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With the development of near-infrared (NIR) spectroscopy, various calibration transfer algorithms have
been proposed, but such algorithms are often based on the same distribution of samples. In machine
learning, calibration transfer between types of samples can be achieved using transfer learning and does
not need many samples. This paper proposed an instance transfer learning algorithm based on boosted
weighted extreme learning machine (weighted ELM) to construct NIR quantitative analysis models based
on different instruments for tobacco in practical production. The support vector machine (SVM),
weighted ELM, and weighted ELM-AdaBoost models were compared after the spectral data were
preprocessed by standard normal variate (SNV) and principal component analysis (PCA), and then the
weighted ELM-TrAdaBoost model was built using data from the other domain to realize the transfer
from different source domains to the target domain. The coefficient of determination of prediction (R?)
of the weighted ELM-TrAdaBoost model of four target components (nicotine, Cl, K, and total nitrogen)
reached 0.9426, 0.8147, 0.7548, and 0.6980. The results demonstrated the superiority of ensemble
learning and the source domain samples for model construction, improving the models' generalization
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1. Introduction

Tobacco is a complex natural product, and the determination of
its key chemical indicator content helps control tobacco quality.
Nicotine is the most important indicator component in tobacco
and has a direct impact on sensory comfort. The levels of both
Cl and K affect the combustibility of tobacco. Nitrogen is a key
element in tobacco yield, and increasing the accumulation of
nitrogenous compounds in the tobacco leaf will result in better-
quality tobacco. The chemical analysis of these flavor substance
bases is very important in tobacco quality control.

NIR spectroscopy is already extensively used in petroleum,*
agriculture,” chemical,® tobacco,* food,>® and pharmaceutical”®
industries since it is a simple, rapid, non-destructive, and reli-
able analytical method. However, due to the variability of
measurement conditions (e.g., change of environmental
temperature, and humidity) and instruments (even from the
same manufacturer), the calibration models established are
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and has the advantage of fast learning.

often not applicable to new samples or do not provide reliable
predictive power. Recalibration can be employed to tackle this
tricky problem. However, it requires scans of numerous
samples, which is both time-consuming and costly.” In these
circumstances, calibration transfer can be a sensible option to
reduce the consumption of recalibration.

A great number of methods have been proposed for cali-
bration transfer, which can be divided into two main types
depending on whether standard samples are needed, as shown
in Table 1. Classic methods of calibration transfer with stan-
dard samples have been proposed. Osborne first presented the
slope/bias (S/B) algorithm, then Bouveresse'' modified the S/B
algorithm and proposed the slope/bias correction (SBC) algo-
rithm. Shenk achieved the transfer of the spectral model
between different instruments using Shenk's calibration
transfer algorithm. Wang*® proposed the Direct Standardization
(DS) algorithm which realized full spectral calibration by
a transfer matrix. These methods often achieve transfer by
applying the model built by the master instrument to the slave
instrument. In reality, it is often difficult to obtain standard
spectra from master and slave instruments that correspond to
each other. Therefore, it is necessary to develop methods
without standard samples. Calibration transfer methods
without standard samples fall into two main groups: (1) the first
group contains preprocessing methods: scatter-correction
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methods and spectral derivatives."* The former includes
multiplicative scatter correction (MSC), standard normal variate
(SNV), etc. The latter can be used to eliminate baseline offsets
and linearly sloped baselines (scattering), for example, by
taking first- and second-order derivatives.”> However, it is
difficult to eliminate spectral differences by relying on pre-
processing methods alone. (2) The second group consists
mainly of many projection methods, which can subtract the
already explained or irrelevant information, such as transfer
component analysis (TCA)' and dynamic orthogonal projection
(DOP)." TCA is completely unsupervised, but TCA assumes that
the datasets of the two batches are similar. If the two batches
have different output value distributions, this will reduce the
performance of TCA. DOP requires a small number of addi-
tional measurements to design the impact factor subspace for
orthogonal projection against changes in the measuring
conditions that induce variations of unknown interfering
factors.

