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quantitative analysis model of NIR spectroscopy
based on transfer learning

Huanchao Shen,ab Yingrui Geng,a Hongfei Ni,ab Hui Wang,c Jizhong Wu,c

Xianwei Hao,c Jinxin Tie,c Yingjie Luo,a Tengfei Xu,a Yong Chena and Xuesong Liu *a

With the development of near-infrared (NIR) spectroscopy, various calibration transfer algorithms have

been proposed, but such algorithms are often based on the same distribution of samples. In machine

learning, calibration transfer between types of samples can be achieved using transfer learning and does

not need many samples. This paper proposed an instance transfer learning algorithm based on boosted

weighted extreme learning machine (weighted ELM) to construct NIR quantitative analysis models based

on different instruments for tobacco in practical production. The support vector machine (SVM),

weighted ELM, and weighted ELM-AdaBoost models were compared after the spectral data were

preprocessed by standard normal variate (SNV) and principal component analysis (PCA), and then the

weighted ELM-TrAdaBoost model was built using data from the other domain to realize the transfer

from different source domains to the target domain. The coefficient of determination of prediction (R2)

of the weighted ELM-TrAdaBoost model of four target components (nicotine, Cl, K, and total nitrogen)

reached 0.9426, 0.8147, 0.7548, and 0.6980. The results demonstrated the superiority of ensemble

learning and the source domain samples for model construction, improving the models' generalization

ability and prediction performance. This is not a bad approach when modeling with small sample sizes

and has the advantage of fast learning.
1. Introduction

Tobacco is a complex natural product, and the determination of
its key chemical indicator content helps control tobacco quality.
Nicotine is the most important indicator component in tobacco
and has a direct impact on sensory comfort. The levels of both
Cl and K affect the combustibility of tobacco. Nitrogen is a key
element in tobacco yield, and increasing the accumulation of
nitrogenous compounds in the tobacco leaf will result in better-
quality tobacco. The chemical analysis of these avor substance
bases is very important in tobacco quality control.

NIR spectroscopy is already extensively used in petroleum,1

agriculture,2 chemical,3 tobacco,4 food,5,6 and pharmaceutical7,8

industries since it is a simple, rapid, non-destructive, and reli-
able analytical method. However, due to the variability of
measurement conditions (e.g., change of environmental
temperature, and humidity) and instruments (even from the
same manufacturer), the calibration models established are
g University, Hangzhou, 310058, China.

nce in Medicine of Zhejiang University,

g Industrial Co., Ltd, Hangzhou, 310008,

the Royal Society of Chemistry
oen not applicable to new samples or do not provide reliable
predictive power. Recalibration can be employed to tackle this
tricky problem. However, it requires scans of numerous
samples, which is both time-consuming and costly.9 In these
circumstances, calibration transfer can be a sensible option to
reduce the consumption of recalibration.

A great number of methods have been proposed for cali-
bration transfer, which can be divided into two main types
depending on whether standard samples are needed, as shown
in Table 1. Classic methods of calibration transfer with stan-
dard samples have been proposed. Osborne10 rst presented the
slope/bias (S/B) algorithm, then Bouveresse11 modied the S/B
algorithm and proposed the slope/bias correction (SBC) algo-
rithm. Shenk12 achieved the transfer of the spectral model
between different instruments using Shenk's calibration
transfer algorithm. Wang13 proposed the Direct Standardization
(DS) algorithm which realized full spectral calibration by
a transfer matrix. These methods oen achieve transfer by
applying the model built by the master instrument to the slave
instrument. In reality, it is oen difficult to obtain standard
spectra from master and slave instruments that correspond to
each other. Therefore, it is necessary to develop methods
without standard samples. Calibration transfer methods
without standard samples fall into two main groups: (1) the rst
group contains preprocessing methods: scatter-correction
RSC Adv., 2022, 12, 32641–32651 | 32641
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methods and spectral derivatives.14 The former includes
multiplicative scatter correction (MSC), standard normal variate
(SNV), etc. The latter can be used to eliminate baseline offsets
and linearly sloped baselines (scattering), for example, by
taking rst- and second-order derivatives.15 However, it is
difficult to eliminate spectral differences by relying on pre-
processing methods alone. (2) The second group consists
mainly of many projection methods, which can subtract the
already explained or irrelevant information, such as transfer
component analysis (TCA)16 and dynamic orthogonal projection
(DOP).17 TCA is completely unsupervised, but TCA assumes that
the datasets of the two batches are similar. If the two batches
have different output value distributions, this will reduce the
performance of TCA. DOP requires a small number of addi-
tional measurements to design the impact factor subspace for
orthogonal projection against changes in the measuring
conditions that induce variations of unknown interfering
factors.

