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Introduction

‘The Great Plate Count Anomaly” is one of the most prevalent
mysteries within microbiology® which illustrates the impracti-
cality of cultivating the vast majority of microbial species under
standard laboratory -cultivation techniques.** Despite the
ambiguity of the root cause, a few theories suggest that the
uncultivability of microbes stems from the deficiency of
chemical signaling from neighboring microbes in single cell
cultures, a loss of physiological stimuli such as pressure and
temperature changes,® or prolonged dormancy.*’

For over 40 years, natural products have proven to be an
unrivalled source for therapeutic agents.® As antibiotic resistant
strains of microbes increase, so too does the need for the
discovery of new microbial species.® The development of novel
antibiotic therapeutics must not be overlooked as deaths
resulting from antimicrobial resistance are currently around
700 000 people globally each year, with a projected increase to
10 million people by 2050 if no further action is taken.'® Despite
the relevancy of microbes, we find ourselves in an era described
as the discovery void"™ "> with rediscovery and replication of
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neighbouring species and interactions with environmental stimuli for marine bacterial growth to
overcome current barriers faced by standard laboratory cultivation methods.

known compounds presenting an increasing issue. Whilst
developing methods such as molecular networking has shown
promising results in defeating the quandary of replication,™
access to the missing chemical space is still unobtained.

One method developed to combat ‘The Great Plate Count
Anomaly’ is the use of diffusion chambers. The success of the
diffusion chambers has been reported to be 300 times greater
for the formation of micro-colonies in comparison to traditional
plating techniques.'*** Diffusion chambers consist of a hollow
structure, sealed with filter membranes, which are then situated
within the natural environment for in situ incubation. This in
situ cultivation allows for cell-to-cell communication and
physiological stimuli changes; however, this process requires
serial dilution to extinction in order to purify colonies, which
significantly lowers the throughput characteristics of the device.

The isolation chip, more commonly referred to as the
iChip,*® is a simplistic, low-tech device which yields great
potential as proved through the isolation of teixobactin from the
novel bacterium Eleftheria terrae in 2015." The iChip was an
evolution of the diffusion chamber which intended to increase
the throughput by individually sorting a single bacterium into
its own individual well. Although vastly improving throughput,
this method may be viewed as a single cell approach in which
co-culture could be diminished through the lack of cell-to-cell
communication within the individual wells. Our previous
work introduced the concept of the Microbial Domestication
Pod (MD Pod),"® a device allowing for single cell isolation while
providing the opportunity for cell-to-cell communication. The
preparation of the MD Pod was achieved using a microfluidic
set up to encapsulate a single cell within an agarose microbead.
The agarose microbeads were then inserted into the MD Pod
which was used for in situ marine sediment cultivation. The MD
Pod featured filter membranes which facilitated the entry of
nutrients while preventing the entry of other microbes.
However, although the original MD Pod was suitable for the in
situ cultivation within marine sediment, its size prevented its
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use within many invertebrates. This study aimed to improve on
our current methodology while producing a device capable of in
situ cultivation within small marine invertebrates® (Fig. 1).
Marine invertebrates have long been considered an exciting
source of marine natural products,*®** often however, it is not
the invertebrate itself which is responsible for the production of
the therapeutic agent, but instead, a bacterial species living in
symbiosis.*” Previous studies in the Kerr lab have demonstrated
how in situ cultivation within marine invertebrates can be
a fruitful source of new compounds with the use of a modified
iChip. However, neither the iChip nor the original MD Pod is
suitable for in situ cultivation in many smaller species of marine
invertebrates and as such, development of a micro-scale device
was necessary.

As mentioned, the microbial diversity living within marine
invertebrates, octocorals in particular, shows great promise for
the discovery of new natural products. However, no previous
work has been capable of exploring the in situ cultivation of
bacteria within such a confined area. A novel approach is
needed to access these resources while facilitating the diffusion
of nutrients and chemical signaling. Herein we report the
production of the uMD Pod, a device microfabricated through
two photon polymerization yielding high-resolution micron-
sized® features negating the use of fragile membranes. This
work maintains the benefits of a “domestication” period in the
bacterium's natural environment simultaneously harnessing
the natural symbiotic relationships present through co-
cultivation within the nursery of the microbeads,* re-opening
doors for bioprospecting marine invertebrate-associated
natural products.