The field of machine learning has made significant progress
in the last decade. Ensemble learning methods are a class of
advanced machine learning methods that train multiple
learners and combine them to solve a problem with great
success in practice, typically represented by bagging and
boosting.** An ensemble of numerous learners is usually more
accurate than a single learner, and the ensemble learning
methods show satisfactory performance in many practical
tasks.”” Transfer learning has recently emerged to address the
problem of how quickly a learning system can adapt to new
scenarios, tasks, and environments, aiming to use the knowl-
edge gained in solving one task and apply it to a different but
somewhat relevant task.?®> Recent studies have reported the
employment of transfer learning in spectral data.**** TrAda-
Boost is an inductive ensemble learning method based on the
boosting algorithm, i.e., finding the misleading source domain
samples by iteratively updating the source domain sample
weights, incorporating the advantages of ensemble learning
and transfer learning. Based on the above advantages, the SNV-
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PCA-weighted ELM-TrAdaBoost method was proposed for the
transfer between samples scanned by different instruments.
This algorithm attempts to update the weight of each sample in
the target and source domain of the training set using the
opposite strategy, relying on if it has a negative or positive
contribution in each round of iterations. Compared to other
calibration transfer algorithms, the proposed machine
learning-based method is easier to use, does not depend on
standard samples, and requires less knowledge of NIR spec-
troscopy, making it more suitable for general use. Unlike other
calibration transfer algorithms which are based on a model
perspective (standardize the regression coefficients, the spectral
responses, or the predicted values by mathematical manipula-
tion), the proposed method is based on the transfer of samples.

The contents of this paper are organized as follows. Section 2
details the tobacco dataset and the fundamentals of the
weighted ELM and TrAdaBoost algorithms. Section 3 details the
experimental protocols, results, and discussion. The model
effects of SVM, weighted ELM, and weighted ELM-AdaBoost
were compared by using the target domain dataset to validate
the advantages of ensemble learning. Weighted ELM-AdaBoost
and weighted ELM-TrAdaBoost models were also constructed to
analyze the effects of transfer learning. Finally, conclusions are
drawn in Section 4.

2. Materials and methods
2.1 Introduction of tobacco dataset

There are eighty-five tobacco samples from 2018 for our exper-
imental design, provided by the Technology Center of the China
Tobacco Zhejiang Industrial Co., Ltd. To make samples more
representative, different geographical origins were chosen,
including Guizhou (14 samples), Hunan (14 samples), Hubei (9
samples), Henan (14 samples), Sichuan (9 samples), and
Yunnan (25 samples) provinces. The spectral data of samples
were measured in Hangzhou (Zhejiang Province, ZJ), Xuanwei
(Yunnan Province, XW), and Tongren (Guizhou Province, TR),

Table 1 A categorized summary of some classical calibration transfer methods

Whether standard

samples are needed Type of method

Example

Characteristics

Standardization of the
predicted values
Standardization of the
spectral responses

Standardization

S/B, SBC*®

DS,'® Shenk's algorithm

They target the between-
instrument variation directly and
therefore work more effectively,
especially when the instrument
difference is large. However, the
standard samples must be very
stable over the scan period of each
instrument involved, and this is
difficult*

Non-standardization Preprocessing MSC, SNV, first- and second-order They are designed to eliminate
derivatives specific noise but are less effective
for unknown variations
Projection TCA, DOP They do not require standard
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samples and look for solutions
with the help of a subspace
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Table 2 The measured values for the content of the four chemical components