The eld of machine learning has made signicant progress
in the last decade. Ensemble learning methods are a class of
advanced machine learning methods that train multiple
learners and combine them to solve a problem with great
success in practice, typically represented by bagging and
boosting.21 An ensemble of numerous learners is usually more
accurate than a single learner, and the ensemble learning
methods show satisfactory performance in many practical
tasks.22 Transfer learning has recently emerged to address the
problem of how quickly a learning system can adapt to new
scenarios, tasks, and environments, aiming to use the knowl-
edge gained in solving one task and apply it to a different but
somewhat relevant task.23 Recent studies have reported the
employment of transfer learning in spectral data.24,25 TrAda-
Boost is an inductive ensemble learning method based on the
boosting algorithm, i.e., nding the misleading source domain
samples by iteratively updating the source domain sample
weights, incorporating the advantages of ensemble learning
and transfer learning. Based on the above advantages, the SNV-
Table 1 A categorized summary of some classical calibration transfer m

Whether standard
samples are needed Type of method Examp

Standardization Standardization of the
predicted values

S/B, SB

Standardization of the
spectral responses

DS,19 S

Non-standardization Preprocessing MSC, S
deriva

Projection TCA, D

32642 | RSC Adv., 2022, 12, 32641–32651
PCA-weighted ELM-TrAdaBoost method was proposed for the
transfer between samples scanned by different instruments.
This algorithm attempts to update the weight of each sample in
the target and source domain of the training set using the
opposite strategy, relying on if it has a negative or positive
contribution in each round of iterations. Compared to other
calibration transfer algorithms, the proposed machine
learning-based method is easier to use, does not depend on
standard samples, and requires less knowledge of NIR spec-
troscopy, making it more suitable for general use. Unlike other
calibration transfer algorithms which are based on a model
perspective (standardize the regression coefficients, the spectral
responses, or the predicted values by mathematical manipula-
tion), the proposed method is based on the transfer of samples.

The contents of this paper are organized as follows. Section 2
details the tobacco dataset and the fundamentals of the
weighted ELM and TrAdaBoost algorithms. Section 3 details the
experimental protocols, results, and discussion. The model
effects of SVM, weighted ELM, and weighted ELM-AdaBoost
were compared by using the target domain dataset to validate
the advantages of ensemble learning. Weighted ELM-AdaBoost
and weighted ELM-TrAdaBoost models were also constructed to
analyze the effects of transfer learning. Finally, conclusions are
drawn in Section 4.
2. Materials and methods
2.1 Introduction of tobacco dataset

There are eighty-ve tobacco samples from 2018 for our exper-
imental design, provided by the Technology Center of the China
Tobacco Zhejiang Industrial Co., Ltd. To make samples more
representative, different geographical origins were chosen,
including Guizhou (14 samples), Hunan (14 samples), Hubei (9
samples), Henan (14 samples), Sichuan (9 samples), and
Yunnan (25 samples) provinces. The spectral data of samples
were measured in Hangzhou (Zhejiang Province, ZJ), Xuanwei
(Yunnan Province, XW), and Tongren (Guizhou Province, TR),
ethods

le Characteristics

C18 They target the between-
instrument variation directly and
therefore work more effectively,
especially when the instrument
difference is large. However, the
standard samples must be very
stable over the scan period of each
instrument involved, and this is
difficult20

henk's algorithm

NV, rst- and second-order
tives

They are designed to eliminate
specic noise but are less effective
for unknown variations