Materials and methods
UMD Pod fabrication

The pMicrobial Domestication Pod (UMD Pod) was designed
using Solidworks (Dassault Systems, 2020). The design featured
two layers of grid-like walls with 60 pm square openings peri-
odically separated in a 60 um array. The two layers were over-
lapped with a slight offset to yield 10 um square through-holes
(Fig. 2a—c). The top of the Pod featured a 500 um diameter
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Fig.1 The process of in situ marine bacteria cultivation using the uMD
Pod.
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Fig. 2 (a) pMD Pod CAD design; (b) uMD Pod CAD designs displaying
the overlapping walls; (c) an HiM image of 5 um pores in overlapping
wall; (d) loading of the uMD Pod; (e) microscopic image of fabricated
uMD Pod; and (f) a close-up of the pores in the uMD Pod.

tapered hole for inserting the microbead suspension into the
cavity of the Pod. The internal cavity of the 2.850 mm pMD Pod
was 1.74 pL which can contain over 1500 microbeads of 200 pm
diameter. The base of the Pod had seven octagonal pedestals
required for the post-fabrication removal process off the silicon
slide. The design was printed using two-photon polymerization
technology (Nanoscribe GmbH, Germany). The device was
fabricated out of IP-S resin, a biocompatible, non-cytotoxic
material used in microfluidic applications. The exposure time
for a batch of five uMD Pods was 24 hours using the IP-S resin.
Once printed, the Pods were autoclaved before being loaded
with the microbead suspension.

To fabricate such a small device, different aspects of the
previous devices were taken into consideration. The use of
membranes was present in all previous in situ cultivation
devices but presented many challenges due to its fragility
leading to tears or improper sealing. In this study, two-photon
polymerization (Nanoscribe GmbH, Germany) was used to
negate the use of membranes and achieve the desired micron-
sized features. The application of two-photon polymerization
enabled the fabrication of a porous device that could facilitate
chemical signaling and nutrient diffusion. The pMD Pod
featured an open-top for the loading of the cell-encapsulated
microbeads. The uMD Pods were then sealed using natural
wax (Michaels, USA). Natural wax was selected for sealing of the
device as it is a biocompatible material®® that is suitable for
a saltwater environment and inherently quick drying.

pMD Pod seal testing

Three uMD Pods were aseptically loaded using a 21-gauge
sterilized needle with microencapsulated Sphingomonas phyl-
losphaerae which were produced using a previously reported
microfluidic technique'® (Fig. 2d). This bacterium was selected
due to its distinct yellow pigmentation. Each of these uMD Pods
were sealed using a natural wax by using forceps to dip the
opening of the pod into the wax heated to 70 °C and set aside
until dry. Once sealed, the pMD Pods were then submerged in

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ra05420e

Open Access Article. Published on 03 October 2022. Downloaded on 2/11/2026 12:56:26 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Marine Broth 2216 (Difco) diluted to 10% strength (dMB) and
incubated at room temperature for 7 days without shaking.
Three control cultures were performed simultaneously which
consisted of S. phyllosphaerae suspended in 10% marine broth.

Incubation of encapsulated S. phyllosphaerae microbeads

Production of microbeads encapsulating S. phyllosphaerae were
produced as previously reported.”® An encapsulation of Strep-
tomyces sp. was also performed using the same method. The
microbeads were suspended within a dialysis bag. The incu-
bation within the dialysis bag was performed to ensure that no
outside bacterial communities could gain access to the
microbeads whilst allowing nutrients to cross the membrane.
The microbeads were incubated within the aquarium for
a period of 7 days. After completion of the incubation period,
the microbeads were removed and stained using DMAO in order
to assess microbial growth within the microbeads.

Staining for microbead bacterial growth

After the completion of the incubation period, the uMD Pod was
sacrificed onto a glass slide and the debris was washed with 10
uL of sterile water to remove any surface bound microbeads.
Cell viability assessments were performed using fluorescent
Live/Dead bacterial staining (PromoCell, Germany). For the
Live/Dead assay, a ratio of 100:1 bacterial sample to stain
mixture (prepared according to the manufacturer's recom-
mendation) was conducted and viability was assessed by fluo-
rescence microscopy using a Revolve4 microscope and a 20X
objective (ECHO, USA). The microbeads were imaged both prior
and post incubation to examine colony growth.

Results and discussion
UMD Pod fabrication

After printing of the pMD Pods, the printability number was
found to be 1.05 + 0.03 (Pr = L>/16A) where L is the perimeter of
the pore and A is the area of the pore®®*” (Fig. 2c, e and f). The
pedestals on the base of the Pods provided the stability needed
during fabrication and transport as the first shipment of Pods
arrived damaged. The new Pods were successfully fabricated
and shipped; however, the Pods have an exposure time of 24
hours per five Pods and the manipulation of these devices
proved to be a challenge as the IP-S resin was quite brittle.
Future studies will investigate the use of the IP-PDMS and IP-
Visio resins which will yield a more flexible device. Addition-
ally, the current design featured 10 pm by 10 um pores;
however, we have shown that smaller pore sizes are attainable
for this device using two-photon polymerization (Fig. 2c). As
concluded from the pressure simulation (details provided in
ESIY}), the recommended maximum pressure on the pMD Pods
to avoid breakage is 350 kPa, which can allow the pods to reach
depths of 35 m in saltwater.