Minimum value Maximum value Mean value
Component (%) (%) (%) Standard deviation
Nicotine 1.0835 3.6220 2.5531 0.5072
Cl 0.1910 1.1680 0.3862 0.1782
K 1.3445 3.6190 2.0801 0.4193
Total nitrogen 1.6375 2.6905 2.0293 0.2182

using Antaris IIFT-NIR Analyzer (Thermo Fisher Scientific,
USA), working with a wavenumber range of 10 000-3800 cm ™"
and a resolution of 8 cm . Tobacco powder was placed in
a rotating cup over a water-free 50 mm diameter quartz window.
Instrument performance was verified before analysis using an
instrumental self-test (ValPro System Qualification). Every
sample was scanned 72 times and averaged, with each spectrum
containing 1609 wavelength points. The values of nicotine, Cl,
K, and total nitrogen were measured according to the standards
of the tobacco industry of the People's Republic of China YC/T
246-2008, YC/T 162-2011, YC/T 217-2007, and YC/T 161-2002.
More details of the tobacco dataset can be seen in Table 2. Data
processing and image visualization were done via MATLAB
R2020b.

2.2 Theory and algorithm

2.2.1 Weighted extreme learning machine (weighted ELM).
The basic structure of the extreme learning machine (ELM) is
shown in Fig. 1, which is a single-hidden layer feedforward
neural network (SLFN), proposed and refined by Huang® in
2006, with the advantages of rapid learning and few tunable
parameters (simply adjust the number of hidden layer neurons
L and the activation function A(x)). If given N training samples
(x3t), i = 1, ..., N, where x; represents the spectrum of the
sample and ¢; represents the measured value of the sample. The
mathematical model for SLFN is

where w; is the weight vector linking the input layer nodes and
the jth hidden layer node, b; is the bias of the jth hidden layer

~
)
-

-

————————
=

~ - -

-
~

Input layer Hidden layer Output layer

Fig. 1 The structure of the ELM with L hidden neurons and N input/
output nodes. (w; is the weight vector linking the input layer nodes and
the jth hidden layer node, by is the bias of the jth hidden layer node, and
6, is the weight vector linking the jth hidden layer node and the output
nodes).

© 2022 The Author(s). Published by the Royal Society of Chemistry

node, with §; being the weight vector linking the jth hidden
layer node and the output nodes, which can be simplified to eqn

(2) or (3),

HB=T (2)
Il1HB — T ||=0 (3)
and
h(wi-x1 + by) h(wp-xy + by)

H= @)
/’l(Wl'XN+b1) I’l(WL'XN+bL)

where T is the target vector, g is the output weight, and H is the
output matrix of the hidden layer, H = [h(x,); A(x,); ...; h(xn)]-
The hidden layer node function %,(x), i = 1, ..., L, maps the
sample data x from the raw data space to the hidden layer space,
forming a hidden layer output row vector A(x) = [h4(x), ..., h(x)]
with L hidden layer nodes.””

In this paper, the calibration model was built by the
weighted ELM method, taking into account that each sample in
the training set contributes differently to the model. Weighted
ELM?® has recently been proposed to handle data with unbal-
anced distributions while preserving the strengths of the orig-
inal ELM. Each sample in the training set is assigned an
additional weight. Mathematically, an N x N diagonal matrix W
is defined that is related to each training sample x;. The weight
matrix

W =diag(Wy),i=1, ..., N (5)

is important in weighted ELM. It determines the degree of
rebalancing the user is seeking. There are two weighting strat-
egies in ref. **, and we chose weighting strategy 1.

Weighting strategy 1: W; = 1/N (6)

2.2.2 TrAdaBoost algorithm. AdaBoost (adaptive boosting)
algorithm? uses multiple weak learners (multiple iterations)
trained continuously for generating a strong learner and is an
effective boosting algorithm. Before each iteration, the weights
of each sample in the training set samples are adjusted
according to the performance of the previous learner. Thus, the
distribution weights of the training set samples reflect the
corresponding importance of each sample, and samples with
higher error rates will receive more attention and will be given

RSC Adv, 2022, 12, 32641-32651 | 32643
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=

Fig. 2 Weight adjustment mechanism of TrAdaBoost algorithm for
training set data.

Increase weight of

greater weights. This forces the following learners to pay more
attention to those samples with high error rates.