OP They do not require standard
samples and look for solutions
with the help of a subspace

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The measured values for the content of the four chemical components

Component
Minimum value
(%)

Maximum value
(%)

Mean value
(%) Standard deviation

Nicotine 1.0835 3.6220 2.5531 0.5072
Cl 0.1910 1.1680 0.3862 0.1782
K 1.3445 3.6190 2.0801 0.4193
Total nitrogen 1.6375 2.6905 2.0293 0.2182
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using Antaris IIFT-NIR Analyzer (Thermo Fisher Scientic,
USA), working with a wavenumber range of 10 000–3800 cm−1

and a resolution of 8 cm−1. Tobacco powder was placed in
a rotating cup over a water-free 50 mm diameter quartz window.
Instrument performance was veried before analysis using an
instrumental self-test (ValPro System Qualication). Every
sample was scanned 72 times and averaged, with each spectrum
containing 1609 wavelength points. The values of nicotine, Cl,
K, and total nitrogen were measured according to the standards
of the tobacco industry of the People's Republic of China YC/T
246-2008, YC/T 162-2011, YC/T 217-2007, and YC/T 161-2002.
More details of the tobacco dataset can be seen in Table 2. Data
processing and image visualization were done via MATLAB
R2020b.
2.2 Theory and algorithm

2.2.1 Weighted extreme learning machine (weighted ELM).
The basic structure of the extreme learning machine (ELM) is
shown in Fig. 1, which is a single-hidden layer feedforward
neural network (SLFN), proposed and rened by Huang26 in
2006, with the advantages of rapid learning and few tunable
parameters (simply adjust the number of hidden layer neurons
L and the activation function h(x)). If given N training samples
(xi,ti), i = 1, ., N, where xi represents the spectrum of the
sample and ti represents the measured value of the sample. The
mathematical model for SLFN is

f ðxiÞ ¼
XL
j¼1

bjh
�
wj$xi þ bj

� ¼ tið1# i#N; 1# j#LÞ (1)

where wj is the weight vector linking the input layer nodes and
the jth hidden layer node, bj is the bias of the jth hidden layer
Fig. 1 The structure of the ELM with L hidden neurons and N input/
output nodes. (wj is the weight vector linking the input layer nodes and
the jth hidden layer node, bj is the bias of the jth hidden layer node, and
bj is the weight vector linking the jth hidden layer node and the output
nodes).

© 2022 The Author(s). Published by the Royal Society of Chemistry
node, with bj being the weight vector linking the jth hidden
layer node and the output nodes, which can be simplied to eqn
(2) or (3),

Hb = T (2)

jjHb − T jj= 0 (3)

and

H ¼

2
664
hðw1$x1 þ b1Þ . hðwL$x1 þ bLÞ

. . .
hðw1$xN þ b1Þ . hðwL$xN þ bLÞ

3
775 (4)

where T is the target vector, b is the output weight, and H is the
output matrix of the hidden layer, H = [h(x1); h(x2); .; h(xN)].
The hidden layer node function hi(x), i = 1, ., L, maps the
sample data x from the raw data space to the hidden layer space,
forming a hidden layer output row vector h(x) = [h1(x),., hL(x)]
with L hidden layer nodes.27

In this paper, the calibration model was built by the
weighted ELMmethod, taking into account that each sample in
the training set contributes differently to the model. Weighted
ELM28 has recently been proposed to handle data with unbal-
anced distributions while preserving the strengths of the orig-
inal ELM. Each sample in the training set is assigned an
additional weight. Mathematically, an N × N diagonal matrixW
is dened that is related to each training sample xi. The weight
matrix

W = diag(Wii), i = 1, ., N (5)

is important in weighted ELM. It determines the degree of
rebalancing the user is seeking. There are two weighting strat-
egies in ref. 28, and we chose weighting strategy 1.

