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ction of corrosion minerals in
carbon steel using shortwave infrared
hyperspectral imaging
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Gunther Steenackers a and Steve Vanlanduit a

This study presents a novel method for the detection and quantification of atmospheric corrosion products

on carbon steel. Using hyperspectral imaging (HSI) in the short-wave infrared range (SWIR) (900–1700 nm),

we are able to identify the most common corrosion minerals such as: a-FeO(OH) (goethite), g-FeO(OH)

(lepidocrocite), and g-Fe2O3 (maghemite). Six carbon steel samples were artificially corroded in a salt

spray chamber, each sample with a different duration (between 1 h and 120 hours). These samples were

analysed by scanning X-ray diffraction (XRD) and also using a SWIR HSI system. The XRD data is used as

baseline data. A random forest regression algorithm is used for training on the combined XRD and HSI

data set. Using the trained model, we can predict the abundance map based on the HSI images alone.

Several image correlation metrics are used to assess the similarity between the original XRD images and

the HSI images. The overall abundance is also calculated and compared for XRD and HSI images. The

analysis results show that we are able to obtain visually similar images, with error rates ranging from 3.27

to 13.37%. This suggests that hyperspectral imaging could be a viable tool for the study of corrosion

minerals.
1 Introduction

Accurate and efficient detection of corrosion is critical to
maintaining the health of metal structures and reducing the
life-cycle cost of industrial infrastructure. The man-hours spent
identifying the problem and then remediating it through
a major overhaul or replacement of critical parts represent
a signicant portion of the lifecycle cost of all platforms and
infrastructure.1 Therefore, early detection of corrosion prob-
lems reduces the total cost of ownership. There are several
approaches to investigate atmospheric corrosion in carbon steel
samples, which can be divided into two main categories:
corrosion detection based on material changes and corrosion
detection based on characterization of corrosion products. An
overview of these techniques is given in Fig. 1.

Regarding the rst category, the techniques can be divided
into two subcategories: physical measurement techniques,
which assess the damage caused by the corrosion, and elec-
trochemical techniques, which assess the chemical change
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caused by the corrosion process. Proven physical measurement
techniques include coupons, electrical resistance (ER),2 ultra-
sonic testing (UT)3 and acoustic emission (AE).4 These methods
directly measure, in different ways, the damage caused by the
corrosion process to the structure or sample under investiga-
tion. In general, these measurement methods can predict the
corrosion rate in mm per year for a given location. This analysis
can then be extrapolated to the entire structure. When using ER,
AE and UT, the inspection of an entire structure is time-
consuming due to its limited inspection area.
Fig. 1 Overview of commonly used corrosion detection methods.
Inspired by ref. 25.
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Electrochemical measurement methods include linear
polarisation resistance (LPR), electrical impedance spectros-
copy (EIS),5 electrochemical noise (EN)6 and scanning vibrating
electrode technique (SVET).7 These methods measure the
changes in the electrochemical signal in a material caused by
the corrosion process. They are good for determining the overall
corrosion rate of a structure, but they are not suitable for
localising corrosion on a larger structure.

Another approach to corrosion detection is to identify, locate
and quantify corrosion products. Correct identication and
quantication of corrosion minerals has been correlated with
corrosion rate in several research articles. A protective ability
index (PAI)8,9 is proposed as a metric to evaluate the protective
properties of a corrosion layer. Two categories can also be
distinguished in the identication of minerals: chemical anal-
ysis on the one hand and optical imaging on the other.
Common methods of chemical analysis include Fourier trans-
form infrared spectroscopy (FTIR),10 Raman spectroscopy,11 X-
ray diffraction (XRD),12 scanning electron microscopy (SEM),13

and atomic force microscopy (AFM).14 Previous studies have
shown that each of these methods is able to identify the
different corrosion minerals that form during atmospheric
corrosion, such as a-FeO(OH) (goethite), g-FeO(OH) (lep-
idocrocite), g-Fe2O3 (maghemite). These are very accurate
methods that are well suited to a laboratory environment with
small samples. However, applying these techniques outside the
laboratory would again be very time-consuming and practically
unattainable.

Optical measurement techniques, on the other hand, can
use larger sensor arrays to measure or image larger areas.
Examples include standard visual spectrum (RGB) cameras,
multispectral cameras (MSI) and hyperspectral cameras (HSI).
Using RGB cameras to inspect corrosion minerals is a difficult
Fig. 2 RGB images of the artificially corroded samples.

Table 1 Duration (in hours) of the accelerated salt spray test for each
sample

Sample # 1 2 3 4 5 6
Duration (h) 1 2 24 48 72 120

32776 | RSC Adv., 2022, 12, 32775–32783
task because the specic minerals all have the same red-brown
hue.15,16

A compromise between optical imaging and chemical
detection can be found in hyperspectral and multispectral
imaging. With these cameras, we obtain more spectral infor-
mation (typically 3–10 wavelengths for multispectral and more
than 10 wavelengths for hyperspectral images) than using an
RGB camera. These cameras can operate in different spectra,
ranging from ultraviolet to long-wave infrared. Hyperspectral
imaging is used in a variety of applications: remote sensing,
food analysis,17,18 biomedical research, waste separation, agri-
culture.19,20 As for the detection of corrosion with HSI, research
is limited. Halford et al.21 used a HSI, to study corrosion on
bronze statues. Antony et al.22 used a HSI with a bre bundle
probe attached to detect corrosion on steel samples. Al Ktash
et al.23 proposed a solution using UV HSI to characterise oxide
layers on copper.

