Open Access Article. Published on 11 October 2022. Downloaded on 11/7/2025 11:42:35 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

#® ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online

View Journal | View Issue,

{ ") Check for updates ‘

Cite this: RSC Adv., 2022, 12, 28818

S. Kishore Babu,? B. Gunasekaran,

Decorating MnO, nanosheets on MOF-derived
Co30,4 as a battery-type electrode for hybrid
supercapacitorst

*a M. Sridharan® and T. Vijayakumar®

Metal-organic framework-derived materials are now considered potential next-generation electrode

materials for supercapacitors. In this present investigation, Cos04@MnO, nanosheets are synthesized

using ZIF-67, which is used as a sacrificial template through a facile hydrothermal method. The unique

vertically grown nanosheets provide an effective pathway for rapidly transporting electrons and ions. As
a result, the ZIF-67 derived Cos04,@Mn0O,-3 electrode material shows a high specific capacitance of 768

C gtat1A g current density with outstanding cycling stability (86% retention after 5000 cycles) and

the porous structure of the material has a good BET surface area of 160.8 m? gt As a hybrid
supercapacitor, Coz04@Mn0O,-3//activated carbon exhibits a high specific capacitance (82.9 C g™%) and
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long cycle life (85.5% retention after 5000 cycles). Moreover, a high energy density of 60.17 W h kg™

and power density of 2674.37 W kg*1 has been achieved. This attractive performance reveals that

DOI: 10.1039/d2ra05603h

rsc.li/rsc-advances

1. Introduction

Over the last few years, much emphasis has been placed on
developing lightweight, versatile, and environmentally safe solid-
state energy storage technologies in consumer electronics, slide
displays, and miniature medical implants.*” The battery and the
supercapacitor are the most effective sources of energy. However,
the batteries' bulkiness, slow charge-discharge rate, and short life
period restrict their use in wearable and portable devices.*™®
Supercapacitors have recently gained much attention, particularly
in the automotive industry, because of their key characteristics like
high power density, lightweight, fast charging-discharging rates,
reliable handling, and long lifetime. Based on their charge storage
mechanism, supercapacitors are grouped into two categories:
electrical double-layer capacitors (EDLCs), which generally use
carbon-active materials, and pseudocapacitors, which use redox-
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Co0304@Mn0O, nanosheets could find potential applications as an electrode material for high-
performance hybrid supercapacitors.

active materials.*»"> Due to their high energy density with rapidly
reversible surface redox processes, pseudocapacitors have
considerable potential as supercapacitor options in the future. On
the other side, several pseudocapacitive materials support one of
two inadequate cycling stability and poor conductivity.”*™"” Due to
their characteristics of considerable specific capacitance and high-
rate capacitance, transition metal oxides (RuO,, Co30,, SnO,, and
MnO,, among others) have prompted widespread attention in the
field of pseudocapacitive electrode materials with substantial
specific capacitance.®?® MnO, is one of the most used materials
for supercapacitors. It has a wide selection of high attributes such
as low cost, environmental friendliness, abundant reserves, and
a high theoretical potential capacity.*** However, the weak elec-
trical conductivity of MnO, and the practical, specific capacitance
of the product is significantly lower than its theoretical result (1370
F g ") The distinctive structural properties can be combined in
such electrodes to improve rate and cycle capability.
Additionally, MnO, materials have a limited loading of active
materials, resulting in low energy density because of the low
number of active sites. As a result, increasing the electro-
chemical utilization of MnO,'s pseudocapacitance by rationally
constructing MnO,-based electrodes with innovative architec-
tures and dependable electric connections remains a significant
problem. Directly growing innovative integrated array mecha-
nisms are fascinating in conducting substances for super-
capacitors. It will provide synergistic effects from their
respective materials, achieving high power density, energy
density, and long cycle life.>* Co;O, has become the subject of
extensive research and development due to its low cost and high

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d2ra05603h&domain=pdf&date_stamp=2022-10-10
http://orcid.org/0000-0002-2850-7714
https://doi.org/10.1039/d2ra05603h
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ra05603h
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA012044