Weighting strategy 1: Wii = 1/N (6)

2.2.2 TrAdaBoost algorithm. AdaBoost (adaptive boosting)
algorithm29 uses multiple weak learners (multiple iterations)
trained continuously for generating a strong learner and is an
effective boosting algorithm. Before each iteration, the weights
of each sample in the training set samples are adjusted
according to the performance of the previous learner. Thus, the
distribution weights of the training set samples reect the
corresponding importance of each sample, and samples with
higher error rates will receive more attention and will be given
RSC Adv., 2022, 12, 32641–32651 | 32643
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Fig. 2 Weight adjustment mechanism of TrAdaBoost algorithm for
training set data.
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greater weights. This forces the following learners to pay more
attention to those samples with high error rates.

TrAdaBoost, proposed by Dai,30 is an instance-based transfer
learning method that enables cross-domain transfer and is
a variant of AdaBoost. The TrAdaBoost algorithm is proposed
with the idea that some inherent information present in the
source domain could be useful for themodel construction when
building a calibration model of the target domain. In contrast,
some of the information in the source domain could be of no
use, or even detrimental. TrAdaBoost allows the use of a small
amount of newly labeled data combined with old data to
generate a high-quality model for the new data, even if the new
data is not sufficient to train the model directly, achieving
knowledge from old data to new data efficiently. Thus, the
TrAdaBoost algorithm attempts to renew the importance of
training set samples by giving each sample a different weight. A
simple principle for updating the sample weights of the training
set of the TrAdaBoost algorithm is shown in Fig. 2. For those
samples in the training set that belong to the target domain, the
same weight updating strategy is adopted as for the AdaBoost
algorithm, while an opposite strategy is used for the samples in
the training set that belong to the source domain, samples with
higher error rates will receive smaller distribution weights.

2.2.3 SNV-PCA-weighted ELM-TrAdaBoost. PCA is a widely
used chemometric method that projects the spectral data from
the high-dimensional space to the low-dimensional space and
retains as much information as possible from the original
spectral data. Since the number of variables (wavelengths) in
the tobacco dataset is much larger than the number of samples,
PCA was applied to reduce the dimensionality of the spectral
data. Many scholars have applied PCA to achieve dimension
reduction of spectral data.31,32

Fig. 3 demonstrates the procedure of the proposed algo-
rithm, which incorporates SNV, PCA, weighted ELM, and the
TrAdaBoost algorithm. The spectra are preprocessed with SNV
to eliminate scattering at rst. Secondly, some samples from the
source and target domains are randomly selected to form the
training set. Thirdly, PCA is used to extract the low-dimensional
features of the high-dimensional spectra. Finally, several
quantitative analysis models for calibration transfer have been
developed by applying the weighted ELM-TrAdaBoost algo-
rithm, thus constituting a strong learning model. As for the
32644 | RSC Adv., 2022, 12, 32641–32651
model prediction stage, every sample from the testing set is
used as input to each sub-model and the corresponding pre-
dicted values are calculated using a weighted average strategy as
the nal model output.

The detailed steps of the model training phase of the
proposed calibration transfer algorithm are as follows:

Input: samples from the source domain {XS
i,YS

i} (i = 1, .,
m); samples from the target domain {XT

i,YT
i} (i = 1, ., n).

Step 1: the combination of samples from the source and
target domains forms the training set {Xk,Yk} (k = 1, ., m + n).

Step 2: taking PCA on Xk (k = 1, ., m + n), calculate the
principal component score matrix S, the number of principal
components (PCs) Z is then determined based on the cumula-
tive contribution of principal components.

Step 3: initial parameter setting.

Initial weights for samples from the source domain: wSi = 1/m (i=

1, ., m) (7)

Initial weights for samples from the target domain: wTj = 1/n (j =

m + 1, ., m + n) (8)

Initial weights for the training set samples: wk = {wSi; wTj} (i
= 1, ., m; j = m + 1, ., m + n).

Initial value of the number of iterations: M = 1.
Themaximum value of the number of iterations: I= 200 (can

be adjusted as appropriate).
The activation function of the weighted ELM is sigmoid.
The number of hidden neurons is 30 (can be adjusted as

appropriate).