TrAdaBoost, proposed by Dai,* is an instance-based transfer
learning method that enables cross-domain transfer and is
a variant of AdaBoost. The TrAdaBoost algorithm is proposed
with the idea that some inherent information present in the
source domain could be useful for the model construction when
building a calibration model of the target domain. In contrast,
some of the information in the source domain could be of no
use, or even detrimental. TrAdaBoost allows the use of a small
amount of newly labeled data combined with old data to
generate a high-quality model for the new data, even if the new
data is not sufficient to train the model directly, achieving
knowledge from old data to new data efficiently. Thus, the
TrAdaBoost algorithm attempts to renew the importance of
training set samples by giving each sample a different weight. A
simple principle for updating the sample weights of the training
set of the TrAdaBoost algorithm is shown in Fig. 2. For those
samples in the training set that belong to the target domain, the
same weight updating strategy is adopted as for the AdaBoost
algorithm, while an opposite strategy is used for the samples in
the training set that belong to the source domain, samples with
higher error rates will receive smaller distribution weights.

2.2.3 SNV-PCA-weighted ELM-TrAdaBoost. PCA is a widely
used chemometric method that projects the spectral data from
the high-dimensional space to the low-dimensional space and
retains as much information as possible from the original
spectral data. Since the number of variables (wavelengths) in
the tobacco dataset is much larger than the number of samples,
PCA was applied to reduce the dimensionality of the spectral
data. Many scholars have applied PCA to achieve dimension
reduction of spectral data.**=*

Fig. 3 demonstrates the procedure of the proposed algo-
rithm, which incorporates SNV, PCA, weighted ELM, and the
TrAdaBoost algorithm. The spectra are preprocessed with SNV
to eliminate scattering at first. Secondly, some samples from the
source and target domains are randomly selected to form the
training set. Thirdly, PCA is used to extract the low-dimensional
features of the high-dimensional spectra. Finally, several
quantitative analysis models for calibration transfer have been
developed by applying the weighted ELM-TrAdaBoost algo-
rithm, thus constituting a strong learning model. As for the

32644 | RSC Adv, 2022, 12, 32641-32651
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model prediction stage, every sample from the testing set is
used as input to each sub-model and the corresponding pre-
dicted values are calculated using a weighted average strategy as
the final model output.

The detailed steps of the model training phase of the
proposed calibration transfer algorithm are as follows:

Input: samples from the source domain {X¢,Ys} (i = 1, ...,
m); samples from the target domain {X,,Y;’} (i = 1, ..., n).

Step 1: the combination of samples from the source and
target domains forms the training set {X,Y} (k =1, ..., m + n).

Step 2: taking PCA on X* (k = 1, ..., m + n), calculate the
principal component score matrix S, the number of principal
components (PCs) Z is then determined based on the cumula-
tive contribution of principal components.

Step 3: initial parameter setting.

Initial weights for samples from the source domain: wS' = 1/m (i =
1, ..., m) (7)

Initial weights for samples from the target domain: wTV = 1/n (j =
m+1,...,m+n) (8)

Initial weights for the training set samples: w* = {wS’; wF} (i
=1,...,mjj=m+1, .. m+n).

Initial value of the number of iterations: M = 1.

The maximum value of the number of iterations: 7 = 200 (can
be adjusted as appropriate).

The activation function of the weighted ELM is sigmoid.

The number of hidden neurons is 30 (can be adjusted as
appropriate).

o
m
I+,/2In =

Step 4: develop a quantitative analysis model (weak learner)
for weighted ELM-based. The input of the model is the first Z
PCs S, (the first Z columns of S).

Step 5: compute the prediction error.

The true value of the training set is Y* (k =1, ..., m + n).

The prediction value of the training set is P* (k=1, ..., m + n).