Open Access Article. Published on 11 October 2022. Downloaded on 11/7/2025 11:42:35 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

theoretical capacitance. Aside from that, introducing beneficial
ions into Coz0, and its composites can improve electro-
chemical performance due to the increased electric conductivity
and the enhancement of faradaic redox reactions that result
from this process. However, single-phase Co;0, cannot meet
the demands of actual applications due to its low capacity and
inferior cycling stability, which are caused by few electroactive
sites, weak ion diffusion, and limited electric conductivity.>>?*
An alternative solution is a metal-organic framework (MOF)
based synthesis of Co;0, to satisfy these difficulties. It is
possible to enhance the performance of the material by using
the MOF's porous structure.>”-**

This study aimed to investigate the electrochemical perfor-
mance of MnO, nanosheets decorated on MOF-derived Co;0,
synthesized in a facile two-step procedure. To construct Cos-
0,@MnO, nanosheets, a sacrificial template (ZIF-67) was used
to prepare the Co;0,. Then MnO, nanosheet arrays were
anchored to its surface using a hydrothermal technique. This
unique structural design makes it possible to store a lot of
energy and improve electrochemical performance by increasing
the surface area.

2. Experimental

2.1. Preparation of Co;0,

The ZIF-67 precursor was used as a sacrificial template in a two-
step process to synthesize Co;0,. The first step involves the
synthesis of the precursor ZIF-67 using a standard preparation
method. Where 1.74 g of cobalt nitrate and 1.968 g of 2-meth-
ylimidazole have dissolved in 60 mL and 20 mL of methanol,
respectively. The two solutions were then combined and gently
shaken for 7 minutes. The mixed solution was then stored at
room temperature for 48 hours. The resulting precipitate was
separated using a centrifuge, rinsed with methanol and dried
for 12 hours at 80 °C to obtain the precursor ZIF-67. The second
step entails the utilization of the synthesized ZIF-67 as a sacri-
ficial template. Then the sample was calcinated in an argon
atmosphere for 4 hours with a heating rate of 1 °C min~" up to
550 °C and in an air atmosphere for 4 hours up to 350 °C. The
final collected dark powder was named ZIF-67 derived Coz0,.

2.2 Preparation of Co;0,@MnO,

To prepare Co;0,@MnO,, 45 mg of prepared Coz;O, powder
were ultrasonically dispersed in 30 mL of DI water. Then the
prepared solutions were mixed with 30 mL DI water containing
30 mg, 45 mg, and 60 mg of potassium permanganate, respec-
tively and placed into the stainless-steel Teflon reaction kettle to
react for 14 hours at 145 °C. The final grey powders collected by
centrifugation and drying at overnight are named as Co;0,@-
MnO,-1, Co3;0,@Mn0,-2 and Co;0,@MnO0,-3 corresponding to
30 mg, 45 mg, and 60 mg of KMnO, respectively.

2.3 Material characterizations and electrochemical
measurements

The crystallographic structure and surface element composi-
tions of prepared samples were characterized by XRD

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(BRUKER USA D8 Advance, Davinci) and X-ray photoelectron
spectroscopy (PHI Versaprobe III). A field-emission scanning
electron microscope (Thermosceintific Apreo S) and high-
resolution transmission electron microscope (JEOL Japan,
JEM-2100 Plus) were used to examine the microstructure and
morphology of the synthesized materials. A thermogravi-
metric analyzer determines the thermal stability of the
sample. Thermogravimetric measurements are taken in
a nitrogen atmosphere from 50 to 800 degrees Celsius at
a linear heating rate of 10 degrees Celsius per minute.
Furthermore, FTIR was used to characterize the various bonds
present on the surfaces of the prepared material (SHIMADZU,
IRTRACER 100). The electrochemical performances of all
prepared electrodes were performed in 1 M KOH using an
electrochemical workstation (Biologic-SP200 Potentiostat).
The three-electrode assessment used the active material as
the working electrode, platinum as the counter electrode and
Hg/HgO as the reference electrode. The two-electrode evalu-
ation was carried out with Co;0,@MnO0O,-3 as the positive
electrode and activated carbon as the negative electrode. The
electrode material for the assessment was prepared by evenly
blending the active material, conductive substance (carbon
black), and binder (NMP) in an 8 : 1 : 1 ratio and then coating
it on half of the 0.5 x 1 cm nickel foam.