Initial weight of weak learner b ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

m

I

r (9)

Step 4: develop a quantitative analysis model (weak learner)
for weighted ELM-based. The input of the model is the rst Z
PCs SZ (the rst Z columns of S).

Step 5: compute the prediction error.
The true value of the training set is Yk (k = 1, ., m + n).
The prediction value of the training set is Pk (k= 1,.,m + n).
Compute the prediction error Ek (k = 1, ., m + n) according

to the following equations:

Ek ¼
�
Yk � Pk

�2
max

��Yk � Pk
�� (10)

Step 6: the individual weights and iteration values are
updated by the following formulas:

3 ¼

8>>>><
>>>>:

Xmþn

k¼1

�
Ek$wk

�
;
Pmþn

k¼1

�
Ek$wk

�
\0:5

0:5;
Pmþn

k¼1

�
Ek$wk

�
$ 0:5

ðk ¼ 1;.;mþ nÞ (11)

bM ¼ 3

1� 3
(12)
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra05563e


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 2

/7
/2

02
6 

10
:0

6:
06

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
wS
i = wS

i$bM
Ei (i = 1, ., m) (13)

wT
j = wT

j$bM
−Ej (j = m + 1, ., m + n) (14)

M = M + 1 (15)

Step 7: while M # I, go back step 4; otherwise stop.
Output: the ensemble quantitative analysis model (a series of

quantitative analysis models).
2.3 Model evaluation

In this experiment, the performance of the model was assessed
by the coefficient of determination of prediction (R2) and root
mean square error of prediction (RMSEP), calculated as follows:
Fig. 3 The workflow of PCA-weighted ELM-TrAdaBoost algorithm.
(DS means source domain, DT means target domain, I means
maximum iteration number, weight Imeansweights for the training set
samples of the Ith ELM model, and weight of ELM Imeans weight for
the Ith ELM model).

Fig. 4 The mean spectrum of different instruments: (a) without any pre

© 2022 The Author(s). Published by the Royal Society of Chemistry
R2 ¼

�
n
Pn
i¼1

YiPi �
Pn
i¼1

Yi

Pn
i¼1

Pi

�2

 
n
Pn
i¼1

Yi
2 �

�Pn
i¼1

Yi

�2
!
$

 
n
Pn
i¼1

Pi
2 �

�Pn
i¼1

Pi

�2
! (16)

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðYi � PiÞ2

n

vuuut
(17)

where Yi is the measured value and Pi is the predicted value, and
n represents the number of samples in the testing set.

In general, the smaller the RMSEP, the smaller the predic-
tion error, indicating that the model is more capable of pre-
dicting. R2 reects the generalization ability of the model. R2 is
closer to 1, indicating that the generalization ability of the
model is better.
3. Experimental design and results
3.1 Spectral data preprocessing

3.1.1 Standard normal variate (SNV). SNV is a common
spectral preprocessing method used to eliminate the effects of
solid particle size, surface scattering, and light range variations
on the spectrum. The mean spectrum of different instruments
without any preprocessing and aer SNV are shown in Fig. 4.
Part of the spectral difference was eliminated aer SNV.

3.1.2 Principal component analysis (PCA). One of the
experimental schemes was selected as an example (a random-
ized experiment in the calibration transfer from XW to ZJ) for
the PCA score analysis. Because the original spectrum of the
tobacco dataset contains 1609 wavelength points (variables), 30
samples of the source domain in the training set, 15 samples of
the target domain in the testing set, and 40 samples of the target
domain in the training set were combined for PCA dimension
reduction to make the model less complex and simplify the
computation. The result of the PCA score analysis is shown in
Fig. 5. There are signicant differences between the samples in
the source and target domains in the three-dimensional prin-
cipal component score space, which further illustrates the need
for calibration transfer.
processing; (b) after SNV.

