less effective against
BRAFV600WT.40,41 In 2011, vemurafenib, a pyrolo-pyrimidine
based diphenyl sulfonamide derivative42 of type I1/2, (aC-OUT/
DFG-IN)43 received FDA approval for rst oral BRAFV600E

inhibitor.44,45 Encorafenib (LGX-818), a pyrazolo-pyrimidine
based phenyl sulfonamide derivative,39 was approved by the
FDA in June 2018 for the treatment of BRAFV600E/K mutated
cancer. Patients with metastatic melanoma can take a combi-
nation of encorafenib and binimetinib (inhibitors of BRAF and
MEK).46,47 The FDA-approved rst- and second-generation
adenosine triphosphate (ATP) competitive BRAF inhibitors are
RSC Adv., 2022, 12, 30181–30200 | 30183
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Fig. 2 Pyrimidine and sulfonamide moiety containing FDA approved and potent BRAFV600E inhibitors.
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shown resistance against monomeric BRAFV600 species muta-
tions and also ineffective against malignancies driven by
dimeric BRAF mutants causing ‘paradoxical’ activation.48

Preclinical studies of BRAF inhibitors in melanoma shown that
the development of resistance is more complex compared to
single mutations.49 BRAF inhibitor resistance depends on
epigenetic and transcriptomic mechanisms of MAPK/ERK or
PI3K/Akt activation of receptor tyrosine kinases.50

In 2019 Abdel-Maksoud et al. synthesized BRAF inhibitors
possessing 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole sulfon-
amide containing scaffold,51 and in 2021, Ali et al. synthesized
novel (imidazole-5-yl)pyrimidine–sulfonamide hybrids deriva-
tives.52 In 2020 Ammar et al. synthesized imidazothiazole
moiety containing pyrimidine–sulfonamide derivatives. The
synthesized compounds showed good BRAFV600E kinase inhi-
bition values in in vitro experiments.53 Abdel-Maksoud MS, et al.
synthesized a new series of 4-(1H-benzo[d]imidazole-1-yl)
pyrimidin-2-amine linked sulfonamide derivatives in 2021. The
IC50 of the synthesized compounds were evaluated against
BRAFV600E, wild-type BRAF, and CRAF and potential inhibitory
activity was found.54 In 2012, Li et al. synthesized a new series of
ATP-competitive BRAF inhibitors based on aryl/heteroaryl and
o-substitutions on the pyrazolo[1,5-a] pyrimidine scaffold
sulfonamide derivative with highly cellular potency and BRAF
selectivity.55 To date, the FDA has approved four drugs for the
treatment of melanoma, three of which contain a sulfonamide
and pyrimidine moiety respectively (Fig. 2). BRAF inhibitors
having pyrimidine and sulfonamide moiety (1–51) are also
depicted in Fig. 2.
30184 | RSC Adv., 2022, 12, 30181–30200
2. Computational approach for
designing of new pyrimidine–
sulfonamide hybrid containing
compounds as potent BRAFV600E

inhibitors

Literature reports indicate that pyrimidine and sulfonamide
moieties play a very important role in BRAF mutant inhibitor
development. The aim of this work is to investigate the struc-
tural requirements of pyrimidine–sulfonamide hybrid deriva-
tives as inhibitors of BRAFV600E mutant. Typically, 3D-QSAR
investigations are employed for statistical analysis of SAR for
a group of compounds with similar structures and to look into
the characteristics of an interaction between a ligand and its
target protein.56

Molecular docking is used to understanding the structural
relationship between a ligand and its target and predicting the
best binding conformation.57 The exibility, changes in the
structural conformation of the target binding site, and stability
of a ligand–receptor complex suggested by molecular docking
was studied in details by the use of molecular dynamics (MD)
simulations.58 As a result, it is thought that combining 3D-
QSAR, molecular docking, and MD simulations provides an
efficient way to examine how the ligand and receptor attach to
one another. By utilizing 3D-QSAR, molecular docking, and MD
simulations in the current study, we have successfully proven
molecular modelling of inhibitors of pyrimidine–sulfonamide
hybrids. To the best of our knowledge, no 3D-QSAR studies have
been reported for these types of compounds.59
© 2022 The Author(s). Published by the Royal Society of Chemistry
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In this study, we built more selective 3D-QSAR models based
on Gaussian techniques and SAR of these was summarized. The
results of the 3D-QSAR investigation were validated using
molecular docking, and the interactions between proteins and
ligands were examined. We applied MD simulations to under-
stand the exibility, structural conformational changes and to
estimate the free energy of binding of mutant BRAF kinases
with the designed compounds.
2.1 Materials and methods

2.1.1 Gaussian based 3D QSAR
2.1.1.1 Dataset collection. Structurally different pyrimidine–

sulfonamide hybrid derivatives (1–51) were selected from the
literature, exhibiting a broad spectrum of BRAFV600E inhibitory
activities (IC50 1.20–1910 nM).51–54 The 2D structures of the
pyrimidine–sulfonamide hybrid derivatives (1–51) were
prepared using the Chem 2D program. The geometry of all these
molecules was converted to a 3D structure using Schrodinger's
Maestro 12.9. The following options were chosen: (i) the force
eld used was OPLS 2005, (ii) one low energy ring conformation
per ligand was generated, (iii) all possible ionization states at
biological pH (iv) depending on the number of chiral centers,
probable tautomers and stereospecicity were considered when
processing the 3D structure of the molecules with the LigPrep
module.59,60

2.1.1.2 Training and test set selection. The IC50 values of the
data set were changed to negative logarithmic forms [pIC50 =

