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ine learning and quantum
chemical calculations for high-throughput virtual
screening of thermally activated delayed
fluorescence molecular materials: the impact of
selection strategy and structural mutations†

Chunyun Tu, a Weijiang Huang,a Sheng Liang,b Kui Wang,a Qin Tiana

and Wei Yan *a

In view of the theoretical importance and huge application potential of Thermally Activated Delayed

Fluorescence (TADF) materials, it is of great significance to conduct High-Throughput Virtual Screening

(HTVS) on compound libraries to find TADF candidate molecules. This research focuses on the

computational design of pure organic TADF molecules. By combining machine learning and quantum

chemical calculations, using cheminformatics tools, and introducing the concept of selection and

mutation from evolutionary theory, we have designed a computational program for HTVS of TADF

molecular materials, especially the impact of selection strategy and structural mutations on the results of

HTVS was explored. An initial compound library (size = 103) constructed by enumeration of typical

donors and acceptors was used to evolve by successively applying selection and 10 different structural

mutations. And a group fingerprint similarity (DMSPR) index was proposed to account for the similarity

between two compound libraries with comparable sizes. Based on the computed data, we have found

that the mix of selection and mutations into the evolution map does have great impact on the HTVS

results: (a) except the fast mutation Sub2, all the rest of the mutations can effectively concentrate ‘good’

molecules in a compound library, and hence give large material abundance (typically >0.8) for high

mutation generations (ng $ 6). (b) The mean energy gap can exhibit a fast convergent trend toward very

low values, hence the studied mutations (except Sub2) can cooperate very well with the studied DA

substrates to generate optimal molecules, and the group fingerprint similarity can retain high enough

values for large ng, which can be associated with the apparent convergence in molecular skeletons as ng

increases. (c) The distribution of skeleton frequencies for a specific mutation is generally uneven with

one dominant skeleton. The overall numbers of common and generic cores for all mutations are 11 and

7 as ng = 9. Hence, in a sense, the ‘optimal’ skeletons seem unique and useful in realizing low energy

gaps. With these observations and the development of related HTVS software, we expect to provide

insight and tools to the research community of HTVS of molecular (TADF) materials.
1 Introduction

Since Tang and VanSlyke's rst big breakthrough in 1987,1

organic light-emitting diodes (OLEDs) have been profoundly
improved in materials, device structures, and luminous effi-
ciency.2,3 In recent years, OLEDs have been widely used in the
ineering, Guiyang University, Guiyang,

om; Tel: +86-180-9605-0905

Science, Guiyang University, Guiyang,

ESI) available: Structure of donors and
ng; denition of group molecular
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manufacture of display devices (such as TV screens, computer
monitors, smart phone screens, exible display panels, etc.),
and are considered to have great potential in the eld of
lighting.4 A modern OLED typically has a three-layer architec-
ture, [anodejhole transport layerjlight-emitting layerjelectron
transport layerjcathode]. The light-emitting material is
dispersed in the light-emitting layer by doping or non-doping
manner, and emits light in response to the current generated
by the potential applied across the electrodes, which is so-called
electroluminescence.4

So far, the luminescent materials as core OLED materials
have undergone profound improvements, starting from the rst
generation of uorescent materials (e.g., aluminum octahy-
droxyquinoline), through the second generation of
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d2ra05643g&domain=pdf&date_stamp=2022-10-28
http://orcid.org/0000-0002-5622-7293
http://orcid.org/0000-0002-9248-0544
https://doi.org/10.1039/d2ra05643g
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ra05643g
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA012048


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 9

/1
4/

20
24

 7
:1

2:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
phosphorescent materials represented by heavy transition
noble metal organic complexes (e.g., bipyridine complexes of
Ir(III)) until the third generation of TADF materials (e.g., organic
donor–p-bridge–acceptor molecules).

Upon electric excitation, TADF materials (compounds char-
acterized by very low rst excited singlet-triplet energy gaps
(DEST)) get thermally activated to induce efficient reverse
intersystem crossing (rISC) where the triplet excitons get con-
verted into singlet excitons, so as to emit light dominantly from
the emissive singlet excited state. In Fig. 1, the electrolumi-
nescence process of TADF material is schematically shown.
Compared with noble metal–organic complex phosphorescent
materials, TADF materials have the advantages of larger mate-
rial space, low price, easy preparation and synthesis, easy
fabrication of exible screens, and more stable blue light
emission. Therefore, in the last decade, as the most promising
electroluminescent material for modern OLEDs, they have been
experimentally,2,5–9, theoretically10–23 and theory-experiment
jointly15,24,25 studied in depth.

Basically, there are two classes of TADF materials that have
been carefully explored.4 The rst type is pure organic D–A or D–
p–A systems whose electron donor (D) or acceptor (A) are mainly
constructed by nitrogen-containing aromatic heterocycles. The
lowest excitation states typically possess signicant intra-
molecular charge transfer (CT) transition character. Aer
reasonable design and optimization, the external quantum
efficiency (EQE) of OLED devices based on such TADF materials
can even be as high as 30%. From the perspective of structural
characteristics, the best luminous efficiency usually corre-
sponds to the twisted D–A (or D–p–A) compounds due to
enough steric hindrance between the donor and acceptor parts.
Another type is transition metal (Cu(I), Ag(I), Zn(II), etc.)
complexes with electronic conguration of d10, and their lowest
excited states usually have signicant metal–ligand Charge
transfer (MLCT) transition character. The saturated d10
Fig. 1 Schematic diagram of the electroluminescence process of
thermally activated delayed fluorescent materials.

© 2022 The Author(s). Published by the Royal Society of Chemistry
electronic conguration of the central metal is very benecial to
reduce the possible quenching of the dp–dp* transitions in the
complex and achieve deep blue emission.

The experimental breakthroughs came mainly from Adachi
and collaborators, who focused on designing organic molecules
with D–p–A (and other) frameworks, and tuning the frame-
works to achieve a small enough DEST while maintaining
a suitable uorescence radiation rate, so that efficient TADF
becomes possible. Recently developed blue TADF OLED devices
have an EQE approaching 37%, which is rather impressive
considering the EQE of Tang and VanSlyke's 1987 version of
uorescent OLEDs is about 1%.1

In a review on molecular design patterns of organic TADF
materials,3 Im et al. suggested that high-efficiency TADF mate-
rials should have at least a small DEST and a high photo-
luminescence quantum yield (PLQY). DEST is associated with
upconverting triplet excitons to singlet excitons, while PLQY is
closely related to the radiative transition probability. To obtain
a small DEST, a strong donor/acceptor should be used and the
molecular backbone should be twisted. The acquisition of high
PLQY should have: a phenyl bridge as a connecting unit, delo-
calized and dispersed highest occupied molecular orbital
(HOMO), and a double luminescent core. These strategies will
undoubtedly provide useful guidance for further molecular
design of TADF materials.