RSC Adv., 2022, 12, 32641–32651 | 32645
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Fig. 5 Results of PCA: (a) PC1 vs. PC2 vs. PC3 of the source and target domain; (b) contribution rate of the principal component.
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The number of PCs was also selected using the above
experimental scheme. The contribution of the rst principal
component (PC1) was 63.46%, the second principal component
(PC2) was 24.15%, and the third principal component (PC3) was
8.39%. Aiming to include as much useful information as
possible in the original spectral data, the number of PCs was set
to 20, which has a cumulative contribution of 99.99%.
3.2 Experimental protocols

3.2.1 Experimental protocol #1. In experimental protocol
#1, the spectral data scanned by the spectrometer in Zhejiang
(target domain) were used for modeling, and to verify the
enhancement of the model effect by using ensemble learning,
three models were compared, SVM, weighted ELM, and
weighted ELM-AdaBoost. SVM is one of the most popular
machine learning methods with the advantage of performing
well in a small dataset. The SVM model used the support vector
machine regression in MATLAB's built-in statistics and
machine learning toolbox. All models were preprocessed
identically.

Quantitative analysis models were developed for four
components (nicotine, Cl, K, and total nitrogen). From a total of
85 samples, 15 samples were randomly selected from the target
domain as the testing set, and 45–70 (5 intervals) samples were
randomly selected from the target domain as the training set.
All results were average values of 200 runs, overcoming the
impact of the model's stochastic parameters. In addition, these
models' generalization performance and predictive ability were
evaluated by R2 of the testing set and RMSEP. The results are
shown in Fig. 6, and more details can be seen in Table 3.

The superiority of the ensemble learning approach is
demonstrated by the fact that the generalization performance
and predictive ability of the quantitative analysis model can be
greatly improved by performing ensemble learning on each
component. Taking the results of ensemble learning for nico-
tine (Fig. 6(a) and (b)) as an example, the results showed that
although the training set contained only 45 samples, the R2 of
the testing set aer ensemble learning could reach 0.9596. In
comparison, if a model based on weighted ELM was built
directly, the corresponding R2 was only 0.8190. The
32646 | RSC Adv., 2022, 12, 32641–32651
performance of the weighted ELM and weighted ELM-AdaBoost
were better than SVM. Moreover, as the number of samples in
the training set increased, the R2 tended to increase gradually,
while the RMSEP tended to decrease gradually. When the
number of samples in the training set of the target domain was
70, the R2 of weighted ELM-AdaBoost reached 0.9713 and the
RMSEP was only 0.0776. Similarly, the results for the other three
components showed the same trend.

3.2.2 Experimental protocol #2. In experimental protocol
#2, four components (nicotine, Cl, K, and total nitrogen) were
transferred from the source domain (XW, TR) to the target
domain (ZJ) to validate the effectiveness of the proposed
method. Out of a total of 85 samples, 30 samples were selected
at random as the source domain samples, 15 samples were
selected at random from the target domain as the testing set,
and 30–40 samples were selected at random from the target
domain as the training set. Other parameters were consistent
with experiment protocol #1. Due to space constraints, only the
R2 of the testing set is shown in the following gures. Fig. 7 and
8 show the calibration transfer results from XW and TR to ZJ,
respectively. More data can be seen in Table 4, only R2 and the
target domain sample size of 30–35 are listed here.

It can be noticed that the R2 of the testing set was higher than
that of the model without calibration transfer aer the cali-
bration transfer of the four components from different instru-
ments (source domains). The improvement in model
performance with calibration transfer was more pronounced
when the number of samples in the training set of the target
domain was small, and this advantage gradually diminishes as
the number of samples increases. However, the general result
was still better for calibration transfer than without. Regarding
the gradual weakening of the advantage of transfer learning,
reasonably, as the number of samples from the target domain
involved in the training set of the model gradually increases, the
role of samples from the source domain in the model gradually
diminishes.
3.3 Discussion