The following formula determines the specific capacitance
(Cp) from the chronopotentiometry charge-discharge curves.*

I xAf
o m

G Cg" (1)
where Im is the current density (A g~ '), At is the discharge time
(s), and AV is the voltage window (V).

The following equation is to determine energy density (E)
and power density (P).*

1

_ L 2 -1
E= SC(AV’) Whkg 2)
3600 x E .

where E, C, AV, P and At are the energy density, specific
capacitance, potential window, power density and discharge
time.

3. Results and discussions
3.1 Structural characteristics

An X-ray diffraction spectrometer (XRD) was used to examine
the as-prepared samples’ crystal structure and phase purity.
Fig. 1(a) depicts the findings of ZIF-67. Certain significant
diffraction peaks occurred in 26 = 10.5°, 12.7°, 14.6°, 16.6°,
18.2° and 26.1 as seen in the resulting pattern, which may be
independently confirmed with the sample ZIF-67 and are
consistent with the literature.*® Fig. S1t(a) shows the XRD
peaks of the intermediate Co/C product, which is consistent
with earlier studies.*® XRD patterns of MOF-derived Co3;0, and
C05;0,/Mn0O,-1, Co;0,/Mn0,-2 and Co;0,/Mn0O,-3 are shown
in Fig. 1(a and b). The characteristic peaks at 26 = 19°, 31.2°,
36.8°,38.5°,44.8°,55.6°, 59.3° and 65.2° can be assigned to the
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Fig.1 (a) Wide angle XRD of ZIF-67, Coz04, Co:04,@Mn0O;-1, Co30,@Mn0O,-2, Cos:0,@MnO,-3 and (b) low angle XRD in the 26 range of 36° to
56°.

(111), (220), (311), (222), (400), (422), (511) and (440) lattice
plane of cubic cobalt oxide phases (JCPDS no. 43-1003).%°
Further, on decorating with MnO, nanosheets, no notable
characteristic peaks were found in the composition of Cos-
0,@MnO, but with decreasing intensity. This decrease is
attributed to the amorphous nature of MnO, layers (JCPDS no.
18-0802) present over the surface, increasing the conc. of
KMnO,.>*® The low angle XRD pattern clearly shows the
intensity decreased with increasing the concentration of
KMnO, shown in Fig. 1(b). FT-IR analysis was performed to
identify the functional group in the prepared samples. In

Fig. 2(a), ZIF-67 shows that peaks from 400 to 1400 cm™ " are
associated with imidazolate moieties’ stretching and bending
vibrations.*® A minor peak at 1425.1 cm™ " was due to the
stretching mode of the C=N bond in 2 methylimidazoles.
Moreover, two minor peaks, 3130 and 2928 cm " were attrib-
uted to the stretching of C-H from the aliphatic methyl group
and aromatic ring of 2 methylimidazoles, respectively. Also,
FT-IR analysis for MOF-derived C03;0,, Co;0,@Mn0O,-1, Cos-
0,@MnO,-2 and Co30,@Mn0,-3 are shown in Fig S2.T The
band at 3410 cm™" indicates the O-H stretching of water,
whereas the weak band at 1647 cm™" is associated with the O-
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(a) FT-IR analysis of ZIF-67, (b) TGA analysis of ZIF-67 and (c—f) X-ray photoelectron spectra of Coz0,@Mn0O,-3.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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H group of bending vibration in the molecule of absorbed
water.” And the bands approximately at 1417 and 1090 cm ™'
match the coordination of Co by the O-H. However, the
prominent peaks at 592 cm ™" and 520 cm " are attributed to
the stretching vibrations of M-O or M-O-M (M = Co, Mn).*