pMD Pod seal testing

During this experiment, dMB was used as the culture medium
to allow for a clear indication of outgrowth if the Pods were not
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successfully sealed. S. phyllosphaerae was microencapsulated in
agarose beads of 250 um. The Pods were then incubated for 7
days at room temperature before comparison against control
cultures. During this trial, bacterial growth could be observed in
dMB for the control cultures due to the visible change in broth
colour. However, no outgrowth was observed in cultures inoc-
ulated with the uMD Pods sealed with sealing wax as there was
no visible change in the broth, nor was there any colony
formation for the plated broth. Therefore, it was confirmed that
the pMD Pod pores are successfully fabricated and the inlet is
successfully sealed.

uMD Pod insertion into coral and microbial in situ cultivation

To assess the application of this technique for in situ incubation
applications within marine invertebrate hosts, a salt-water
aquarium was set up containing the coral Euphyllia glab-
rescens (AFK Reef Supplies, Canada). In order to assess the
mechanical properties of the pMD Pod it was shown that the
UMD Pod can be inserted into a coral (Fig. 3b). However,
insertion of the uMD Pod into corals with limited coenenchyma
whilst possessing large polyps was observed to be challenging.
The coenenchyma is the tissue of the coral that connects the
colony of polyps.”® It is within this region that the transfer of
nutrients between polyps occurs, and it is hypothesized to
contain diverse microbial communities.***”

S. phyllosphaerae containing microbeads were incubated for
a period of seven days to assess bacterial growth within the
beads in a marine environment (as described in the Methods).
Following incubation, the microbeads were retrieved, and the
agarose microbeads were stained using DMAO. A significant
increase in the number of colonies growing within the
microbead post incubation was observed, indicating that the
bacteria multiplied during in situ incubation (Fig. 3¢ and d).
This experiment was also performed using Streptomyces sp.
(RKND-216), a marine bacterium, which also experienced

Fig. 3 (a) Control cultures of S. phyllosphaerae in triplicate (left) and
sealed uMD Pods in triplicate showing no outgrowth (right); (b)
attempted insertion of uMD Pod into Euphyllia glabrescens; (c)
microbead bacterial content before incubation within an aquarium; (d)
microbead bacterial content post incubation within an aquarium; (e)
microbead containing Streptomyces sp. before incubation; (f)
microbead containing Streptomyces sp. post incubation.
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a significant increase in bacterial growth following the incu-
batory period (Fig. 3e and f).

Upon previous successful trials for the isolation and culti-
vation of marine bacteria, the need to reduce the size of the
Pods was identified to discover new bacteria in different envi-
ronments. The uMD Pod is currently in its preliminary proof-of-
concept stage; however, future iterations will have to overcome
the current fabrication limitations relating to the co-
dependency of the overall device size and smallest pore size.
It has been observed that Octocorallia contain diverse
communities of bacteria.*®* However, this resource has not yet
been fully explored due to the physical limitations present. The
primary impediment which has prevented in situ cultivation
within octocorals is attributable to the small branches of the
corals. In the case of Antillogorgia elizabethae***' and Anti-
llogorgia bipinnata,* two species of interest, the branch thick-
nesses range from 1-2 mm. Given the limited space, an altered
approach was developed in this proof-of-concept study
demonstrating with technological advances two-photon micro-
fabrication presents a viable approach to enable access to the
untapped resource of novel natural products within such
octocorals.

Conclusions

We have successfully demonstrated how two-photon polymeri-
zation printing can be used as a method of fabrication of in situ
cultivation devices. Whilst the technology is currently lacking
the resolution to create pore sizes of <0.1 pm allowing for the
removal of any membranes, this proof on concept displays great
potential. The slow growing S. phyllosphaerae was successfully
microencapsulated within agarose beads and through the use of
live/dead imaging, bacterial growth was observed within the
uMD Pod. As technology advances, we believe this is an
approach which will provide the opportunity to gain access to
currently obtainable microbial dark matter, harnessing syner-
gistic relationships between marine invertebrate associated
bacteria and environmental stimuli. This has the potential to be
a powerful process for gaining access to new taxa of bacteria, in
return, providing access into much needed therapeutic agents.
Additionally, the uMD Pod's small size provides great potential
creating the possibility of in situ cultivation of ‘unculturable’
bacteria within the human microbiome. However, future
studies must be conducted to expand the capabilities of the
device by reducing its overall size and pore size.
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