−log10(IC50)] to linearize the data. pIC50 values between 5.719
and 8.921 were used in this study as dependent variable for the
development of 3D-QSAR models. The dataset was divided into
training and test (validation) set (70 : 30) (Table 2) using random
selection tool present in 3D-Gaussian based QSAR of Maestro
12.9.59,60

2.1.1.3 Alignment procedure. Correct alignment of optimized
conformers from selected dataset in a xed lattice is the most
crucial need for successful generation of models. It depends on
the correct relative placement of the molecules from the data-
set. In this study, themolecules were aligned using the structure
alignment tools (exible shape-based alignment, common
scaffold alignment, maximum common substructure, smarts)
of Maestro 12.9 tools.60,61

2.1.1.4 Generation of 3D QSAR model. Models were gener-
ated using a grid spacing of 0.1�A and extending the grid by 3.0�A
beyond the limits of the training set using Maestro 12.9. The
force eld values were set as ignore force eld within 2.0�A. The
truncated steric and electrostatic force eld was preset to 30.0
kcal mol−1. Variables were removed with a standard deviation
(SD) <0.01 and the number of ligands to exclude from the cross-
validation was set as 1. Five features including steric, electro-
static, H-bond acceptor, H-bond donor, and hydrophobic eld
was considered for model buildup.60,62

2.1.1.5 Partial least square (PLS) analysis. The partial least
squares (PLS) were used to establish the 3D-QSARmodel. In this
various statistical parameters such as standard deviation (SD),
non-cross-validated correlation coefficient (r2), cross-correlation
validation, (rCV

2), r2 scramble, Fischer's test (F-test), variance
© 2022 The Author(s). Published by the Royal Society of Chemistry
ratio (p value), root mean squared error (RMSE), Pearson-r
values, leave-one-out (LOO) cross-validated correlation coeffi-
cient (q2) and Pearson-r were considered for validation of the
developed models. The quality of the developed models was
examined by SD of regression < SD of actual activities (1), 1 > r2 >
0.5, rCV

2 > 0.6, rscramble
2 < 0.6, Fischer's test (F-test) value (as

large as possible), p value (as less as possible), q2 > 0.5, Pearson-r
values, and RMSE close to 1. To evaluate the predictive ability of
the QSAR models developed, pIC50 values as dependent vari-
ables and Gaussian intensities as descriptors (independent
variables) were used.60,63

2.1.2 Molecular docking. The 3D structure of human BRAF
kinase (hBRk) with V600E mutation was taken from the
research collaboratory for structural bioinformatics (RCSB)
protein database,64 PDB ID 4XV2.65 Dabrafenib (N-{3-[5-(2-ami-
nopyrimidin-4-yl)-2-tert-butyl-1,3-thiazol-4-yl]-2-uorophenyl}-
2,6-diuorobenzenesulfonamide) is bound in the catalytic
pocket. Only the a chain of the kinase was retained, and dab-
rafenib and water molecules were removed. The hBRk was
prepared for molecular docking with Chimera 1.14.66,67 All
nonpolar hydrogens were merged, gasteiger charges were added
to each atom, atom types were determined, and the nal
structure of the prepared receptor was saved in pdbqt le
format. The center of the grid box was set at the position of the
F39 atom of dabrafenib, with cartesian coordinates −0.4, −4.9,
−21.6. The size of the box was 20 × 20 × 20 �A3 and both
exhaustiveness and the number of modes were set to 100. The
3D structure of the ligands was determined by converting
SMILES to 3D geometry and then optimizing the geometry in
RDKit.68 The Auto Dock Tools 4 Python script prepar-
e_ligand4.py69 was used to prepare the ligands. A threshold of 4
kcal mol−1 relative to the highest score was introduced to save
docked conformations. All results were visually inspected, and
the conformation with the lowest binding energy was retained.
AutoDock Vina69 was used for molecular docking simulations.
Dabrafenib was docked to the hBRk to validate our docking
procedure.

2.1.3 Molecular dynamics simulations. The initial struc-
tures of the ligand–receptor complexes for the MD simulation
were obtained by molecular docking experiment. The ligands
were parametrized in the AMBER 20 Antechamber module70

using the GAFF force eld.71 For the kinase, AMBER ff19SB72

force eld was employed. The PDB2PQR web-server73 was
accessed to determine the protonation state of the side chains
of the residues at physiological pH. The ligand–receptor
complex was impregnated with pre-equilibrated TIP3P water
molecules in a truncated octahedral periodic box. The
minimum distance between the edges of the water box and the
nearest atom of the complex was set at 12 �A. The system was
neutralized by six Cl− anions, followed by the addition of Na+

and Cl− ions according to the recommendations of Machado
and Pantano74 to achieve a neutral environment with a salt
concentration of 0.15 M.

The minimization–heating–equilibration–production
protocol was used. First, the system was subjected to geometry
optimization with periodic boundary conditions in all direc-
tions. In 10 000 optimization cycles (4000 steepest descent +
RSC Adv., 2022, 12, 30181–30200 | 30185
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Table 2 Experimental and predicted BRAFV600E inhibitory IC50 values of pyrimidine–sulfonamide hybrid derivatives used in current study

S. No. R1 X n R2 IC50 (nM) pIC50

Predicted pIC50 values
(Gaussian) Ref.