Fig. 2(b) shows the TGA analysis of ZIF-67. For ZIF-67, three
decomposition steps occur under the N, atmosphere TGA
analysis. The absorption of methanol molecules observed on
the surface of ZIF-67 at temperatures below 150 °C is the first
stage of weight loss. The carbonization of 2-methylimidazole
molecules in ZIF-67 pores from 250 to 490 °C causes the second
stage (9.2%). The third stage's significant loss (33.3%) occurs
when the temperature reaches a specific point. At this point, the
organic groups and ZIF-67 dodecahedrons break down,
revealing the final phase above 500 °C. The resulting calcined
materials' oxidation states and chemical compositions were
confirmed using XPS. The XPS survey spectra of Co3;0,@MnO0,-3
are shown in Fig. 2(c). As shown in Fig. 2(d), the high-resolution
XPS spectra of Co 2p can be fitted into two primary peaks at
780.06 and 795.25 eV and can be associated with the binding
energies of Co 2p3, and Co 2p,,, respectively. The lower two
peaks, 789 and 805.35 eV, can be assigned to the binding
energies of 2ps, and 2py, of Co(n) and Co(m). These results
reveal the presence of the Co;O, phase in the prepared
sample.*»** The high-resolution XPS spectra obtained from Mn
2p are shown in Fig. 2(e). The primary two peaks are centred at
642.24 and 653.84 eV, respectively, with a spin energy separa-
tion of 11.6 eV corresponding to Mn(wv). These findings are
based on the electronic orbits of Mn 2p3/, and 2p,,, indicating
that the compounds are in the Mn(w) state.*” In Fig. 2(f), the
binding energy peak at 532.2 eV is attributed to the oxygen
atoms in the hydroxyl groups. In contrast, the intense peak at
529.8 belongs to the oxygen atoms in the Co3;0,@MnO,-3
chemical compositions.***
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3.2 Morphological analysis

As shown in the schematic illustration in Fig. 3, The dodeca-
hedral ZIF-67 was used as a template for the synthesis of Co30,
after pyrolysis at 550 °C in an argon atmosphere and calcinated
at 350 °C in air. Then, Co;0,4 was used as the substrate to grow
MnO, nanosheets via a hydrothermal process at 140 °C to form
a Co30,@MnO,. This formation is well proved by SEM and HR-
TEM results. As illustrated in Fig. 4(a and b), the ZIF-67 has
a standard form and a smooth surface. In Fig S1{(b), we show
the TEM image of the Co/C sample and it is found that the
sample is stable after calcination at 550 °C under an inert gas
atmosphere. In contrast, the Co;0, driven by ZIF-67 has a rough
surface, illustrated in Fig. 4(c) and the TEM image is illustrated
in Fig. 4(d) due to the collapse of a portion of the MOF frame
during the calcination process. As shown in Fig. 4(e-g), the
staggered MnO, nanosheets clusters vertically grown on the
surface of Co;0, as the concentration of KMnO, increases,
forming a structure similar to dodecahedral. The TEM images
reflect the unique hierarchical Co;0,@Mn0O, nanostructure
containing a core of Co;0, dodecahedral and a shell of MnO,
nanosheets. The interface contacts between the black core
Co030, and grey shell MnO, nanosheet arrays were seen verti-
cally. Surprisingly, the concentration of KMnO, affects the
distribution of MnO, nanosheets on the Co;0, surface during
the hydrothermal process. As illustrated in Fig. 4(e), the surface
of the Co3;0,@MnO0,-1 sample was only covered by partial and
uneven MnO, nanosheets due to insufficient KMnO,. However,
excessive KMnO, results in the overlapping of MnO, nanosheets
on a portion of the Co;0, surface, as well as partially formed
MnO, nanosheets, as illustrated in Fig. 4(f) Coz;0,@MnO,-2
sample.