In the eld of machine learning, the computational effort of the
model deserves to be discussed. The proposed method is based
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The relationship between the number of target domain training set samples and R2/RMSEP of different models about four components:
(a) and (b) refer to models for nicotine; (c) and (d) refer to models for Cl; (e) and (f) refer to models for K; (g) and (h) refer to models for total
nitrogen.
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on weighted ELM, which is simple in structure and fast in
computation, in addition, the input spectral data undergoes
a PCA dimensionality reduction from 1609 to 20 dimensions,
which also improves the execution speed of the algorithm. The
proposed method (weighted ELM-TrAdaBoost) has a model
training time of approximately 0.04 seconds for one run, con-
rming the small computational cost.
© 2022 The Author(s). Published by the Royal Society of Chemistry
It is commonly assumed that more samples usually lead to
better model performance. Meanwhile, more samples also
bring an increased computational burden. Thus, a trade-off
between the number of samples and the computational
burden is necessary. Here, experimental protocol #2 (XW to ZJ,
component: nicotine) was taken as an example of the following
discussion.
RSC Adv., 2022, 12, 32641–32651 | 32647
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Table 3 Comparison among the performance of SVM, weighted ELM, and weighted ELM-AdaBoost

Component Model

Number of target domain training set samples

45 50 55 60 65 70

Nicotine SVM R2 0.6451 0.6597 0.6716 0.6890 0.7115 0.6984
RMSEP 0.2996 0.2954 0.2701 0.2686 0.2567 0.2512

Weighted ELM R2 0.8190 0.8285 0.8639 0.8752 0.8884 0.9006
RMSEP 0.2413 0.2206 0.1833 0.1757 0.1568 0.1418

AdaBoosta R2 0.9596 0.9627 0.9669 0.9678 0.9707 0.9713
RMSEP 0.0935 0.0965 0.0830 0.0795 0.0819 0.0776

Cl SVM R2 0.3764 0.3602 0.3603 0.3691 0.3920 0.3551
RMSEP 0.1867 0.1682 0.1682 0.1460 0.1647 0.1594

Weighted ELM R2 0.6372 0.6466 0.6583 0.7192 0.7299 0.7524
RMSEP 0.1084 0.1003 0.0964 0.1012 0.0866 0.0983

AdaBoost R2 0.8506 0.8611 0.8754 0.8804 0.8835 0.8967
RMSEP 0.0631 0.0532 0.0555 0.0616 0.0504 0.0558

K SVM R2 0.3054 0.3221 0.3117 0.3190 0.3496 0.3165
RMSEP 0.3261 0.3285 0.3214 0.3588 0.3224 0.2940

Weighted ELM R2 0.5811 0.6017 0.6708 0.6410 0.6490 0.6963
RMSEP 0.3382 0.2785 0.2942 0.2619 0.2897 0.2349

AdaBoost R2 0.8393 0.8458 0.8687 0.8554 0.8776 0.8792
RMSEP 0.1517 0.1506 0.1482 0.1384 0.1520 0.1350

Total nitrogen SVM R2 0.5101 0.5302 0.5496 0.5703 0.5678 0.5777
RMSEP 0.1616 0.1542 0.1518 0.1456 0.1451 0.1471

Weighted ELM R2 0.5463 0.6128 0.6346 0.6452 0.6643 0.7011
RMSEP 0.1753 0.1507 0.1503 0.1421 0.1323 0.1264

AdaBoost R2 0.7216 0.7608 0.7636 0.7553 0.7655 0.7780
RMSEP 0.1023 0.1064 0.0981 0.1089 0.1012 0.1048

a AdaBoost represents weighted ELM-AdaBoost.

Fig. 7 The relationship between number of target domain samples and R2 of different models about four components while transfer from XW to
ZJ: (a) refers to models for nicotine; (b) refers to models for Cl; (c) refers to models for K; (d) refers to models for total nitrogen.