1 F 1 OH 5.620 8.250 7.802 52

2 F 1 OH 26.300 7.580 7.901 52

3 F 1 OH 30.300 7.519 7.748 52

4 F 1 OH 8.680 8.061 7.858 52

5 F 1 OH 2.490 8.604 8.436 52

6 Cl 1 OH 4.250 8.372 7.824 52

7 Cl 1 OH 21.800 7.662 7.923 52

8 Cl 1 OH 14.800 7.830 7.770 52

9 Cl 1 OH 7.810 8.107 8.464 52

10 — 2 F 22.300 7.652 7.440 51

11 — 3 F 89.000 7.051 7.376 51

12 — 3 F 26.000 7.585 7.575 51

13 — 3 F 25.100 7.600 7.773 51
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Table 2 (Contd. )

S. No. R1 X n R2 IC50 (nM) pIC50

Predicted pIC50 values
(Gaussian) Ref.

14 — 3 F 16.200 7.790 7.778 51

15 — 3 F 9.300 8.032 7.778 51

16 — 2 28.300 7.543 7.615 53

17 — 2 59.100 7.228 7.403 53

18 — 2 141.000 6.851 7.323 53

19 — 2 23.400 7.631 7.375 53

20 — 2 16.700 7.777 7.611 53

21 — 2 73.700 7.133 7.598 53

22 — 2 12.700 7.896 8.112 53

23 — 2 152.000 6.818 6.651 53

24 — 3 13.500 7.870 8.067 53

25 — 3 11.400 7.943 7.721 53

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 30181–30200 | 30187
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Table 2 (Contd. )

S. No. R1 X n R2 IC50 (nM) pIC50

Predicted pIC50 values
(Gaussian) Ref.

26 — 3 20.400 7.690 8.326 53

27 — 3 4.310 8.366 8.332 53

28 — 3 6.210 8.207 8.286 53

29 — 3 24.500 7.611 7.758 53

30 — 3 1.200 8.921 8.331 53

31 — 3 4.310 8.366 8.332 53

32 — 3 6.210 8.207 8.286 53

33 — 3 25.100 7.600 7.507 53

34 — 3 9.300 8.032 7.741 53

35 — 3 131.0 6.883 7.454 53

36 — 3 20.0 7.699 7.453 53

37 — 3 35.0 7.456 7.407 53
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Table 2 (Contd. )

S. No. R1 X n R2 IC50 (nM) pIC50

Predicted pIC50 values
(Gaussian) Ref.

38 — 2 — 1910.0 5.719 5.987 54

39 — 2 — 740.0 6.131 6.055 54

40 — 2 — 820.0 6.086 6.066 54

41 — 2 — 910.0 6.041 6.066 54

42 — 2 — 620.0 6.208 6.183 54

43 — 2 — 980.0 6.009 6.043 54

44 — 2 — 790.0 6.102 5.993 54

45 — 3 — 1120.0 5.951 6.045 54

46 — 3 — 530.0 6.276 6.062 54

47 — 3 — 790.0 6.102 6.056 54

48 — 3 — 810.0 6.092 6.043 54

49 — 3 — 490.0 6.310 6.259 54

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 30181–30200 | 30189
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Table 2 (Contd. )

S. No. R1 X n R2 IC50 (nM) pIC50

Predicted pIC50 values
(Gaussian) Ref.

50 — 3 — 820.0 6.086 6.185 54

51 — 3 — 1280.0 5.893 6.409 54
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6000 conjugate gradient), both the protein and the ligand were
constrained with harmonic potential k = 10.0 mol−1 �A−2. The
system was heated stepwise from 0 K to 310 K in 500 ps without
any constraints. Aer an equilibration period of 500 ps,
a productive unconstrained molecular dynamics (MD) simula-
tion of 1 ms duration was started, except for the drug dabrafenib,
for which the total simulation time was 300 ns. A time step of 2
fs at constant pressure (1 atm) and temperature (310 K) was
used. A langevine thermostat with a collision frequency of 1
ps−1 was used for temperature control. In all simulation
protocols, hydrogen atoms were constrained by the SHAKE
algorithm.75 The cut-off distance for non-bonded interaction
was 11 �A, while for long-range electrostatic interactions, the
particle mesh Ewald method76 was used. Periodic boundary
conditions were employed in all directions. MD simulations
were performed using the molecular dynamics package
Amber.77 MD simulations were performed on the Isabella
cluster of the University Computing Center, University of
Zagreb, Croatia.

2.1.3.1 Binding free energy calculation. The free energies of
binding (DGbind) between a series of potential drugs (ligands)
and the hBRk were calculated according to well-established
molecular mechanics/generalized Born surface area (MM/
GBSA) protocol.78 The formula

DGbind = DH − TDS z DEMM + DGsol − TDS (1)

DEMM = DEinternal + DEelectrostatic + DEvdW (2)

DGsol = DGGB + DGSA (3)

within single-trajectory approach is implemented in the
MMPSBA.py script of the AmberTools package. The sum of the
bond, angle and dihedral energy (DEinternal), electrostatic
(DEelectrostatic) and van der Waals (DEvdW) energies is DEMM, the
change in MM energy contribution in the gas phase. DGsol is
a change in solvation free energy, with a polar component
(DGGB, electrostatic solvation energy) and a non-polar, non-
electrostatic solvation contribution (DGSA). TDS is the confor-
mational entropy at binding. The production phase trajectory
30190 | RSC Adv., 2022, 12, 30181–30200
was divided into 20 segments of 50 ns length. Except for the
drug dabrafenib (DAB), where the 300 ns trajectory was divided
into 6 segments of 50 ns length. From each segment, 100
geometries were sampled at regular time steps and DGbind was
calculated. The nal DGbind was expressed as the mean �
standard deviation for all 20 segments. The calculated MM/
GBSA free energies of binding were further decomposed into
the specic contributions for each residue. In this way, the
contributions of each amino acid side chain to DGbind were
determined and the nature of the energy change in terms of
interaction and solvation energies, or entropic contributions
were identied.79 Since we are comparing the energies of the
same receptor and of ligands with approximately the same size
and number of rotatable bonds, entropic contributions (–TDS)
were neglected.