In comparison, the composite Co0;0,@Mn0,-3, MnO,
nanosheet arrays with staggered and orderly vertical growth
exhibit an appealing and satisfying morphology, as illustrated

Ar flow
=
550°, 4hrs

Co@C

Air
oy
350°, 4hrs

Co,0,

Hydrothermal §f 145°, 14hrs
KMnO,

C0,0,@MnO,

Fig. 3 Schematic diagram of the synthesis of Coz0,@MnO, core—shell structure.
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(@ & b) SEM image of ZIF-67 with low magnification (inset), (c) CozO4, TEM image of (d) CozO4, (e) Co30,@MnO,-1, (f) Coz0,@MnO,-2

and (g) Coz04,@Mn0,-3, (h) HR-TEM image of Co30,@Mn0O,-3, and (i) EDX pattern of Coz0,@Mn0O,-3.

in Fig. 4(g), which corresponds to the superior electro-
chemical performance. Additionally, as illustrated in
Fig. 4(h), the interplanar crystal spacing of the well-defined
lattice fringes is 0.23 nm, which corresponds to the (3 1 1)
plane of cubic Co;0, and amorphous MnO, overlayer on the
surface of Coz0, core could be clearly identified. Further-
more, the energy dispersive spectroscopy (EDS) indicates Co,
Mn, O, and C presented in the C0;0,@Mn0,-3 shown in
Fig. 4(i), which is also consistent with the XPS results. In
Fig. S3,T the element mapping images revealed a homoge-
neous distribution of all elements, confirming that the Cos-
0,@MnO0,-3 was successfully synthesized.
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3.3 Surface area analysis

Furthermore, the specific surface area and porous characteris-
tics of ZIF-67-derived Co;0,, C0o;0,@Mn0O,-1, Co;0,@Mn0O,-2
and Co;0,@MnO0,-3 were determined using N, isothermal
adsorption-desorption measurements. The prepared samples
were typical Type-IV isotherms with an H3 hysteresis loop
(Fig. 5(a)). According to the Brunauer-Emmett-Teller (BET)
method, the determined specific surface area of Co;0,@MnO,-
3 is 160.8 m* g™, while C0;0,@Mn0,-1 (121.3 m> g~ ') and
C0;0,@MnO0,-2 (138.5 m”> g ') and much better than ZIF-
derived Co;0, (109 m? g™ '), emphasizing the superiority of
the design of the core-shell structure. It can be observed that

—o— Co;04

—a— Co0;04@MnO,-1
——C0;04@MnO,-2
—o— Co;04@Mn0,-3

0 10 20 30 40 50 60 70
Pore Diameter (nm)

80

(a) BET analysis and (b) BJH pore size distribution curves of ZIF-67 derived Coz0,4, Co:04,@Mn0O,-1, Coz0,@Mn0O,-2 and Coz0,@MnO,-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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the specific surface area and porosity of the prepared materials
are greatly improved after decorating MnO, nanosheets on the
surface of cobalt oxide. Also, the mesopores structure can
provide a plentiful ion transport/charge storage, which
enhances the pseudocapacitance. The Barrett-Joyner-Halenda
(BJH) technique determined the pore size distribution, as
shown in Fig. 5(b) and reveals the mesoporous nature of all
prepared samples. And the respective average pore size was
obtained for Co;0,@MnO0O,-3 at around 8 nm, whereas ZIF-
derived Co;04, C0;0,@Mn0O,-1 and Co;0,@MnO,-2 show
pore size of 10, 9.2 and 8.6 nm respectively. The large specific
surface area provides abundant opportunities for the electrode
and the electrolyte to make complete contact, which builds
a strong foundation for the excellent electrochemical perfor-
mance of Co;0,@Mn0O,, which can be attributed to the
material.

3.4 Electrochemical performance

Cyclic voltammetry (CV) curves of all electrodes with a potential
window of 0 V to 0.6 V at scan rates 5, 10, 20, 30, 40, 50, 70 and
100 mV s~ were taken. Fig. 6(a-d) represents the CV curve of
C030,4, Co;0,@Mn0,-1, Co;0,@Mn0,-2 and Co;0,@Mn0O,-3.
The two mild redox peaks are observed in the CV curve of Coz0,
(Fig. 6(a)), while redox peaks become more evident after adding

154 —5mV/is
w10 mV/s (a)
P =20 mV/s 1
< 101 —30mvss g
40 mV/s
é 54 — 50 mV/s /
E 70 mV/s
2 0
o
=]
O —51
_10 1 T T T T T T T
0.0 0.1 0.2 03 04 0.5 0.6
Potential vs Hg/HgO (V)
20
-5 mV/s
151 —1omvs
=20 mV/s
g 104 —30mvss
- 40 mV/s
- 5 50 mV/s
5 ——70 mV/s
i 0 i 100VS .
= | B
O 51
_10 E