Compute the prediction error EX (k = 1, ..., m + n) according
to the following equations:

Initial weight of weak learner 8 =

©)

Yk 71)/{)2
e
maX}Y" fP"| (10)

Step 6: the individual weights and iteration values are
updated by the following formulas:

m+n min
Z(Ek-w"), f: (E*-wh) <0.5
e= 4 k=1 ":31 (k=1,....m+n) (11)
0.5, > (EF-wk) =05
=1
By = 1= (12)

© 2022 The Author(s). Published by the Royal Society of Chemistry
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ws' = ws' Bu™ (i =1, ..., m) (13)
wil =wil B B (G=m+1,...,m+n) (14)
M=M+1 (15)

Step 7: while M = I, go back step 4; otherwise stop.
Output: the ensemble quantitative analysis model (a series of
quantitative analysis models).

2.3 Model evaluation

In this experiment, the performance of the model was assessed
by the coefficient of determination of prediction (R*) and root
mean square error of prediction (RMSEP), calculated as follows:

Dg training
samples

D; training
samples

weighted ELM-TrAdaBoost

: N

weight 1 weight 2 .
| |
I ELM 1 |
! prediction prediction prediction I
1 error error error 1
| ['weightof ELM 1| [ weight of ELM 2 | - --[ weight of ELM 1 | .
: /

strong learner

Fig. 3 The workflow of PCA-weighted ELM-TrAdaBoost algorithm.
(Ds means source domain, Dy means target domain, /| means
maximum iteration number, weight / means weights for the training set
samples of the /th ELM model, and weight of ELM /means weight for
the /th ELM model).

(a) 075 T T T T T /\

07t a AY
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(17)

where Y; is the measured value and P; is the predicted value, and
n represents the number of samples in the testing set.

In general, the smaller the RMSEP, the smaller the predic-
tion error, indicating that the model is more capable of pre-
dicting. R* reflects the generalization ability of the model. R” is
closer to 1, indicating that the generalization ability of the
model is better.

3. Experimental design and results

3.1 Spectral data preprocessing

3.1.1 Standard normal variate (SNV). SNV is a common
spectral preprocessing method used to eliminate the effects of
solid particle size, surface scattering, and light range variations
on the spectrum. The mean spectrum of different instruments
without any preprocessing and after SNV are shown in Fig. 4.
Part of the spectral difference was eliminated after SNV.

3.1.2 Principal component analysis (PCA). One of the
experimental schemes was selected as an example (a random-
ized experiment in the calibration transfer from XW to ZJ) for
the PCA score analysis. Because the original spectrum of the
tobacco dataset contains 1609 wavelength points (variables), 30
samples of the source domain in the training set, 15 samples of
the target domain in the testing set, and 40 samples of the target
domain in the training set were combined for PCA dimension
reduction to make the model less complex and simplify the
computation. The result of the PCA score analysis is shown in
Fig. 5. There are significant differences between the samples in
the source and target domains in the three-dimensional prin-
cipal component score space, which further illustrates the need
for calibration transfer.

—Z]
—XW
TR

Absorbance

L L L
10000 9000 8000 7000 6000 5000 4000
1

Wavenumbers cm”

Fig. 4 The mean spectrum of different instruments: (a) without any preprocessing; (b) after SNV.
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Fig. 5 Results of PCA: (a) PC1 vs. PC2 vs. PC3 of the source and target domain; (b) contribution rate of the principal component.

The number of PCs was also selected using the above
experimental scheme. The contribution of the first principal
component (PC1) was 63.46%, the second principal component
(PC2) was 24.15%, and the third principal component (PC3) was
8.39%. Aiming to include as much useful information as
possible in the original spectral data, the number of PCs was set
to 20, which has a cumulative contribution of 99.99%.

3.2 Experimental protocols

3.2.1 Experimental protocol #1. In experimental protocol
#1, the spectral data scanned by the spectrometer in Zhejiang
(target domain) were used for modeling, and to verify the
enhancement of the model effect by using ensemble learning,
three models were compared, SVM, weighted ELM, and
weighted ELM-AdaBoost. SVM is one of the most popular
machine learning methods with the advantage of performing
well in a small dataset. The SVM model used the support vector
machine regression in MATLAB's built-in statistics and
machine learning toolbox. All models were preprocessed
identically.