Contemporary electronic structure theory methods (e.g.,
density functional theory, DFT) have been able to predict the
optoelectronic properties of molecules (or materials) with rela-
tively high accuracy.26,27 Theoretical research is playing an
increasingly important role in the in-depth understanding of
the structure–property relationship and luminescence mecha-
nism of TADF materials, and has a signicant impact on the
molecular design of such materials. As pointed out by Olivier
and collaborators, theoretical research on this type of materials
requires careful consideration.19 Designing new molecules with
efficient TADF emission is a difficult task, as they must exhibit
a strong transition between singlet and triplet states without
using heavy elements to enhance spin–orbit coupling fast
conversion (large krISC). They should also show a large uores-
cence rate (large kF), but at the same time a small energy
difference between excited singlet and triplet states (small
DEST). In a feature article, Penfold et al. reviewed recent
advances in theoretical and computational chemistry to
understand TADF materials and mechanisms.20 For lumines-
cence dynamics, simply assume krISC [ kF, and apply eqn (1)

kTADF ¼ 1

3
kF expð �DEST=kBTÞ (1)

for rate estimation is considered inappropriate, and a new way
to uniformly deal with the relevant quantities is needed. For
electronic structure calculations, the standard time-dependent
density functional method (TDDFT) may fail, in which case
a tuned range-separated hybrid DFT or multi-reference cong-
uration interaction (MRCI) method needs to be introduced. To
understand the TADF mechanism, it is not enough to calculate
the reverse intersystem crossover rate (krISC) between singlet (S1)
and triplet (T1) only by using rst-order perturbation theory and
RSC Adv., 2022, 12, 30962–30975 | 30963
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Fermi's golden rule. Rather, the second-order perturbation
theory including the spin-vibronic mechanism needs to be
taken into account. In addition, conformational, regioisomeri-
zation, as well as environmental effects, are also crucial in
determining the properties of TADF materials, and should
therefore also be taken into account.

Commonly viewed as a branch discipline of theoretical
chemistry, the rise of cheminformatics in recent years is
deemed to make great impact on chemical science. With the
continuous development of the theoretical system,28–33 addi-
tionally, the open-sourceization of many high-quality chem-
informatics tools (e.g., RDKit, Mordred, stk etc.),34–37 those make
it possible (even for non-experts) to efficiently manage large
amounts of chemical information. The efficient management of
virtual molecules as well as molecular libraries in silico by using
cheminformatics tools is crucial for large-scale computational
design of (molecular) materials. On the other hand, in the eld
of computational design of (organic) molecules and (solid-state)
materials, exploration of chemical compound space (CCS) using
high-throughput virtual screening (HTVS) methods is being
accepted as a routine procedure for molecular or material lead
discovery. The important material categories involved include
photovoltaic materials, optoelectronic materials, organic matrix
ow battery materials, etc.38–40 By designing computational
funnels to efficiently deploy computational programs, the HTVS
approach allows researchers to make data-driven discoveries by
observing trends in the data.

As one of the branches of articial intelligence (AI), machine
learning (ML) can efficiently extract hidden relationships from
large amounts of complex data. With advances in algorithmic
models and open-source tools (general purpose: Scikit-learn,
TensorFlow, Pytorch etc.;41–44 chemistry or materials orienta-
tion: DeepChem, MLatom, MAST-ML etc.45–48), ML has
profoundly changed the research paradigm of computational
chemistry (or materials) science in the last decade.49 Classical
algorithm developments and applications include: predicting
molecular atomization energies;50 nding density functionals
for model systems;51 improving high-level electron correlation
methods, learning universal molecular force elds; predicting
molecular thermochemical properties, chemical reaction active
sites, molecular excited state properties, molecular crystalliza-
tion behavior, etc.39,52–55 On the other hand, the establishment of
open-source molecular databases has also promoted the
development and calibration of models and algorithms which
combine quantum chemistry with machine learning.45,56–59

Considering the rarity and high price of heavy metal transi-
tion metal complex phosphorescent materials, as well as the
difficulty in achieving high-performance blue light emission, it
is undoubtedly very attractive to design and develop stable and
efficient TADF blue light materials as an alternative.4 A pio-
neering attempt at high-throughput virtual screening of organic
TADF materials was rst made by Aspuru-Guzik and collabo-
rators. By utilizing machine learning and time-dependent
density functional theory methods, the screening procedure is
rationally set to screen thousands of promising candidate TADF
molecules from a search space of 1.6 million molecules, among
which the best candidate molecules can be used to prepare
30964 | RSC Adv., 2022, 12, 30962–30975
OLED devices. The achieved external quantum efficiencies can
be as high as 22%.15 In another distinguished study, the same
authors designed a deep neural network incorporating a varia-
tional autoencoder (VAE),60 by accepting hundreds of thousands
of existing chemical structures to build three coupled functions:
encoder, decoder and predictor.61 This model can convert
discrete molecular representations to and from multidimen-
sional continuous ones. Notably, the continuous representation
allows the use of powerful gradient-based optimization to effi-
ciently guide the search for optimal functional compounds.

This study focuses on the computational design of pure
organic TADF molecules, by examining the effects of structural
mutations as well as selection strategy on the results of high-
throughput virtual screening of TADF materials, we expect to
provide theoretical basis and guidance for the optimization of
organic (or metallic complex type) TADF materials (lead) for
larger-scale chemical space exploration in the future.
2 Theoretical methods

Sieving materials effectively within a large chemical compound
space is as difficult as nding a needle in a haystack. Organic
TADF molecules are typically electron donor–acceptor systems
(DA, D–p–A, etc.) with N-containing heteroaromatic rings as
building blocks. By introducing the concept of mutation and
selection from genetic algorithm62 (GA) and combining
machine learning algorithm with quantum chemical compu-
tations in the calculation steps, a relatively simplied calcula-
tion program is proposed. The main aim is to efficiently explore
the chemical compound space to obtain organic TADF material
candidates.