0.0 0.1 02 03 04 05 0.6
Potential vs Hg/HgO (V)

View Article Online

RSC Advances

the Mn element. Moreover, the redox peak location varies with
different Mn concentrations. The redox peaks in CV curves are
mainly associated with the faradaic redox behaviour. The Cos-
0,@MnO0,-3 electrode has a strong CV curve, exhibiting its
maximum capacitance. It has been revealed that when the scan
rate increases with current increases, the shape of the CV curves
follows a similar pattern. The appearance of redox peaks and
the deviation of the curves indicate that the storage mechanism
is owing to the faradaic redox behaviours. The redox peaks are
caused by electrolyte cations intercalating or de-intercalating in
MnO, nanosheets, which relates to eqn (4).** The electrode
material absorbs K' ions from the electrolyte during charging.
Then, K* ions are released from the electrode material and
released to the electrolyte during discharge. The cathodic peaks
shifted towards lower negative potential due to polarization
with increasing scan rates.

MnO, + M* + ¢ & MnOOM (M" = K") (4)

CP curves demonstrated the typical faradaic behaviour of all
prepared electrodes in the charge storage process at various
current densities (1, 2, 3,4, 5 and 6 A g’l). Discharge curves are
nearly symmetric in pattern, with a slight IR drop at the
beginnings of discharge, implying high redox reversibility. As
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Fig. 6 Cyclic voltammetry curves at several scan rate of (a) CozO4, (b) Coz:0,@Mn0O5-1, (c) Co30,@MNn0O,-2 and (d) Coz0,@MnO,-3.
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clearly observed in the CP results shown in Fig. 7(a-d), eqn (1)
follows. The Co03;0,@Mn0,-3 electrode reveals a longer
discharge duration than the other prepared electrodes and
archives specific capacitance around 768 C g ' at 1 A g "
current density shown in Fig. 7(d). This maximum specific
capacitance is ascribed to the nearly complete redox reaction
achieved by the Co;0,@MnO,-3 electrode material. Its initial IR
drop is relatively low, confirming intense contact of the active
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material with the current collector. The other electrode mate-
rials are Co3;0,4, Co;0,@Mn0,-1 and Co;0,@Mn0O,-2, which
achieve lower capacitance around 309, 415 and 585 C g~ "at 1 A
g ! current density, respectively shown in Fig. 7(a-c). The
specific capacitances of all electrode materials are measured
and plotted in Fig. 8. (a) Using the CP curves, indicating that
C03;0,@MnO0,-3 (768 C g™ ') is statistically superior to that of

bare Co;0, and other composite materials. The specific
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Table 1 A comparison of CozO4 composites-based electrode reports

Specific capacitance ~ Current density Capacity

S.no  Electrode material Electrolyte (Fg or(Cg") (Ag™h Cycles  retention  Ref.
1 MOF-derived Fe,0,/MnO, 1MKOH 908 1 8000 78% 49
2 Coz04/carbon aerogel 2 M KOH 298.8 0.5 1000 82% 50
3 Hollow Co;0,@MnO, cubic 1M LiOH 413 0.5 2000 — 51
4 MOF derived porous Co;0, 2 M KOH 190 5 5000 71.42% 52
5 MOF-derived Co/C/Ni(OH), 6 M KOH 952 0.5 10 000 84% 53
6 Ni-MOF on carbon cloth by ZIF-derived 4 M KOH 1416 1 3000 90% 54

Co030,4

MOF-derived C0,0,/NiC0,0, 6 MKOH 770 1 10000  70% 55
8 MOF-derived porous NiCo,0, 1M KOH 684 0.5 3000 86% 56

nanoparticle
9 MOF-derived C00,-C/Ni,P,0, 3 M KOH 2537.78 2 3000 88.5% 57
10 NiO/Co30, 6 M KOH 405 1 1000 97.4% 58
11 RGO/C050,4 6 M KOH 546 0.5 10 000 90% 59
12 Co30,4 decorated with MnO, nanosheets 1 M KOH 768 C g ' 1 5000 86% This work

capacitance of Co3;0,@MnO,-3 is significantly higher than the
most often reported Co;0,4-based electrode materials in Table 1.