Quantitative analysis models were developed for four
components (nicotine, Cl, K, and total nitrogen). From a total of
85 samples, 15 samples were randomly selected from the target
domain as the testing set, and 45-70 (5 intervals) samples were
randomly selected from the target domain as the training set.
All results were average values of 200 runs, overcoming the
impact of the model's stochastic parameters. In addition, these
models’ generalization performance and predictive ability were
evaluated by R of the testing set and RMSEP. The results are
shown in Fig. 6, and more details can be seen in Table 3.

The superiority of the ensemble learning approach is
demonstrated by the fact that the generalization performance
and predictive ability of the quantitative analysis model can be
greatly improved by performing ensemble learning on each
component. Taking the results of ensemble learning for nico-
tine (Fig. 6(a) and (b)) as an example, the results showed that
although the training set contained only 45 samples, the R of
the testing set after ensemble learning could reach 0.9596. In
comparison, if a model based on weighted ELM was built
directly, the corresponding R> was only 0.8190. The

32646 | RSC Adv, 2022, 12, 32641-3265]

performance of the weighted ELM and weighted ELM-AdaBoost
were better than SVM. Moreover, as the number of samples in
the training set increased, the R* tended to increase gradually,
while the RMSEP tended to decrease gradually. When the
number of samples in the training set of the target domain was
70, the R* of weighted ELM-AdaBoost reached 0.9713 and the
RMSEP was only 0.0776. Similarly, the results for the other three
components showed the same trend.

3.2.2 Experimental protocol #2. In experimental protocol
#2, four components (nicotine, Cl, K, and total nitrogen) were
transferred from the source domain (XW, TR) to the target
domain (Z]) to validate the effectiveness of the proposed
method. Out of a total of 85 samples, 30 samples were selected
at random as the source domain samples, 15 samples were
selected at random from the target domain as the testing set,
and 30-40 samples were selected at random from the target
domain as the training set. Other parameters were consistent
with experiment protocol #1. Due to space constraints, only the
R? of the testing set is shown in the following figures. Fig. 7 and
8 show the calibration transfer results from XW and TR to ZJ,
respectively. More data can be seen in Table 4, only R* and the
target domain sample size of 30-35 are listed here.

It can be noticed that the R of the testing set was higher than
that of the model without calibration transfer after the cali-
bration transfer of the four components from different instru-
ments (source domains). The improvement in model
performance with calibration transfer was more pronounced
when the number of samples in the training set of the target
domain was small, and this advantage gradually diminishes as
the number of samples increases. However, the general result
was still better for calibration transfer than without. Regarding
the gradual weakening of the advantage of transfer learning,
reasonably, as the number of samples from the target domain
involved in the training set of the model gradually increases, the
role of samples from the source domain in the model gradually
diminishes.

3.3 Discussion

In the field of machine learning, the computational effort of the
model deserves to be discussed. The proposed method is based

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The relationship between the number of target domain training set samples and R?/RMSEP of different models about four components:
(a) and (b) refer to models for nicotine; (c) and (d) refer to models for CL; (e) and (f) refer to models for K; (g) and (h) refer to models for total

nitrogen.

on weighted ELM, which
computation, in addition,

is simple in structure and fast in
the input spectral data undergoes

a PCA dimensionality reduction from 1609 to 20 dimensions,
which also improves the execution speed of the algorithm. The
proposed method (weighted ELM-TrAdaBoost) has a model
training time of approximately 0.04 seconds for one run, con-
firming the small computational cost.