Structural mutations can play an important role in tuning
the electronic properties of molecular systems. Suppose our
starting molecule is Biphenyl with 10 aromatic C–H bonds (aC–
H) in the structure, if we allow two types of simple structural
mutations:

(1) The whole is replaced by an aromatic N (aN),

aC–H / aN;

(2) The terminal H is substituted by a group G (G is
a common simple electron donor or acceptor),

aC–H / aC–G

If we further set substitution group G to be F (Fluorine
group), for this molecule, we would virtually have 210 mutant
offspring (assuming all positions are distinguishable), and the
real size would be 210 aer removing the duplicates. This only
considers the consequences of a single mutation. If there are
more than one possible mutations at a single substitutable
position, the number of combinations will expand dramatically
beyond the calculable extent, given typically available compu-
tation resources owned by a computational research group.
Obviously, the size of our initial molecular library G0 will not be
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Computational road map for HTVS of TADF molecules.
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1 (typically greater than 103). Therefore, designing computa-
tional funnels based on a core property (or several core prop-
erties) of a material is crucial for efficient exploration of
chemical compound space. For TADF material in current case,
this property was chosen to be the energy difference between
the rst singlet excited state and the rst triplet excited state
(DEST).

Both single and mixed mutations have been taken into
account. They are: N(slow), N(fast), F, CN, OMe, and NMe2; F or
OMe, F or NMe2, CN or OMe, CN or NMe2. N(slow) and N(fast)
denote different mutation speeds, where N(slow) restricts only
one position to be substituted, and N(fast) allows at most two.
These mutations are denoted symbolically as Sub1, Sub2, Sub3,
., Sub10, respectively.

The designed computational framework for high-throughput
virtual screening for TADF materials in this study is schemati-
cally presented in Fig. 2. The brief process is as follows:

(a) The control parameters get initialized. The convergence
criteria for the loop are set as a combination of three: number of
generation of mutations (ng), number of accumulated optimal
molecules (nacc_opt_mols), and material abundance (uMA).
© 2022 The Author(s). Published by the Royal Society of Chemistry
(b) Through rational selection of donor and acceptor frag-
ments (30 donors and 43 acceptors, see Fig. S1 and S2 in the
ESI†), under the donor–acceptor (DA) structural framework,
using the open source cheminformatics package RDKit, and
based on the Simplied Molecular Input Line Entry System
(SMILES),29 an initial molecular library G0 (limit its size to 103)
was obtained by combinatorial enumeration of fragments.

(c) Starting from this library, some molecules are randomly
selected (the selection ratio is set to 10%), and their initial
molecular conformations are generated by the RDKit package,
where the ETKGD algorithm35 is adopted.

(d) The core properties of the selected molecules are quickly
and accurately calculated by quantum chemical calculations.
The geometry optimization of ground state is performed by
semi-empirical quantum chemical methond PM6-D3.63,64 Based
on the optimized geometry, the vertical energy gap (DEST) is
calculated by TD-uB97XD/6-31G(d) method.65

The differences between ground state geometries computed
by B3LYP/6-31G(d) and PM6-D3 levels of theory is mesured by
the root-mean-square deviation (RMSD) of the computed
molecules for Sub3 (ng= 0 only). The RMSDs is calculated by the
Python code rmsd with adoption of the Kabsch algorithm to
RSC Adv., 2022, 12, 30962–30975 | 30965
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align molecules.66,67 The distribution of frequency of RMSDs is
given in Fig. S3.† The mean of the RMSDs is 0.59, and 75% of
them are smaller than 0.69, which indicates the size of differ-
ence in geometries might be acceptable. Hence, the PM6-D3
method is adopt. In addition, the effect of varied ground state
geometry optimization methods on the HTVS results have been
briey tested (see ESI†). Moreover, tuned range-separated
hybrid functional methods (e.g., LC-u*PBE, u*B97XD and
CAM-B3LYP) are typically chosen to accurately compute the
related electronic properties of TADF molecules. In this study,
owing to the limit on available computational resources, the
TD-uB97XD/6-31G(d) method is chosen with the range-
separation parameter not tuned, with the hope that the tuned
range-separation parameters of molecules could not deviate
considerably from the default values or if the deviations are
considerable, they could induce the same direction changes on
the distribution of the computed property of the compound
library.

(e) The molecular structures get featurized by molecular
ngerprint method, and are introduced into the machine
learning algorithm to train and learn a model. The chosen
ngerprint is the ECFP method, and the computation is assis-
ted by the DeepChem package. And the Random Forest (RF)
Regressor68 of the machine learning package Scikit-learn is
used. (For more details, refer to the related section in the ESI.†)

(f) By using the learned MLmodel, we predict the property of
entire molecular library so as to obtain the optimal molecules
within the library.

(g) A certain proportion (10%) of the top-ranked molecules
are taken out to generate a new generation of molecular
libraries (named Gn, n = 1, 2, 3, .) by means of structural
mutations. Here, selection and mutation get incorporated into
the computational paths.

(h) Analysis of molecular skeleton decomposition is per-
formed to access the corresponding evolution of skeleton of
molecules in library. There the Murcko Skeleton Decomposi-
tion69 method in the RDKit package is adopted.

(i) An energy sieve is then applied to divide the molecules
into regions of different colors. Molecules with predicted
vertical rst excited energies (ES1) larger than 2.80 eV, between
2.50 to 2.80 eV, and smaller than 2.50 eV are partitioned into the
blue, green, and red regions of colors, respectively.

(j) Compute material abundance (uMA) and accumulate
optimal molecules to get number of accumulated optimal
Table 1 The evolution of material abundance (uMA) with increase of mu

ng Sub1 Sub2 Sub3 Sub4 Sub5

0 0.010 0.010 0.010 0.010 0.010
1 0.133 0.076 0.200 0.025 0.121
2 0.460 0.033 0.697 0.351 0.337
3 0.766 0.210 0.825 0.634 0.953
4 0.592 0.481 0.798 0.762 0.805
5 0.789 0.330 0.837 0.857 0.926
6 0.760 0.376 0.834 0.782 0.959
7 0.747 0.368 0.833 0.814 0.949
8 0.760 0.197 0.860 0.867 0.877
9 0.642 0.306 0.852 0.946 0.895

30966 | RSC Adv., 2022, 12, 30962–30975
molecules (nacc_opt_mols). The threshold for 'good' material is the
predicted DEST < 0.15 eV. The material abundance is computed
by eqn (2)

uMA ¼ number of molecules with DEST lower than 0:15 eV

number of all molecules

(2)

(k) The accumulated optimal molecules are nally ranked
based on Synthetic Accessibility Scores (SAS) to obtain the best
TADF material candidates. Low SASs imply relative ease of
synthesis of molecules. Since the perpetual mutations on the
molecular framework would profoundly disturb the structure,
even could make the synthesis impossible, a nal control of SAS
is certainly necessary to sieve out bad structures from the good
ones.