Fig. 8(b) shows that the cycling stability of all electrodes was
examined for 5000 cycles at a constant current density of 6 A
g~'. The Co0;04, C0;0,@Mn0,-1, C0;0,@Mn0,-2 and Coz-
0,@MnO,-3 exhibit cycling stability around 77, 72, 83 and 86%,
respectively. The Co03;0,@Mn0O,—3 electrode suggests high
cycling stability and electrical conductivity compared to other
electrodes. Furthermore, specific capacitance increases during
the first few cycles due to the electrode material's activation
influence and increased mobility of the surface charge and
electrolyte ions.*”** The relationship between peak current and
sweep rate is determined to understand the charge storage
kinetics process of all electrodes in 1 M KOH electrolyte. The
peak current (I) measured from CV curves at various scan rates
is calculated using the power-law equation.**-*

i=a’ (5)

i(V 1
Q:klvz-ﬁ—kz (6)
V2

1
i(V)= kywv+k»2 (or)

where v is the scan rate, i is the peak current, a, b, k; and k, are
adjustable parameters and i(V) is the current response at a fixed
potential V. The square root of the scan rate and the corre-
sponding current response correlates to the diffusion-
controlled and capacitive control processes. The value b = 1
implies that the capacitive-controlled charge storage mecha-
nism provides a rapid capability primarily responsible for the
power density usually seen in carbon-based materials. In
contrast, b = 0.5 suggests a diffusion-controlled charge storage
mechanism. The anodic and cathodic peaks for the Co;0,@-
MnO,—3 are shown in Fig. 9(a). The linear relationship ob-
tained illustrates the diffusion characteristics of the materials.
The anodic and cathodic peak current values contain an R-
square value close to one, indicating that the material has redox
behaviour, which is one of the criteria for battery-type electrode
material. The slope in Fig. 9(b) is 0.55, indicating the pure
diffusion-controlled and battery-type electrode.®® Dunn's
method can quantify the significant contribution of the

© 2022 The Author(s). Published by the Royal Society of Chemistry

diffusion and the capacitance mechanism. This approach
allows for the quantitative determination of the CV curves
contributed by the capacitive and diffusion control processes at
varied scanning speeds. At a scan speed of 5 mV s~ ', the red
portion of the CV curve in Fig. 9(c) reflects the contribution ratio
(47%) occupied by the capacitance control mechanism and the
contribution ratio (53%) occupied by the diffusion control
mechanism. In Fig. 9(d), the percentage of capacitance and
diffusion contribution at each scan rate is given as a histogram.
The capacitance contribution increases with increasing the
scanning speed because capacitance control's surface effect is
a quick process. The hybrid supercapacitor is represented in the
diagram Fig. 10(a); the electrodes are Co;0,@MnO, as cathode,
activated carbon (AC) as an anode, and 1 M KOH as an elec-
trolyte. According to prior research, the hybrid supercapacitor
made of carbon-supported materials has a high energy and
power density. Because of its high porosity and conductivity,
activated carbon (AC) is used as a negative electrode. Its broad
potential window and good specific capacitance allow
absorbing more ions from the electrolyte.®**” Furthermore,
based on the above CV and CP results, Co;0,@MnO,-3 is
assigned as a positive electrode for the two electrode systems.
The operating potential window for the two electrode systems of
C030,@Mn0,-3//AC is performed by combining both elec-
trodes. As shown in Fig. 10(a), the CV curves of Co3;0,@Mn0O,-3,
activated carbon, and hybrid supercapacitor electrodes were
first recorded independently. The CV was performed at various
potential windows for a hybrid supercapacitor to determine the
ideal operating range of the potential window. As shown in
Fig. 10(b), a broad potential window of 1.45 V was obtained. CV
data was recorded at multiple scan rates ranging from 5 to
100 mV s~ to examine the performance of the two-electrode
system shown in Fig. 10(c). The CV curves are quasi-
rectangular to a particular optimum value and then depart
significantly at high potential. This variation from the typical
rectangular form is caused by limiting ion transport on the
electrode surface during redox processes at high scan rates. The
CV curves remain unchanged even at higher scan rates,
demonstrating that the hybrid supercapacitor has high-rate