© 2022 The Author(s). Published by the Royal Society of Chemistry

It is commonly assumed that more samples usually lead to
better model performance. Meanwhile, more samples also
bring an increased computational burden. Thus, a trade-off
between the number of samples and the computational
burden is necessary. Here, experimental protocol #2 (XW to Z],
component: nicotine) was taken as an example of the following

discussion.
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Table 3 Comparison among the performance of SVM, weighted ELM, and weighted ELM-AdaBoost
Number of target domain training set samples
Component Model 45 50 55 60 65 70
Nicotine SVM R? 0.6451 0.6597 0.6716 0.6890 0.7115 0.6984
RMSEP 0.2996 0.2954 0.2701 0.2686 0.2567 0.2512
Weighted ELM R? 0.8190 0.8285 0.8639 0.8752 0.8884 0.9006
RMSEP 0.2413 0.2206 0.1833 0.1757 0.1568 0.1418
AdaBoost® R? 0.9596 0.9627 0.9669 0.9678 0.9707 0.9713
RMSEP 0.0935 0.0965 0.0830 0.0795 0.0819 0.0776
Cl SVM R? 0.3764 0.3602 0.3603 0.3691 0.3920 0.3551
RMSEP 0.1867 0.1682 0.1682 0.1460 0.1647 0.1594
Weighted ELM R? 0.6372 0.6466 0.6583 0.7192 0.7299 0.7524
RMSEP 0.1084 0.1003 0.0964 0.1012 0.0866 0.0983
AdaBoost R? 0.8506 0.8611 0.8754 0.8804 0.8835 0.8967
RMSEP 0.0631 0.0532 0.0555 0.0616 0.0504 0.0558
K SVM R? 0.3054 0.3221 0.3117 0.3190 0.3496 0.3165
RMSEP 0.3261 0.3285 0.3214 0.3588 0.3224 0.2940
Weighted ELM R? 0.5811 0.6017 0.6708 0.6410 0.6490 0.6963
RMSEP 0.3382 0.2785 0.2942 0.2619 0.2897 0.2349
AdaBoost R? 0.8393 0.8458 0.8687 0.8554 0.8776 0.8792
RMSEP 0.1517 0.1506 0.1482 0.1384 0.1520 0.1350
Total nitrogen SVM R? 0.5101 0.5302 0.5496 0.5703 0.5678 0.5777
RMSEP 0.1616 0.1542 0.1518 0.1456 0.1451 0.1471
Weighted ELM R? 0.5463 0.6128 0.6346 0.6452 0.6643 0.7011
RMSEP 0.1753 0.1507 0.1503 0.1421 0.1323 0.1264
AdaBoost R? 0.7216 0.7608 0.7636 0.7553 0.7655 0.7780
RMSEP 0.1023 0.1064 0.0981 0.1089 0.1012 0.1048
% AdaBoost represents weighted ELM-AdaBoost.
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oo enayprmelprerly e e
09t & ’»6‘ 0.8
4
08 f /",!" 07t
071 /,ii ,:' 0.6 ‘i/
% | ‘, a '
06l | ost
A i {
05 ,'l 04 F /
04 7 -4 weighted ELM-TrAdaBoost | | 03 ;,:‘/ -4~ weighted ELM-TrAdaBoost | |
ﬁ,) ---0--weighted ELM-AdaBoost ? ---0-- weighted ELM-AdaBoost
03 L : . L ) L : : 02 . : L : L . : g 4
30 31 32 33 34 35 36 37 38 39 40 30 31 32 33 34 35 36 37 38 39 40
Number of target domain samples Number of target domain samples
(c) 0.9 T

0.7

i ---0-- weighted ELM-AdaBoost

-—A-- weighted ELM-TrAdaBoost | |

30 31 32 33 34 35 36 37 38 39 40

Number of target domain samples

03/

-4~ weighted ELM-TrAdaBoost | |
---O---weighted ELM-AdaBoost

32 33 34 35 36 37 38 39 40

Number of target domain samples

Fig.7 The relationship between number of target domain samples and R? of different models about four components while transfer from XW to
ZJ: (a) refers to models for nicotine; (b) refers to models for Cl; (c) refers to models for K; (d) refers to models for total nitrogen.
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Fig. 8 The relationship between number of target domain samples and R? of different models about four components while transfer from TR to

ZJ: (a) refers to models for nicotine; (b) refers to models for Cl; (c) refers to models for K; (d) refers to models for total nitrogen.