2.1.3.2 Cluster analysis. The structures of each complex
were clustered based on the RMSD of the Ca atoms of each
residue using the k-means algorithm. The maximum number of
iterations was set to 1000, with randomized initial set of points
and sieving set was equal to 10. The frames closest to the
centroids of the clusters were identied and considered as
representative structures of the conformations. The CPPTRAJ
module80 was used to perform the cluster analysis.
3. Results and discussion
3.1 Gaussian-based QSAR model generation

Model was generated on structurally aligned pyrimidine–
sulfonamide hybrid derivatives (1–51) with BRAFV600E inhibitory
activity. There was a moderate disparity between the actual and
predicted values of the training and test molecules, which is
known as residual activity, and it was within the Gaussian
models' allowed ranges (<1), this indicates strong linear
correlation.

The developed QSAR models were evaluated using the
following parameters: squared correlation coefficient (r2), cross-
validated correlation coefficient (q2 training), r2 scramble,
stability, Fisher's test (the variance ratio indicating the statis-
tical signicance of the model), p-value (magnitude of the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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variance ratio, where small p-values usually indicate a higher
degree of signicance), SD (SD of the regression), RMSE test
(root-mean-square error of the test set), q2 test (value for the
predicted activities of the test set) and Pearson-r (correlation
coefficient between observed and predicted activities for the test
set).81

3.1.1 Gaussian-based 3D-QSAR model. Model was gener-
ated using PLS with ve factors, including steric, electrostatic,
hydrophobic, HBD, and HBA elds of the training set.59 The rCV

2

value of 0.7873 was derived from the cross-validation leave one
out (LOO) method, while non-cross-validation analysis yielded
an r2 value of 0.9603. SD of the regression is 0.1855, Fischer's
ratio value is 140.5, and stability of the model is 0.87. The
statistical summary of the model is listed in Table 3.

The results for this model showed that the steric and elec-
trostatic contributions were, respectively, 0.416 and 0.114. This
implies that for protein–ligand interactions, the steric eld is
more signicant than the electrostatic groups. Steric and elec-
trostatic eld contributions are given in (Table 3 and Fig. 3). The
pIC50 values were predicted using 15 test set inhibitors for
model validation. The predictive q2 for thesemodels was 0.6384,
which shows that they have a respectable level of predictive
power. The contributions of the hydrophobic, HBD, and HBA
elds were 0.169, 0.184, and 0.118, respectively (Table 3). The
eld contributions of the steric and hydrophobic intensities
were more than those of the electrostatic, HBA, and HBD elds,
indicating that the importance of the steric and hydrophobic
elds for protein–ligand interactions is greater.

3.1.2 Different Gaussian contour maps. The contours of
each of the ve PLS components of the training set are
described and shown in Fig. 3. In the Gaussian steric contour
map (Fig. 3b), the phenyl ring (green contours) and the imidazo
[2,1-b] thiazole moiety (red contours) are shown as favourable
and unfavorable sites for steric interactions respectively.
Table 3 Statical results obtained using Gaussian-based 3D-QSAR mode

Statistical parameters of generated 3D QSAR model

PLS data Gaussian Acceptable value

SD 0.1855 SD of regression < SD
r2 0.9603 1 > r2 > 0.5
rCV

2 0.7873 >0.6
r2 scramble 0.6879 <0.6
Stability 0.87 >0.6 or = 1
F 140.5 Larger values of F
p 2.10 × 10−19 Smaller values of p, g
RMSE 0.53 Close to 1
q2 0.6384 >0.5, and (R2 − Q2) 0.
Pearson-r 0.806 Close to 1, lesser scat

Field contribution (%)

Gaussian steric
Gaussian electrostatic
Gaussian hydrophobic
Gaussian H-bond acceptor
Gaussian H-bond donor

© 2022 The Author(s). Published by the Royal Society of Chemistry
The imidazo[2,1-b] thiazole moiety (green contours) with
electropositive groups and the phenyl ring (red contours) with
electronegative groups are active in the Gaussian electrostatic
contour map (Fig. 3c). The green contour maps over the phenyl
ring (Fig. 3d) of the Gaussian hydrophobic contour map show
that they are hydrophobic, whereas the red contour maps over
the imidazo[2,1-b] thiazole moiety show that they are not
hydrophobic and may reduce BRAFV600E activity. The hydrogen
bond acceptor (HBA) groups in the phenyl ring (red contour) are
unfavorable, whereas the HBA groups in the sulfonamide
moiety (green contour) are favorable for activity, in the Gaussian
HBA contour map (Fig. 3e). The green contour with the phenyl
ring has a favorable hydrogen bond donor (HBD) group in the
Gaussian HBD contour map (Fig. 3f), and substituting HBD
groups at this position may boost BRAFV600E activity.

3.1.3 Validation of Gaussian-based 3D-QSAR model. Pre-
dicted versus experimental activity of the training and test sets
was plotted to demonstrate the model's validity see Fig. 3g–i.
Comparison of the experimentally observed and predicted pIC50

values of pyrimidine–sulfonamide hybrid inhibitors, shows that
the Gaussian model performs well in predicting the activities
for both training and test molecules. Aer analyzing the
statistical parameters, we came to the conclusion that the
models had good predictability and offered precise information
about the chemical properties of the ligands, which would
contribute to antagonistic activity against BRAFV600E.