Repeat the above steps from (c) to (j) using the newly formed
library Gn to generate a next library Gn + 1, until we have reached
the preset loop convergence criterion. The denition of calcu-
lation completeness for geometry optimization and property
evaluation is meant to assist the automation of related calcu-
lation routines. Unavoidably, the geometry or property of some
molecules (and their mutation offspring) may not converge
under the chosen computational methods, therefore, only
a preset completeness ratio is required to escape the steps. For
geometry optimization and property calculation, the ratios are
0.80 and 0.90, respectively. Inside the loop, the interconversion
of chemical les between different formats is facilitated by the
Open Babel cheminformatics tool.70 Gratefully, the analysis of
data is assisted by the Anaconda3 (ref. 71) scientic computing
platform and the Spyder72 integrate development environment,
where several numeric Python packages have been used,
including NumPy, Pandas, SciPy and Matplotlib.73–76 The above
computational program has been packaged and distributed as
an open source Python code (SALAM).77

All quantum chemical computations is done by the Gaussian
16 package.78
3 Results and discussion

This work is mainly designed to examine the effect of different
structural mutations as well as selection strategy on the result of
HTVS of TADF materials. The initial compound library G0 is
generated by combinatorial enumeration of 30 donors and 43
tation generation (ng) for different mutations

Sub6 Sub7 Sub8 Sub9 Sub10

0.010 0.010 0.010 0.010 0.010
0.093 0.186 0.133 0.067 0.152
0.027 0.967 0.648 0.901 0.799
0.179 0.968 0.967 0.865 0.708
0.352 0.975 0.649 0.720 0.567
0.591 0.879 0.423 0.916 0.845
0.785 0.929 0.941 0.982 0.894
0.927 0.958 0.979 0.812 1.000
0.876 1.000 0.823 0.841 0.777
0.716 0.995 0.915 0.982 1.000

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The evolution of average number of aromatic aCH bonds
(naCH) with increase of mutation generation (ng) for different mutations

ng Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

0 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3
1 15.7 14.8 14.9 14.9 14.9 14.9 15.8 15.9 15.8 15.7
2 13.7 11.1 11.3 10.0 12.9 10.7 13.1 12.6 14.7 12.8
3 11.8 7.8 10.1 11.1 9.4 8.9 17.8 10.5 13.8 14.5
4 11.9 6.5 6.3 12.5 8.0 15.6 11.1 9.3 16.6 15.1
5 11.1 5.5 6.2 10.9 6.9 19.2 10.7 13.4 19.2 20.1
6 11.1 5.7 5.4 7.9 7.2 18.1 11.3 6.1 14.0 21.1
7 11.2 5.8 5.3 8.0 5.9 20.2 10.5 4.8 10.5 20.4
8 10.9 5.5 5.0 7.8 6.3 18.2 10.6 4.4 7.8 4.0
9 10.8 5.4 4.9 8.2 5.4 16.0 9.7 3.6 7.5 2.9

Fig. 3 The material abundance versus mutation generation for Sub3.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 9

/1
4/

20
24

 7
:1

2:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
acceptors under the donor–acceptor (DA) molecular frame-
works (details in ESI†). The kernel property adopted for opti-
mization is the vertical energy gap DEST.
3.1 Material abundance

Starting from the common baseline library (G0), the evolution of
material abundance (uMA) with the increase of mutation
generation (ng) for different mutations has been listed in Table
1. For any of the studiedmutations, the initial uMA is 0.010 (ng=
0), as ng increases, the uMA typically can display a sharp increase
at low ng values, and give slow increase at meadian ng values,
and nally trend to approach (or oscillate around) their
respective limits. For an illustration of this behavior, the
material abundance versusmutation generation for mutation =

F (Sub3) is depicted in Fig. 3. From the rather low 0.010 (ng = 0)
increases to relatively high 0.825 (ng = 3) and nally ceases at
0.852 (ng = 9). For succeeded generations, the corresponding
uMA may experience signicant decrease, however, the overall
trend to stay around a limit is rather obvious.

A comparison of Sub1 and Sub2 (correspond to different
mutation speeds: slow versus fast), tells that for this type of
mutations (aC–H / aN) a slow mutation speed is favorable
than a fast one in achieving high uMA at large ng. As ng = 9, the
uMA for Sub1 and Sub2 are 0.642 and 0.306, correspondingly.
For the second type of mutations (aC–H/ aC–G), the evolution
of uMA seem relatively small as ng increases to high values. To
sum up, except the fast mutation Sub2, all of the rest mutations
can effectively concentrate ‘good’ molecules in compound
library, hence give large uMA values.
Fig. 4 The mean number of aromatic aCH bonds versus mutation
generation for Sub3.
3.2 Average number of aromatic aCH bonds (naCH)

Turn back to the setup of the computational road map, it's
natural to expect that as the two types mutations occupy posi-
tions (say, the mutation generation increases) the average
number of aromatic aCH bonds of a compound library would
experience signicant drop in magnitude across the process.
The evolution of average number of aromatic aCH bonds (naCH)
with increase of mutation generation (ng) for different muta-
tions is listed in Table 2. It's noted that the overall evolution
trend for naCH (uniformly decreases in value as ng increases) is
© 2022 The Author(s). Published by the Royal Society of Chemistry
as we expected, though exceptions (alternative increase and
decrease) do exist. Starting from the baseline 18.3 (ng = 0), the
naCH can drop down to a smaller value (generally lower than 10.0
as ng = 9).

Take Sub3 as a case, whose naCH starts from a large value 18.3
(ng = 0), sharply decreases to 6.3 (ng = 4), nally drops to 4.9 (ng
= 9). The related diagram for Sub3 has been depicted in Fig. 4.
The starting large naCH should be attributed to large amount of
unsubstituted molecules with multi-cyclic aromatic structures
in the library. A small ending naCH should be attributed to large
amount of oversubstituted molecules in the library, while
a large ending naCH should be attributed to concentration of
very large multi-cyclic aromatic molecules with low substitu-
tions in the library. Thus, the seemingly anomalous phenomena
of alternative increase and decrease in naCH can be understood
by tracing the evolution of molecular skeletons of the
compound library.