32648 | RSC Adv., 2022, 12, 32641–32651 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 The relationship between number of target domain samples and R2 of different models about four components while transfer from TR to
ZJ: (a) refers to models for nicotine; (b) refers to models for Cl; (c) refers to models for K; (d) refers to models for total nitrogen.
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Fig. 9 demonstrates the effect of the variation in the number
of source domain samples on the performance of the quanti-
tative analysis model. It can be found that increasing the
number of samples in the source domain of the training set will
Table 4 R2 comparison results of weighted ELM-TrAdaBoost and weigh

Source domain Component Method

Numbe

30

XW Nicotine TrAdaBoosta 0.5650
AdaBoostb 0.3272

Cl TrAdaBoost 0.5827
AdaBoost 0.2349

K TrAdaBoost 0.2876
AdaBoost 0.2163

Total nitrogen TrAdaBoost 0.4298
AdaBoost 0.1666

TR Nicotine TrAdaBoost 0.6257
AdaBoost 0.2946

Cl TrAdaBoost 0.7096
AdaBoost 0.2506

K TrAdaBoost 0.3350
AdaBoost 0.2016

Total nitrogen TrAdaBoost 0.5205
AdaBoost 0.1896

a TrAdaBoost represents weighted ELM-TrAdaBoost. b AdaBoost represent

© 2022 The Author(s). Published by the Royal Society of Chemistry
remarkably increase the R2 of the calibration transfer model
when the training set contains relatively few samples in the
target domain (Fig. 9(a) and (b)). However, when the number of
samples in the target domain of the training set increased, the
ted ELM-AdaBoost

r of target domain training set samples

31 32 33 34 35

0.8877 0.9293 0.9400 0.9372 0.9426
0.8597 0.9134 0.9285 0.9328 0.9374
0.7082 0.7579 0.7775 0.7835 0.8147
0.5970 0.7258 0.7380 0.7672 0.7917
0.6421 0.6871 0.7494 0.7713 0.7548
0.6174 0.6612 0.7263 0.7518 0.7502
0.6310 0.6550 0.6632 0.6705 0.6980
0.5640 0.5943 0.6205 0.6445 0.6808
0.8595 0.9194 0.9378 0.9358 0.9432
0.7947 0.9009 0.9274 0.9300 0.9341
0.7585 0.7906 0.8076 0.8094 0.8228
0.6279 0.7386 0.7841 0.7858 0.8040
0.6156 0.7352 0.7573 0.7731 0.8045
0.5755 0.7113 0.7516 0.7564 0.7953
0.6115 0.6266 0.6691 0.6662 0.6960
0.5170 0.5757 0.6272 0.6311 0.6723

s weighted ELM-AdaBoost.

RSC Adv., 2022, 12, 32641–32651 | 32649
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Fig. 9 Effects of the number of source domain samples on the R2 of the model: (a) the number of target domain samples is 10 (N = 10); (b) N =

20; (c) N = 30; (d) N = 40; (e) N = 50; (f) N = 60.
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increase in the number of samples in the source domain did not
obviously improve the R2 of the calibration model (Fig. 9(d)–(f)).
Since when the training set contains enough target domain
samples, setting up a quantitative analysis model with excellent
generalization power is a simple matter, so the information that
can be provided by the source domain sample appears insig-
nicant. Conversely, when the training set contained fewer
target domain samples, the information contained in the
source domain samples helped build the target domain model,
despite the instruments in the source and target domains being
different.
4. Conclusions

Many of the existing calibration transfer methods have limited
application as they are based on standard samples, the preser-
vation of which is a challenge. When environmental conditions,
instruments, or sample changes occur, the original model is no
longer applicable, while the method proposed avoids the
drawback of rescanning a large number of samples for
modeling. In this paper, a novel instance-based method for
calibration transfer is applied to tobacco quality evaluation
across different instrumentation domains, which incorporates
SNV, PCA, weighted ELM, and TrAdaBoost algorithms. The
results suggested that the proposed method could achieve
calibration transfer between different instruments. In existing
studies, the transfer from one source domain to one target
domain has been realized with promising performance. The R2

of the TrAdaBoost model of four components (nicotine, Cl, K,
32650 | RSC Adv., 2022, 12, 32641–32651
and total nitrogen) of tobacco reached 0.9426, 0.8147, 0.7548,
and 0.6980 (transfer from XW to ZJ as an example). In reality,
production data oen involves the distribution of multiple
domains, so it is a question worth investigating whether the
information from multiple source domains can be transferred
to the target domain. The proposed method should be tried out
for more than just cross-instrument transfers, such as with
different sample states, different compositions, etc.
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