Fig. 4 shows the structural requirements of the designed
pyrimidine–sulfonamide hybrid derivatives based on 3D-QSAR.
In designed compound Fig. 4, the alkyl chain of potent
compound Fig. 3a is replaced by phenyl ring due to its higher
hydrophobicity and imidazothiazole moiety was eliminated.
Structure activity relationship (SAR) of designed compound on
the basis of different parameters like hydrogen bond acceptor
(HBA), (hydrogen bond donor) HBD, electrostatic hydrophobic
ls

of actual activities (1)

reater degree of condence

3
tered predictive activities in the plot of observed vs. predicted activities

0.416
0.114
0.189
0.118
0.184
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Fig. 3 Gaussian based 3D-QSAR model. (a) Potent BRAFV600E inhibitor [IC50 = 1.200 nM; (S. No. 30)] (b) steric contour map (c) electrostatic
contour map (d) hydrophobic contour map (e) H-bond acceptor contour map (f) H-bond donor contour map. Relation between experimental
and predicted BRAFV600E inhibitory activity values of (g) all set (pIC50) (h) test set (pIC50) (i) training set (pIC50).
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and steric requirements at specic position are also depicted in
Fig. 4.

3.2 Rationality of designed compound compared with
USFDA approved BRAF inhibitors

Based on a Gaussian-based 3D-QSAR model, the developed
pyrimidine–sulfonamide hybrid derivative's structural moieties
Fig. 4 Structural requirements of pyrimidine–sulfonamide hybrid deriv
Gaussian based contour maps.

30192 | RSC Adv., 2022, 12, 30181–30200
were assessed with the FDA-approved BRAF inhibitors: rst-
generation – sorafenib and second generation – dabrafenib,
vemurafenib, and encorafenib for rationality.

Pyrimidine and sulfonamide (SO2NH2) moieties were
selected as a core moiety for development of new BRAFV600E

inhibitors. The pyrimidine moiety is similar to the most potent
drugs on the market, dabrafenib and encorafenib. The
atives for BRAFV600E activity and selectivity based on the analysis of

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Structure of new designed pyrimidine–sulfonamide hybrid compounds.
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sulfonamide moiety is similar to all 2nd generation drugs. The
N-phenyl ring moiety has similarity with sorafenib (1st genera-
tion), dabrafenib, vemurafenib, and encorafenib (2nd genera-
tion). The rational of the designed compound is depicted in
Fig. S1.†

3.2.1 Different derivatives of designed pyrimidine–sulfon-
amide hybrid moieties. Importance of different function
groups, such as OH (HBA/HBD), NO2, Cl, Br, F, and I (electron-
withdrawing), OCH3, OH (electron-donating group), different
heterocyclic moieties, such as quinoline, pyrrole, thiophene,
and naphthol (steric requirements), were chosen based on the
SAR of the designed compound (Fig. 4). On the basis of above
ndings, a library of 88 newly designed compounds was created
and is shown in Fig. 5 and Table S1.†
3.3 Molecular docking and molecular dynamics simulations

Being aware of the potential problems with molecular docking
experiments,82 we docked 92 compounds (88 designed
compounds and 4 FDA approved BRAF inhibitor drugs) to the
kinase receptor. The docking procedure was validated by
redocking dabrafenib to the hBRk binding site. The root mean
squared deviation (RMSD) between the experimental and
docked structure is small (0.47 �A). Additionally, the rotation of
the dabrafenib's methyl group contributes the most to the
overall RMSD, so we have demonstrated the correctness of our
approach. The superimposed experimental and docked dabra-
fenib structures in the enzyme pocket are displayed in Fig. S2.†
Among all docked compounds, dabrafenib performed best with
a docking score of −12.7 kcal mol−1. Four molecules, T109,
T183, T160 and T126 had scores below −12 kcal mol−1, so they
were selected for detailed studies. Binding poses of T109 (red),
T126 (orange), T160 (sea green), T183 (sky blue), and the
reference drug dabrafenib (magenta) as determined by molec-
ular docking to the BRAF kinase protein pocket are depicted in
Fig. S3.† It is interesting that none of the docked hit molecules
nor dabrafenib (docked or experimentally determined struc-
ture) are in contact with Glu600. Fig. S4† shows docked T160
(sea green) and dabrafenib (magenta) to BRAF. CA atom of
Glu600 (black) is more than 14 �A apart from the nearest non-
hydrogen atom of T160/dabrafenib ligands. All docking scores
are collected in Table S2.†

Aer visual inspection of the best docked poses of the top 4
compounds forming our group of hit molecules, they served as
initial geometries for MD simulations. Before conclusions were
drawn, the conformational dynamics and stability of each
complex were examined using a 1 ms long molecular dynamics
© 2022 The Author(s). Published by the Royal Society of Chemistry
simulation. The RMSD and radius of gyration (RoG) of the
backbone aC atoms of the receptor relative to the initial struc-
tures were calculated and the stability of the complexes was
monitored. Flexibility of the residues' side chain was evaluated
using RMSF. The compounds were ranked based on their ability
to bind to hBRk, and their interaction pattern was investigated.