As compared with the slow mutation (Sub1), the naCH of the
fast mutation (Sub2) exhibits a very rapid drop in value.
However, this rapid drop in naCH is not sufficient to guarantee
a meaningful increase in uMA (compare Tables 2 and 1). For
some mutations (Sub6 and Sub10), the anomalous alternative
increase and decrease in naCH is a sign of violent transformation
of dominant molecular skeletons under selection and mutation
process. Therefore, it can be used as an indicator to differentiate
RSC Adv., 2022, 12, 30962–30975 | 30967
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Table 3 The evolution of number of accumulated optimal molecules
(nacc_opt_mols) with increase of mutation generation (ng) for different
mutations

ng Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

0 10 10 10 10 10 10 10 10 10 10
1 83 83 202 34 125 97 191 137 75 156
2 288 108 791 341 418 122 1048 695 910 870
3 556 275 1429 807 1195 285 1894 1500 1679 1463
4 781 533 1808 1464 1607 576 2728 2043 2329 1947
5 1052 615 2041 2168 1841 1078 3455 2399 3143 2666
6 1345 696 2144 2667 2191 1768 4265 3104 4012 3453
7 1626 732 2182 3074 2380 2655 5083 3807 4730 4318
8 1896 741 2236 3433 2596 3423 5961 4328 5376 4645
9 2063 753 2273 3970 2730 4057 6833 4803 6172 4902

Fig. 5 The number of accumulated optimal molecules versus muta-
tion generation for Sub3.
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the skeleton transformation effect of different mutations on the
same DA substrates. If naCH retains large values as ng turns
large, there would be great amount of relatively ‘big’ molecules
accumulated in library. Otherwise, if naCH exhibits rapid drop as
ng increases, there would be great amount of relatively ‘small’
molecules accumulated in library. Generally, from a point of
view of synthetic chemistry, the ‘small’ molecules is more
favorable than the ‘big’ ones.

To sum up, analysis of the naCH of different mutations tells
us that the uniform drop in naCH with increase of ng is not
a sufficient condition to guarantee a meaningful increase in
Table 4 The evolution of mean energy gap ðDESTÞ with increase of mut

ng Sub1 Sub2 Sub3 Sub4 Sub5

0 0.669 0.669 0.669 0.669 0.669
1 0.292 0.369 0.246 0.332 0.280
2 0.218 0.316 0.140 0.218 0.275
3 0.088 0.276 0.098 0.139 0.086
4 0.187 0.207 0.095 0.116 0.106
5 0.104 0.268 0.078 0.101 0.086
6 0.120 0.233 0.075 0.108 0.085
7 0.110 0.249 0.076 0.102 0.084
8 0.114 0.274 0.074 0.077 0.089
9 0.155 0.229 0.076 0.059 0.085

30968 | RSC Adv., 2022, 12, 30962–30975
uMA, rather it can be used a an indicator to differentiate
different mutations on skeleton transformation effect.
3.3 Accumulated optimal molecules

Harvesting optimal molecules as more as possible by applying
the designed HTVS program is one of the most important aims
to be achieved. In other words, the best mutation should be the
one which can induce the molecule's property in the right
direction to fulll the requirement as material. Since in the
design of the selection and mutation computational step, the
parent molecules are intrinsically added as part to form the new
compound library, we think a number of accumulated optimal
molecules along the mutation generations should be more
suitable to account for the concentrating ability of the different
mutations.

The evolution of number of accumulated optimal molecules
(nacc_opt_mols) with increase of mutation generation (ng) for
different mutations has been listed in Table 3. The nacc_opt_mols

for any of mutations can exhibit a sharp increase in low to
middle ng values (0 < ng# 5), follow by slower growth for middle
to high ng (6# ng # 9), and may nally trend to atten out. The
probability of nding identical molecules between adjacent
libraries will increase as ng becomes large. This behavior is best
demonstrated by the data of Sub3, as depicted in Fig. 5.

As compared with the fast mutation Sub2, the slow mutation
Sub1 can give approximately 2.7 times increase in nacc_opt_mols.
Thus, Sub1 is more favorable than Sub2 in producing optimal
molecules. Taking ng = 9 as base, for the 4 terminal single
mutations (Sub3 to Sub6), the precedence order is: Sub3 < Sub5
< Sub4 z Sub6, a strong donor (or acceptor) is superior to
a weak one; for the rest 4 mixed mutations (Sub7 to Sub10), the
precedence order is: Sub8 < Sub10 < Sub9 < Sub7, the weak–
weak pair exhibits superiority among others. The mixed muta-
tions would produce more optimal molecules as expected since
they correspond to larger chemical compound spaces, however,
the price is the signicant increase in molecular complexity,
which might eventually prohibit them as material due to diffi-
culty from experimental synthesis.
3.4 Mean energy gap DEST

A successful HTVS program ought to effectively drive the opti-
mized property to the optimal direction. For the current case,
ation generation (ng) for different mutations

Sub6 Sub7 Sub8 Sub9 Sub10

0.669 0.669 0.669 0.669 0.669
0.310 0.262 0.298 0.253 0.264
0.236 0.065 0.150 0.096 0.115
0.331 0.046 0.134 0.103 0.116
0.178 0.051 0.144 0.121 0.151
0.165 0.082 0.256 0.098 0.085
0.124 0.058 0.052 0.057 0.078
0.076 0.050 0.066 0.108 0.100
0.104 0.042 0.092 0.090 0.096
0.128 0.043 0.073 0.063 0.043

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The evolution of mean energy gaps versusmutation generation
for Sub3.
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the evolution of mean energy gap DEST of library along with the
mutation generations has been listed in Table 4. It's observed
that: the DEST for any of all mutations can exhibit a sharp
decrease as ng moves from low to middle values (0 < ng# 3), and
trend to atten out from middle to high values (3 < ng # 9). A
large proportion of molecules with low DEST is enough to
maintain the mean quantity DEST of library at low value.