Fig. 9 demonstrates the effect of the variation in the number
of source domain samples on the performance of the quanti-
tative analysis model. It can be found that increasing the
number of samples in the source domain of the training set will

remarkably increase the R* of the calibration transfer model
when the training set contains relatively few samples in the
target domain (Fig. 9(a) and (b)). However, when the number of
samples in the target domain of the training set increased, the

Table 4 R? comparison results of weighted ELM-TrAdaBoost and weighted ELM-AdaBoost

Number of target domain training set samples

Source domain Component Method 30 31 32 33 34 35
XwW Nicotine TrAdaBoost” 0.5650 0.8877 0.9293 0.9400 0.9372 0.9426
AdaBoost” 0.3272 0.8597 0.9134 0.9285 0.9328 0.9374
Cl TrAdaBoost 0.5827 0.7082 0.7579 0.7775 0.7835 0.8147
AdaBoost 0.2349 0.5970 0.7258 0.7380 0.7672 0.7917
K TrAdaBoost 0.2876 0.6421 0.6871 0.7494 0.7713 0.7548
AdaBoost 0.2163 0.6174 0.6612 0.7263 0.7518 0.7502
Total nitrogen TrAdaBoost 0.4298 0.6310 0.6550 0.6632 0.6705 0.6980
AdaBoost 0.1666 0.5640 0.5943 0.6205 0.6445 0.6808
TR Nicotine TrAdaBoost 0.6257 0.8595 0.9194 0.9378 0.9358 0.9432
AdaBoost 0.2946 0.7947 0.9009 0.9274 0.9300 0.9341
Cl TrAdaBoost 0.7096 0.7585 0.7906 0.8076 0.8094 0.8228
AdaBoost 0.2506 0.6279 0.7386 0.7841 0.7858 0.8040
K TrAdaBoost 0.3350 0.6156 0.7352 0.7573 0.7731 0.8045
AdaBoost 0.2016 0.5755 0.7113 0.7516 0.7564 0.7953
Total nitrogen TrAdaBoost 0.5205 0.6115 0.6266 0.6691 0.6662 0.6960
AdaBoost 0.1896 0.5170 0.5757 0.6272 0.6311 0.6723

@ TrAdaBoost represents weighted ELM-TrAdaBoost. > AdaBoost represents weighted ELM-AdaBoost.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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increase in the number of samples in the source domain did not
obviously improve the R of the calibration model (Fig. 9(d)(f)).
Since when the training set contains enough target domain
samples, setting up a quantitative analysis model with excellent
generalization power is a simple matter, so the information that
can be provided by the source domain sample appears insig-
nificant. Conversely, when the training set contained fewer
target domain samples, the information contained in the
source domain samples helped build the target domain model,
despite the instruments in the source and target domains being
different.

4. Conclusions

Many of the existing calibration transfer methods have limited
application as they are based on standard samples, the preser-
vation of which is a challenge. When environmental conditions,
instruments, or sample changes occur, the original model is no
longer applicable, while the method proposed avoids the
drawback of rescanning a large number of samples for
modeling. In this paper, a novel instance-based method for
calibration transfer is applied to tobacco quality evaluation
across different instrumentation domains, which incorporates
SNV, PCA, weighted ELM, and TrAdaBoost algorithms. The
results suggested that the proposed method could achieve
calibration transfer between different instruments. In existing
studies, the transfer from one source domain to one target
domain has been realized with promising performance. The R
of the TrAdaBoost model of four components (nicotine, Cl, K,

32650 | RSC Adv, 2022, 12, 32641-3265]

and total nitrogen) of tobacco reached 0.9426, 0.8147, 0.7548,
and 0.6980 (transfer from XW to ZJ as an example). In reality,
production data often involves the distribution of multiple
domains, so it is a question worth investigating whether the
information from multiple source domains can be transferred
to the target domain. The proposed method should be tried out
for more than just cross-instrument transfers, such as with
different sample states, different compositions, etc.
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