3.3.1 Molecular dynamics simulation study of compound T
160. In the rst 900 ns of the simulation, the RMSD uctuated
around a mean value of 2.44�A. Then an increase in RMSD was
observed, and the mean value for the last 100 ns was 3.05 �A.
These changes prompted us to perform a cluster analysis to
identify relevant changes in the complex structure. We chose to
use the k-means algorithm, where k ranges from 2 to 5. The
results were analyzed using the Davies–Bouldin index (DBI), the
pseudo-F statistic (pSF), and the ratio between the sum of
squares of the regression and the sum of squares of error (SSR/
SST) (Table S3†). The analysis conrmed the presence of three
relevant conformations with selected parameters collected in
Table S4.† For each conformation, a representative structure
was identied as a frame closest to the cluster centroid. The
distribution of the conformations of the T160:BRAF kinase
(T160:hBRk) complex along the trajectory and their RMSD
relative to the initial frame are shown in Fig. 6. Along with the
increase in the mean RMSD values aer the 900 ns mark,
a slight decrease in the radius of gyration (RoG) from 19.24�A to
19.15 �A was observed.

In all three conformations, the secondary structure was
generally well preserved. However, there were some minor
changes in the secondary structure that could affect the geom-
etry of the catalytic pocket Fig. 7. The rst region includes
residues that are in direct contact with the ligand – Arg462,
Ile463, Gly464, and Ser465, while these residues do not have
a dened secondary structure in the dominant conformation A,
they form a b-sheet in conformations B and C. The second
region with considerable changes is the region between Ile592
and Phe 635, which is almost completely without dened
secondary structure. In the crystal structure (Fig. S5†)83 and in
conformation A, only Pro622 to Ile625 from this region form an
H4 a-helix. In conformation B, the H4 helix is absent but two
new helices are formed (Glu611-Leu613 and Ile617-Trp619). The
H4 helix and the Ile617–Trp619 helix are present in the C
conformation.

The exibility of the residues of the hBRk protein in the
complex was examined by calculating root mean squared uc-
tuations (RMSF) for each residue (Fig. 8). High RMSF values
indicated greater uctuations and exibility. The averaged
RMSF value was 1.55 �A. Almost all of the rst 50 residues were
RSC Adv., 2022, 12, 30181–30200 | 30193
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Fig. 6 Molecular dynamics trajectory analysis for T160:hBRk complex. RMSD (left) and RoG (right).
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having higher than average RMSF values, indicating high ex-
ibility of the N-terminus of the kinase. The highest RMSF value
was having Met627, a residue whose side chain pointed toward
the solvent, far from the binding site of the ligand. The previ-
ously mentioned unstructured region was having two
fragments with RMSF values above 3 �A. These two fragments,
Ser607–Ser614 and Ile625–Asn631, were not in direct contact
with the ligand. It is important to note that the catalytically
relevant residues Asp594, Phe595 and Gly596 have RMSF values
below 1 �A.
Fig. 7 Structural differences between conformations A (blue), B (red) and
representing three conformations.

30194 | RSC Adv., 2022, 12, 30181–30200
Hydrogen bond analysis revealed that on average 2.11
hydrogen bonds were established between T160 and the kinase.
This is on average only 0.02 less than in the complex with T183
and the hBRk. The predominant hydrogen bond formed in
almost 75% of the simulation time was between the hydroxyl
group of Thr529 (hydrogen acceptor) and the N4 atom of T160
with an average bond length of 1.89� 0.08�A. Changes in the 3D
structure of the protein were reected in the hydrogen bonding
patterns in different conformations. For example, in A, T160
formed four hydrogen bonds with three residues (two with
C (green). Superposition of three structures of the T160:hBRk complex

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Root mean square fluctuations per residue of the T160:hBRk
complex.
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Ser465 and one with Thr529 and Asp594). In addition, 15 resi-
dues had at least one heavy atom in a 4.0�A zone away from the
non-hydrogen atoms of T160. This illustrated the large number
of stabilizing van der Waals interactions. In conformation B,
only two hydrogen bonds were formed (with Lys483 and
Thr529). Finally, conformation C exhibited three hydrogen
bonds. The detailed interactions are shown in Fig. 9.

Although the MD simulation for DAB was 300 ns long, some
conclusions can be drawn. The exibility of residues changes
slightly when T160 is replaced in the catalytic pocket by dab-
rafenib, the drug approved for the treatment of melanoma with
V600E or V600Kmutation (Fig. S6†), with a slight increase in the
exibility of residues Ala544–Lys548 and a decrease in the
exibility of Ile625–Asn631. In addition, dabrafenib has on
average one more hydrogen bond than T160, being predomi-
nantly (90% of the simulation time) bound to the Gly593 oxygen
atom with an average hydrogen bond length of 1.84�A, which is
shorter than the hydrogen bond between Thr529 and T160.
Numerous van der Waals interactions together with a higher
number of hydrogen bonds could be responsible for the higher
binding affinity to hBRk than T160.

3.3.2 Calculation of the free energy of binding. The
binding affinity of the hit molecules and the reference drug
dabrafenib was estimated using the MM/GBSA approach, in
which the free energies of solvation were determined by solving
Fig. 9 Hydrogen bonds patterns in three T160:hBRk conformations.