Regardless of the types of mutations, the fast convergent
trend of DEST is rather impressive. The evolution of mean
energy gaps versus mutation generation for Sub3 has been
depicted in Fig. 6. The DEST starts from a value of 0.669 eV (ng =
0), experiences a sharp drop to 0.098 eV (ng= 3), nally trends to
atten out to 0.076 eV (ng = 9). There should have a clear
Fig. 7 The evolution of energy gaps frequency distribution versus muta

© 2022 The Author(s). Published by the Royal Society of Chemistry
correlation between the evolutionary behaviors of DEST and
uMA, since both of them are group quantities based on the DEST
of molecules.

To give more details on the impact of the mutation along
with mutation generations, the evolution of energy gaps
frequency distribution versus mutation generation for Sub3 has
been depicted in Fig. 7. The fast shi to low DEST is apparent (ng
moves from 0 to 3), then the distribution retains a large
proportion in the very low value range and tails in the low to
medium range.

To sum up, regardless of the types of mutations, the mean
energy gap can exhibit a fast convergent trend toward very low
values, hence the studied mutations (except Sub2) can coop-
erate very well with the DA substrates to generate optimal
molecules.
3.5 Skeleton decomposition

Decomposition of a closely connected compound library into
molecular skeletons is an effective way to examine it's main
skeleton compositions. Considering the loop nature of the
designed HTVS program, it's interesting to observe how the
dominant molecular skeletons can evolve with the increase of
mutation generation. By applying the Murcko Skeleton
Decomposition method, the related data has been computed.
Two types of molecular skeletons (common and generic cores)
are adopted. The common cores identify both types of elements
and bonds, while the generic cores neglect this information.

The evolution of skeletons (common cores) versus mutation
generation for Sub3 has been depicted in Fig. 8, and that of
tion generation for Sub3.

RSC Adv., 2022, 12, 30962–30975 | 30969
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Fig. 8 The evolution of skeleton (core) with mutation generation for Sub3 (the numbers below structures denote the corresponding
frequencies).
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skeletons (generic cores) has been given in Fig. S4 in the ESI.†
For simplicity, at most 9 dominant high-frequency skeletons
and selected mutation generations have been shown. For both
types of cores, there exists explicit quantitative shrinkage of
dominant high-frequency skeletons. The common cores starts
from the relatively uniform distribution of frequencies of 9
cores (ng = 0), then collapses to very uneven distribution of
frequencies of 5 cores (ng = 5), and nally collapses further to
a distribution of frequencies of only 2 cores (ng = 9) (Fig. 8).
The generic cores can exhibit more profound collapse in
Table 5 The evolution of the number of molecules in library (ntot), the
number of intersection molecules (ninter), and the group fingerprint
similarity between two libraries (DMSPR) with increase of mutation
generation (ng) for Sub1, Sub3 and Sub7

ng

Sub1 Sub3 Sub7

ntot ninter DMSPR ntot ninter DMSPR ntot ninter DMSPR

0 1000 — — 1000 — — 1000 — —
1 588 100a 0.660a 1000 100 0.542 1000 98 0.553
2 531 125 0.738 960 111 0.638 1000 127 0.666
3 487 127 0.778 929 140 0.787 1000 122 0.737
4 585 179 0.900 747 227 0.893 1000 135 0.735
5 541 161 0.834 618 282 0.949 1000 171 0.834
6 570 151 0.872 608 354 0.908 1000 126 0.779
7 588 180 0.898 546 350 0.932 1000 138 0.910
8 574 173 0.930 514 339 0.980 1000 120 0.891
9 565 212 0.928 506 364 0.992 1000 117 0.959

a Calculated with respect to the corresponding precedent ng.

30970 | RSC Adv., 2022, 12, 30962–30975
number of cores (Fig. S4 in the ESI†). This collapse is a sign of
efficient convergence of the structures around ‘excellent’
molecules. Hence is benecial for obtaining optimal
molecules.
3.6 Similarity analysis between mutation generations

Similarity is an important concept used to describe the degree
of difference in the structure of two molecules. Using this
concept, and introducing a valid ngerprint representation for
molecule and a similarity metric, the similarity can be easily
calculated for any pair of two molecules.

Following the concept of similarity for two molecules and
based on molecular ngerprint representation, we propose
a numerical method to calculate group ngerprint similarity
(DMSPR) between two compound libraries. Here, the molecular
ngerprint representation method is ECFP, and the similarity is
measured by the Tanimoto metric.

The calculation of the group ngerprint similarity (DMSPR) is
based a algorithm, which we name it the Maximum Similarity
Pairing Rule (MSPR) (refer to ESI†). The evolution of the number
of molecules in library (ntot), the number of intersection mole-
cules (ninter), and the group ngerprint similarity between two
libraries (DMSPR) with increase of mutation generation (ng) for
Sub1, Sub3 and Sub7 is listed in Table 5.

For Sub1, the ntot keeps a size of about 500 for ng in range
from 1 to 9, and the ninter exhibits a slowly increase trend in that
range, hence the DMSPR can change from a low value of 0.660
(for ng= 1) to a high value 0.928 (for ng= 9). For Sub3, the rather
high values of DMSPR for high mutation generations (ng $ 5) can
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 The structures of 9 optimal molecules with lowest SAS for
Sub3.
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be ascribed by the ordered descending of ntot and incrementing
of ninter. For Sub7, both of ntot and ninter keep their sizes as ng
increases. The high values of DMSPR for high mutation genera-
tions (ng $ 7) can be ascribed by the convergence in molecular
skeletons, which can retain the similarity between pairs of
molecules at high values of range.

To sum up, regardless of types of mutations, the group
ngerprint similarity (DMSPR) at high mutation generations can
retain high enough values (typically larger than 0.90), which can
be associated with the apparent convergence in molecular
skeletons at high mutation generations.
3.7 Optimal TADF molecules (low DEST and SAS)

The (energy gap) optimal molecules for all mutations have been
sorted by synthetic accessibility scores from low to high, so as to
give recommendation for TADF materials candidates. The
structures of 9 molecules with lowest SAS for Sub3 have been
depicted in Fig. 9. For other mutations, the related structures
are given by Fig. S5 in the ESI.†

In principle, molecules with simpler and more symmetric
structures are favored by the SAS sorting routine. Within the
studied compound space, those compounds constructed by
typical tri-cyclic donors connecting with (polyacetonitrile
substituted) benzenes acceptors can possess the lowest SAS. In
addition, they can exhibit low enough energy gaps. Therefore,
from the point of view of synthetic chemistry, they are recom-
mended as optimal TADF molecules (low DEST and SAS),
although only a small energy gap might not be enough to
guarantee the occurrence of TADF emission.