RSC Adv, 2022, 12, 28818-28830 | 28825
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at a different scan rate, (d) CP curves at different current densities, (e) the cycle stability and (f) EIS measurements of HSC.
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(a) Hybrid supercapacitor based on Coz04,@MnO,//AC electrode, (b) CV curves for the HSC at different potential windows, (c) CV curves
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capabilities and stability. Additionally, no significant peaks
have appeared, which indicates the hybrid supercapacitor
exhibits dominating capacitive behaviour. Still, a more prom-
inent knob in the curves indicates the existence of faradaic
chemical processes. Charge discharge curves for the two-
electrode system are also presented in Fig. 10(d), which shows
the charge storage of the hybrid supercapacitor. The CP curves
are neither triangular nor humped in the voltage window range
of 0 to 1.45 V, but rather a combination of both types. At various
current densities, the charge-discharge curves are essentially
symmetric. The low IR drop appears to confirm the low internal
resistance and good rate capability and validate the high cycle
stability of the material. Stability studies are essential to provide
insight into the material's lifetime. In this study, the hybrid
supercapacitor is subjected to 5000 charge-discharge cycles at 6
A g ! current density (Fig. 10(e)). The hybrid supercapacitor
using Co03;0,@MnO, and activated carbon exhibited 85.5
percent capacity retention after 5000 charge-discharge cycles.
The energy density of a hybrid supercapacitor is a significant
indicator for determining its energy storage ability. The energy
density and power density can be calculated from eqn (2) and
(3). The Co03;0,@MnO0,//AC hybrid supercapacitors in the
voltage window from 0 to 1.45 V provide a maximum energy
density of about 60.17 W h kg™" at a power density of around
2674.37 W kg '. The prominent energy storage properties of
Co030,@MnO0,//AC hybrid supercapacitor are mainly the verti-
cally aligned nanosheets like Co;0,@MnO, electrode provide
good specific capacitance in a wide voltage window. The Nyquist
plot of hybrid supercapacitors given in Fig. 10(f) identified the
stability of hybrid supercapacitor before and after 5000 cycles.
At low frequencies, the impedance rises substantially. It
becomes nearly vertically parallel to the imaginary y-axis, indi-
cating that the hybrid supercapacitor is pure capacitive. The
charge transfer resistance (R.) at the electrode-electrolyte
interface is represented by the small semicircular part in the
high-frequency region for after stability, which is combined
with intrinsic resistance (Rs) due to ionic resistance of the
electrolyte and intrinsic resistance of the current collector. The
equivalent circuit corresponding to the EIS data (inset) shows
a slight increase of R from 6.8 to 7.6 Q obtained after 5000
cycles.

4. Conclusion

In conclusion, we effectively synthesized vertically aligned
nanosheets like Co;0,@MnO, with a distinct core-shell struc-
ture employing Coz;0, synthesized by sacrificing the ZIF-67
template as the precursor. As a result of the dense MnO,
nanosheets on the surface covering, the specific capacitance of
C030,@MnO,-3 reveals around 768 C g~ ', approximately two
times that of the bare Co;0,4, and exhibited good cycle stability
and the porous structure of the material has a excellent BET
surface area of 160.8 m> g '. Furthermore, a unique hybrid
supercapacitor with positive and negative electrodes has been
constructed with Co0;0,@Mn0O,-3 and activated carbon,
respectively. The hybrid supercapacitor provides high specific
capacitance and long cycle life. Meanwhile, the energy and

© 2022 The Author(s). Published by the Royal Society of Chemistry
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power densities were 60.17 W h kg ' and 2674.37 W kg,
respectively. This method provides a compelling alternative for
preparing MOF-derived Co3;04-based composites as high-
performance supercapacitor electrodes.
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