© 2022 The Author(s). Published by the Royal Society of Chemistry
the generalized Born equation. For the complex T160:hBRk, the
free energy of binding without entropy contribution was −59.1
� 2.6 kcal mol−1. T160 had the highest binding potential to
hBRk of all the compounds studied. TheMM/GBSA binding free
energy decomposition was used to identify key residues with
dominant contribution to protein–ligand binding. In the study
of the SARS-CoV-2 virus, its main protease84 and the NS3
protease of Kyasanur forest disease virus,85 a threshold of −1.5
kcal mol−1 was set for the free energy of binding of a single
residue to classify it as a residue with dominant contribution,
and the same criteria was applied in the present study. Table 4
lists the residues with dominant contributions for T109, T126,
T160, and T183 and dabrafenib. Fig. 10 shows the main inter-
actions based on the decomposition of the binding free energy.
In addition to the polar and uncharged Thr529 and the posi-
tively charged Lys483, four hydrophobic residues (Val471,
Leu505, Leu514, Trp531, and Phe583) contributed signicantly
to the binding free energy of T160. This nding conrmed the
results of previous analyzes on the importance of van der Waals
interactions.

As expected, the Gly593 residue, which forms the hydrogen
bond, has the largest contribution to the binding of dabrafenib
(DAB). Other stabilizing interactions are established with the
electron-rich residues Phe583 and Trp531, the hydrophobic
Val471, Leu514, and Ile527, and the polar Thr529 and Cys532.
The free energy of binding for the DAB:hBRk complex was
estimated to be −61.7 � 1.0 kcal mol−1, slightly better than for
T160:hBRk.

The results obtained by the analysis of Gaussian-based
contour maps suggest that the introduction of the HBA group
at the phenyl moiety should increase the activity of the pyrim-
idine–sulfonamide hybrid derivatives. Comparing compounds
T160 and T126, which differ only in the presence of a nitro
group at the para position of the phenyl moiety in T160, one can
observe a drastic change in the binding free energy for these two
compounds. While the binding free energy for T160 is −59.1 �
2.6 kcal mol−1, it is only −39.7 � 2.2 kcal mol−1 for T126 (vide
infra). The MD simulations revealed that the nitro group sits in
a hydrophobic pocket and is surrounded by hydrogen atoms. To
gain a deeper insight into the nature of why some structural
modications predicted by Gaussian-based contour maps
contribute to higher selectivity, additional MD simulations are
needed, including non-substituted pyrimidine–sulfonamide
RSC Adv., 2022, 12, 30181–30200 | 30195
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Table 4 Contributions of the most important amino acid residues for the binding of T109, T126, T160, T183 and dabrafenib to hBRk

T109 T126 T160 T183 Dabrafenib (DAB)

Residue DGbind Residue DGbind Residue DGbind Residue DGbind Residue DGbind

Lys483 −6.86 Lys483 −2.68 Thr529 −3.63 Lys483 −3.09 Gly593 −3.45
Asp594 −3.93 Phe583 −2.27 Lys483 −2.74 Asp594 −2.38 Trp531 −2.63
Ile527 −2.21 Leu514 −2.19 Leu514 −2.43 Val471 −2.08 Phe583 −2.36
Val471 −2.07 Val471 −2.16 Val471 −2.05 Gly593 −2.07 Thr529 −2.23
Phe583 −1.77 Thr529 −1.80 Leu505 −1.85 Ile463 −2.02 Leu514 −1.93
Leu514 −1.51 Ile463 −1.73 Phe583 −1.77 Leu514 −1.97 Val471 −1.89

Leu505 −1.58 Trp531 −1.62 Ile527 −1.92 Ile527 −1.81
Phe583 −1.91 Cys532 −1.70
Leu505 −1.56

Fig. 10 Insight into the catalytic site neighborhood of T160 in hBRk,
with residues with the most favorable single residue binding free
energy.

Fig. 11 Superposition of three structures of the T183:hBRk complex
representing three conformations with circled regions of major
structural rearrangements. Conformations A (blue), B (red) and C
(green).
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scaffolds, but this is beyond the scope of the present
manuscript.

3.3.3 Compound T109, T126 and T183 molecular dynamics
simulations study. The same protocol used for the analysis of
the T160:hBRk complex was applied to the analysis of the
T109:hBRk, T126:hBRk, and T183:hBRk complexes. The
stability of the complexes was conrmed by tracking RMSD and
RoG along the trajectory (Fig. S7†).

All complexes remained stable but had higher averaged
RMSD values compared to the T160:hBRk complex. The RoG
values were very similar and range from 18.93�A to 19.29�A. The
existence of multiple conformations was conrmed by cluster
analysis. The cluster analysis data are summarized in Tables S5–
S10.† Three complexes shared the presence of an initial short-
lived conformation that converts to another conformation
within 100 ns. The relative ratios between the populations of
conformations A and B are approximately 0.6 to 0.3.

The primary geometric difference between the conforma-
tions of T109:hBRk and T126:hBRk, just as with T160:hBRk, was
in unstructured fragments. However, in T183:hBRk, confor-
mations A and B showed differences in secondary structure
motifs compared to the representative structure of the initial
conformation C (Fig. 11). For example, a shi of the H6 a-helix
axis was observed. Slightly less pronounced was the shi of the
H1 a-helix axis, but it played a larger role in the geometry of the
30196 | RSC Adv., 2022, 12, 30181–30200
binding site. While the C-terminus of the H1 a-helix had van der
Waals contacts with the catalytic Phe595 residue, the N-
terminus is tilted toward the unstructured loop region,
reducing the volume of the cle.