Notably, possessing a low enough DEST as a necessary
condition, the real occurrence of TADF emission for
a compound should at least be accompanied with an acceptable
radioactive uorescent rate. Since the number of accumulated
optimal molecules for high mutation generation are typically
larger than 2000, we expect the extra fulllment of the radio-
active uorescent rate may have great chance to occur possibly
by further sieving the already obtained compound library of
accumulated optimal molecules.
© 2022 The Author(s). Published by the Royal Society of Chemistry
3.8 Recommendation for combinations of DA substrates
with mutations

3.8.1 Optimal molecular skeletons for realizing low energy
gaps. Regardless of the mutations, the high material abun-
dances (typically >0.8) at large mutation generations (ng $ 6)
naturally indicate the existence of ‘optimal’molecular skeletons
for realizing low energy gaps as substituted by suitable muta-
tions. The SMILES of common and generic cores, and their
frequencies for studied mutations as ng = 9 have been listed in
Table 6.

The distribution of frequencies of different skeletons for
a specic mutation is generally uneven with one dominant
skeleton. The common core with SMILES =

“c1ccc(N2c3ccccc3Nc3ccccc32)cc1” exists for several mutations
(Sub3, Sub5, Sub8 and Sub10) with associated frequencies (303,
243, 662 and 555). The common core with SMILES =

“c1ccc(N2c3ccccc3Oc3ccccc32)cc1” exists for several mutations
(Sub3, Sub4 and Sub8) with associated frequencies (203, 29 and
134). The common core with SMILES =

“c1ccc(N2c3ccccc3Cc3cc4c(cc32)c2ccccc2n4-c2ccccc2)cc1”
exists for two mutations (Sub7 and Sub9) with associated
frequencies (984 and 688). Similarly, the common core with
SMILES = “O]S(]O)(c1ccccc1)c1ccc(S(]O)(]O)c2ccccc2)
c(N2c3ccccc3Cc3ccccc32)c1” exists only for Sub4 with frequen-
cies = 640. Different skeletons can exhibit distinguishable
preference to associate with different mutations. In short, the
mutation can select the optimal skeleton(s) out from thousands
of original DA substrates to realize low energy gaps.

Aer removing duplicates, the structures of optimal skele-
tons (common cores) for mutations from Sub3 to Sub10 as ng =
9 have been depicted in Fig. 10. The related diagram for generic
cores is given by Fig. S6 in ESI.† By denitions of common and
generic cores, the common cores for Sub1 and Sub2 cannot
collapse, however, their generic cores do belong to 1 or 2 skel-
etons (Table 6). It's interesting to note that the overall numbers
of common and generic cores for all mutations are 11 and 7.
Hence, in a sense, the ‘optimal’ skeletons seem unique and
useful in realizing low energy gaps.

3.8.2 Emitting colors. The optimization of structures is
designed for one kernel property (the energy gap), hence the
accompanied emitting color (energy) should not be optimized
(as mutation generation increases). Conceptually, clean (with
limited substitution) DA compounds should mainly exhibit
blue emission owing to the intrinsic p/ p* transition pattern.
As hetero-atoms doping in the structure, there would be
considerable red shi to occur. In addition, the connection of
strong electronic donor to conjugate aromatic system would
have effect to red-shi the emission. For the chosen DA
substrates andmutations, analysis of data from the energy sieve
step shows that:

(1) To access red color, Sub10 (CN or NMe2) is the best
mutation groups, which can produce considerable proportion
red molecules when the mutation generation equals to 9.

(2) To access green color, Sub1 (N(slow)), Sub2 (N(fast)), Sub4
(CN), Sub9 (CN or OMe), and Sub10 (CN or NMe2) are favored
groups.
RSC Adv., 2022, 12, 30962–30975 | 30971
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Table 6 The SMILES of common and generic cores, and their frequencies for studied mutations as ng = 9

Mutations Freq

SMILES of common cores
Sub3 c1ccc(N2c3ccccc3Nc3ccccc32)cc1 303

c1ccc(N2c3ccccc3Oc3ccccc32)cc1 203
Sub4 O=S(=O)(c1ccccc1)c1ccc(S(=O)(=O)c2ccccc2)c(N2c3ccccc3Cc3ccccc32)c1 640

O=S1(=O)c2ccccc2S(=O)(=O)c2cc(N3c4ccccc4Cc4ccccc43)ccc21 122
O=S1(=O)c2ccccc2S(=O)(=O)c2cc(N3c4ccccc4Oc4ccccc43)ccc21 80
c1ccc(N2c3ccccc3Oc3ccccc32)cc1 29

Sub5 c1ccc(N2c3ccccc3Nc3ccccc32)cc1 243
c1ccc(N2c3ccccc3Cc3c2ccc2c3c3ccccc3n2-c2ccccc2)cc1 233

Sub6 c1ccc(N(c2ccccc2)c2ccc3c(c2)Cc2cc(N(c4ccccc4)c4ccccc4)ccc2N3c2ccccc2)cc1 1000
Sub7 c1ccc(N2c3ccccc3Cc3cc4c(cc32)c2ccccc2n4-c2ccccc2)cc1 984

c1ccc(N2c3ccccc3Sc3ccccc32)cc1 16
Sub8 c1ccc(N2c3ccccc3Nc3ccccc32)cc1 662

c1ccc(N2c3ccccc3Oc3ccccc32)cc1 134
Sub9 c1ccc(N2c3ccccc3Cc3cc4c(cc32)c2ccccc2n4-c2ccccc2)cc1 688

c1ccc(N2c3ccccc3Cc3ccccc32)cc1 176
c1ccc(N2c3ccccc3Cc3cc4c(cc32)Cc2ccccc2-4)cc1 136

Sub10 c1ccc(N2c3ccccc3Nc3ccccc32)cc1 555

SMILES of generic cores
Sub1 C1CCC(C2C3CCCCC3CC3CC4C(CC32)C2CCCCC2C4C2CCCCC2)CC1 565
Sub2 C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 506

C1CCC(C2C3CCCCC3CC3CC4C(CC5CCCCC54)CC32)CC1 170
Sub3 C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 506
Sub4 CC(C)(C1CCCCC1)C1CCC(C(C)(C)C2CCCCC2)C(C2C3CCCCC3CC3CCCCC32)C1 640

CC1(C)C2CCCCC2C(C)(C)C2CC(C3C4CCCCC4CC4CCCCC43)CCC21 202
C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 29

Sub5 C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 243
C1CCC(C2C3CCCCC3CC3C2CCC2C(C4CCCCC4)C4CCCCC4C32)CC1 233

Sub6 C1CCC(C(C2CCCCC2)C2CCC3C(CC4CC(C(C5CCCCC5)C5CCCCC5)CCC4C3C3CCCCC3)C2)CC1 1000
Sub7 C1CCC(C2C3CCCCC3CC3CC4C(CC32)C2CCCCC2C4C2CCCCC2)CC1 984

C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 16
Sub8 C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 796
Sub9 C1CCC(C2C3CCCCC3CC3CC4C(CC32)C2CCCCC2C4C2CCCCC2)CC1 688

C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 176
C1CCC(C2C3CCCCC3CC3CC4C(CC5CCCCC54)CC32)CC1 136

Sub10 C1CCC(C2C3CCCCC3CC3CCCCC32)CC1 555

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 9

/1
4/

20
24

 7
:1

2:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
(3) To access blue color, all mutations seem valid. Sub3 (F)
and Sub5 (OMe) are the recommended groups.
3.9 Perspective on the applicability of the designed HTVS
program

By now, we have demonstrated the ability of the designed HTVS
program to sieve organic TADFmolecules (and skeletons) out by
providing a set of preset mutations and starting from a medium
size of compound library (103 DA molecules) constructed by
enumeration of donors and acceptors. By the design of the
mutations (only conjugated aromatic units containing molec-
ular systems are valid), once the mutations could occur within
a new compound library, the electronic properties could effec-
tively be modulated by the preset mutations, then the designed
HTVS program would have great chance to be applicable to
accumulate ‘good molecules' for specic kind of properties.
Accordingly, upon certain modications of the code (e.g., add-
ing more property analysis functions), we expect the designed
HTVS program might have the following possible elds of
applications:
30972 | RSC Adv., 2022, 12, 30962–30975
* Systems: organic molecules within DA, D–p–A, D–A–D, A–
D–A and D3–A frameworks; organometallic complexes with
conjugate organic aromatic ligands.

* Properties: electronic and electric properties based on
ground state (and possibly excited state) geometry of molecule.

* Materials: organic and organometallic TADF, nonlinear
optical and two-photon absorption materials; and possibly
organic conductive and photovoltaic materials.

Obviously, there are some areas for further improvement.
Whether other types of mutations are possible for conjugated
aromatic systems, and whether it is possible to design a valid
crossover operator to combine two parent molecules to give
offsprings molecules, have not been explored yet. Moreover, the
program is driven by only one core property, sometimes there
would be several properties to be optimized simultaneously,
therefore, more design efforts should be devoted to support this
kind of requirement. And, there should be more supporting on
(articial neural network based) deep learning methods to
improve the models' accuracy for property prediction. Addi-
tionally, more quantum chemical packages as computing
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 The structures of optimal skeletons (common cores) for
mutations from Sub3 to Sub10 as ng = 9.
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engines for electronic structure should be supported. Accom-
panied with the above-mentioned areas for improvement, we
still hope that the designed HTVS programs could provide some
valuable insights into related elds.
4 Conclusion

By combining machine learning and quantum chemical calcu-
lations, using cheminformatics tools, and introducing the
concept of selection and mutation from evolutionary theory, we
designed a computational program for high-throughput virtual
screening of thermally activated delayed uorescence molecular
materials, especially the impact of selection strategy and
structural mutations on the results of HTVS was explored. The
energy gap was chosen as the kernel property to be optimized.
The initial compounds library (DA substrates) was generated by
combinatorial enumeration of fragments; 10 mutations was
used; the Random Forest Regressor was adopt as the ML algo-
rithm to be learned; a 10% ratio was set to randomly pick
molecules from library to form the training set, and their
geometries and electronic properties was computed by
Gaussian; the molecular structure was featurized by the ECFP
ngerprint method; by searching hyper-parameter space with 5-
fold cross validation, along with the computed property, the
training data was fed to the ML algorithm to obtain the best ML
model; then the best ML model was used to predict unseen
molecules in library. We have found that the mix of selection
and mutations into the evolution map can have great impact on
the HTVS results:

(1) Except the fast mutation Sub2, all of the rest mutations
can effectively concentrate ‘good’ molecules in compound
library, hence give large uMA (typically >0.8) for mutation
generation at high values (ng $ 6).

(2) Analysis of the naCH of different mutations tells us that
the uniform drop in naCH with increase of ng is not a sufficient
condition to guarantee a meaningful increase in uMA, rather it
can be used a an indicator to differentiate different mutations
on skeleton transformation effect.

(3) The nacc_opt_mols for any of mutations can exhibit a sharp
increase in low to middle ng values (0 < ng # 5), follow by
© 2022 The Author(s). Published by the Royal Society of Chemistry
slower growth for middle to high ng (6 # ng # 9), and may
nally trend to atten out. Sub1 is more favorable than Sub2 in
producing optimal molecules. For the 4 terminal single
mutations, the precedence order is: Sub3 < Sub5 < Sub4 z
Sub6; for the rest 4 mixed mutations, the precedence order is:
Sub8 < Sub10 < Sub9 < Sub7. The mixed mutations would
produce more optimal molecules as expected in price of
signicant increase in molecular complexity, which might
eventually prohibit them as material due to difficulty from
experimental synthesis.

(4) The DEST can exhibit a fast convergent trend toward very
low values, hence the studied mutations (except Sub2) can
cooperate very well with the DA substrates to generate optimal
molecules.

(5) A group ngerprint similarity (DMSPR) index was proposed
to account for the similarity between two compound libraries
with comparable sizes. The DMSPR can retain high enough
values (typically larger than 0.90) for large ng, which can be
associated with the apparent convergence in molecular skele-
tons at high mutation generations.

(6) The distribution of frequencies of different skeletons for
a specic mutation is generally uneven with one dominant
skeleton. The overall numbers of common and generic cores for
all mutations are 11 and 7 as ng = 9. Hence, in a sense, the
‘optimal’ skeletons seem unique and useful in realizing low
energy gaps.

With above observations and the development of HTVS
soware, we expect to provide insight and tool to the research
community of HTVS of molecular (TADF) materials.
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