hBRk residues had higher average RMSF values, 1.81 �A and
1.80 �A, when T183 and T126 were bound in the active pocket,
respectively, compared with T109 (1.55 �A). The RMSF diagram
(Fig. S8†) shows similar exibility patterns. Again, the N-
terminus and unstructured regions exhibited above average
exibility, while the conserved triad, which was important for
catalysis, exhibited low exibility. T126 had the lowest average
number of hydrogen bonds (0.95) between ligand and the
receptor. The hydrogen bond connecting the hydroxyl oxygen of
Thr529 and the NH group of T126 was present only during 23%
of the simulation time, with an average length of 1.91 �A. For
comparison, the analogous bond in T160:hBRk was present for
about 75% of the simulation time. In T183:hBRk, Gly593 acted
as a hydrogen bond acceptor, and the 1.83 � 0.10 �A long bond
was present during 82% of the trajectory. In addition to
hydrogen bonding, van der Waals interactions also contributed
to free energy of binding. While the free energy of binding of
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 FDA inhibitors and designed compound interaction with different region of BRAFV600E and their binding conformation on the basis of
DFG motif and aC-helix.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/1
7/

20
26

 1
2:

42
:2

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
T109 and T183 was almost within 1 kcal mol−1 (−55.5� 3.1 kcal
mol−1 and −56.6 � 3.0 kcal mol−1, respectively), the value for
T126 is only 39.7 � 2.2 kcal mol−1. T109, T160, and T183 can
serve as excellent starting points for introducing chemical
modications to optimize their potential to inhibit BRAF
kinase.
4. Binding study of BRAF inhibitors
and designed compounds with DFG
motif and aC-helix of BRAFV600E

protein and their conformation

BRAF inhibitors are having 4 different types binding confor-
mations with DFG motif and aC-helix.86 Employing this notion,
by using molecular docking and simulation studies, we suc-
ceeded in locating our designed molecule's binding conforma-
tion with the DFG motif and aC-helix (Fig. 12).

The Asp594 residue of the DFG motif was facing the active
site of the kinase in the designed compounds (T109, T126, T160
and T183). Compounds T109, T126, T160 and T183 have inter-
actions with the hinge region (ATP-binding site) by forming∼1–
3 hydrogen bonds and hydrophobic interaction around the
adenine regions of the ATP binding site of the protein. The
designed compounds also has interactions with other various
regions of ATP, including hydrophobic regions adjacent to the
adenine region, the ribose region, and the solvent assessable
region (DFG-IN). The aC-helix away from the ATP site is referred
to as the aC-OUT position. Thus, designed compounds inter-
acted with the [aC-OUT/DFG-IN] conrmation, just like dabra-
fenib, encorafenib and vemurafenib.23,87 Additionally,
compounds T126, T160, and T183 interact with the Leu505
amino acid sequence at the dimerization interface (DIF). BRAF
dimerization contributes to the pathogenic function of disease-
associated mutant Raf proteins and exhibits activity similar to
the constitutively active BRAFV600E mutant once this activated
state has been attained. It has also been found to alter
© 2022 The Author(s). Published by the Royal Society of Chemistry
therapeutic responses and disease progression in patients
treated with BRAF inhibitors.88 Oncogenic BRAF dimers shown
resistance against BRAF inhibitors and causes paradoxical
activation.89

5. Conclusion

The pyrimidine–sulfonamide hybrid derivatives were designed
based on the different structural moieties of the rst and
second-generation BRAF inhibitors. 3D-QSAR and molecular
docking studies were performed for the designed compounds to
determine their binding affinity. Molecular dynamics simula-
tions were performed to understand the exibility, structural
conformation changes and interaction pattern of the mutant
BRAF kinase with hit compounds. Analysis of the Gaussian-
based 3D-QSAR models showed that the contribution of steric
and hydrophobic elds was higher than the other eld inten-
sities. These models provided considerable insight into the key
properties of the inhibitors, their structural features, and their
inhibitory potential. The developed compounds showed good
interactions with the core active site [the nucleotide (ADP or
ATP) binding site, DFG motif, the phospho-acceptor site (acti-
vation segment), adjacent to the DFG motif and the aC-helix] of
the BRAFV600E protein. Similar to the FDA-approved BRAFV600E

inhibitors the developed compounds have [aC-OUT/DFG-IN]
conformation and compound T126, T160, and T183 interacted
with dimerization interface and may effective against malig-
nancies driven by dimer interface. The synthesis of these
designed molecules is in progress. The synthesized molecules
will be tested further to support the results of in silico studies.
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J. D. Marechal, Acc. Chem. Res., 2020, 53, 896–905.

58 L. G. Ferreira, R. N. Dos Santos, G. Oliva and
A. D. Andricopulo, Molecules, 2015, 20, 13384–13421.

59 S. Kalva, D. Vinod and L. M. Saleena, Med. Chem. Res., 2013,
22, 5303–5313.

60 Y. Singh, K. S. Sanjay, P. Kumar, S. Singh and S. Thareja, J.
Biomol. Struct. Dyn., 2022, 1–18.

61 K. Yao, P. Liu, H. Liu, Q. Wei, J. Yang, P. Cao and Y. Lai, J.
Mol. Struct., 2019, 1189, 187–202.

62 J. Caballero, J. Mol. Graphics Modell., 2010, 29, 363–371.
63 M. K. Teli, Org. Med. Chem. Lett., 2012, 2, 1–10.
64 R. Roskoski Jr, Pharmacol. Res., 2018, 135, 239–258.
65 C. Zhang, W. Spevak, Y. Zhang, E. A. Burton, Y. Ma,

G. Habets, J. Zhang, J. Lin, T. Ewing and B. Matusow,
Nature, 2015, 526, 583–586.

66 E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch,
D. M. Greenblatt, E. C. Meng and T. E. Ferrin, J. Comput.
Chem., 2004, 25, 1605–1612.

67 E. C. Meng, E. F. Pettersen, G. S. Couch, C. C. Huang and
T. E. Ferrin, BMC Bioinf., 2006, 7, 1–10.
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