Previous research by the same authors.24 focused on the
comparison between FTIR analysis and HSI measurements.
However, the FTIR data were obtained with scraped corrosion
products, so spatial information about where the corrosion
products are present was not considered. This article lls this
gap. We not only obtain the mineral amounts of the individual
corrosion products, but also collect spatial information that can
be correlated with the HSI measurements.
2 Materials and methods
2.1 Sample preparation

Cold rolled carbon steel samples with the following dimen-
sions: 150 × 50 × 1 mm (length × width × thickness). The
specimens were of DC01 quality as described in DIN EN 10130:
2006. The surface was then sanded with 400 and then 800 grit
sandpaper. Aer sanding, the parts were rst rinsed with
demineralised water and then with an isopropyl alcohol clean-
ing solution. The samples were placed in the salt spray chamber
at the same time. The accelerated corrosion test was conducted
according to DIN ISO 9227,26 with a chamber temperature of
35 °C and a spray temperature of 45 °C. The pH wasmeasured at
one-day intervals and remained between 6.8 and 7.1. Each
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Schematic overview of the scanning XRD setup. With (1) as the
X-ray source and optics, (2) XRD detector, (3) distance laser, and (4) the
motorized platform.
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sample was taken out of the chamber at a different time, with
a total salt spray duration of one hour for sample one and 120
hours for sample six. The durations of accelerated corrosion for
all samples are given in Table 1. Fig. 2 shows the different
samples with a clear difference in the degree of corrosion.
Fig. 5 SPECIM FX17 and SPECIM Lab Scanner laboratory setup.
2.2 XRD measurements

The MA-XRD measurements were performed by means of an in-
house built mobile scanner (AXIS, University of Antwerp, Bel-
gium). The device is set-up with a low power X-ray micro source
(50 W, Im S–Cu, Incoatec GmbH, Germany), which produces
a monochromatic and focused X-ray beam (Cu–Ka; 8.04 keV),
a more detailed description can be found elsewhere27[24]. A
primary beam angle of incidence of 10°relative to the corroded
steel samples was employed due to geometrical limitations.
This caused the beam footprint to become elongated in the
horizontal direction so that it was of the order of 0.8 mm in the
horizontal and 0.2 mm in the vertical direction. A PILATUS 200
K area detector was used to record 2D diffraction patterns for
each irradiated position. To reduce the effect of local topog-
raphy of the steel samples on the diffraction data, the distance
between the artwork and the scanner was automatically
adjusted with a laser distance sensor (Baumer GmbH, Germany)
at each measurement point. All components are placed on
a motorized platform that is capable of moving in the XYZ
directions (30 × 30 × 10 cm3). The in-house developed soware
package XRDUA was used for the processing of all XRD data.
XRDUA provides the necessary tools for extracting crystalline-
specic distributions from the large number of 2D diffraction
patterns obtained during XRPD imaging experiments.28 A
schematic overview of the setup can be found in Fig. 3 and the
actual setup in Fig. 4. A spatial resolution of 1.3 mm per pixel is
obtained for this setup.

An example of the resulting XRD measurements can be
found in the le column of Fig. 9.
Fig. 4 Image of the scanning XRD setup.

© 2022 The Author(s). Published by the Royal Society of Chemistry
2.3 HSI measurements

The hyperspectral images were acquired using a push-broom
short-wave hyperspectral imaging system. An image of the
setup can be seen in Fig. 5. The setup consists of a motorised
translation stage (SPECIM laboratory scanner) that moves the
sample while the camera is held in place. During the scanning
process, the samples are illuminated with 6 halogen lamps with
a power of 25W. The camera (SPECIM FX17) captures 224 bands
for each of the 640 pixels in the range of 900–1700 nm. The lens
used for the measurements has a FOV of 12 °and an aperture of
F/1.7. The distance between the lens and the samples was 200
mm, resulting in a spatial resolution of 0.17 mm per pixel. No
spectral binning was applied, giving us a FWHM (full width at
half maximum) of 8 nm. To convert the measured values into
a reectance value, a calibration was performed with a dark and
a white reference. The dark reference was obtained by closing
the shutter and averaging over 100 captured images. For the
white reference, a Spectralon tile with a reectance of 99% was
taken and also averaged over 100 images. The scanned image
was then corrected for each wavelength using the eqn (1).29

Icorr ¼ Sr

Io �Dref

Wref �Dref

(1)

with Icorr as the corrected image, Sr as the reectivity of the
spectralon tile, Io the uncalibrated image, Dref as the averaged
dark reference and Wref as the white reference. The simulta-
neous control of the translation stage and the camera acquisi-
tion was done using Specim Labscanner soware. A camera
frame rate of 50 Hz and a scanning speed of 6.26 mm s−1 were
used to scan all the samples. It required approximately 25
seconds to scan the entire sample. The post-processing and
white calibration was done in Python.

Several post-processing steps are applied to the calibrated
hyperspectral images. Since the rst and last bands have a high
noise/data ratio due to lower quantum efficiency at these
wavelengths, these bands (the rst and last 5 bands) are
removed from the spectra. A Savitsky–Golay lter is also applied
RSC Adv., 2022, 12, 32775–32783 | 32777
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Fig. 6 Flow chart of the steps to compare XRD and HSI measurement.
This is done for each investigated mineral. With m and n as the hori-
zontal and pixels dimensions, s as the number of samples and b the
number of spectral bands.
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to each spectrum to smooth the spectra and remove unwanted
irregularities that could affect classication accuracy. In a nal
step, the spectra are normalised between 0 and 1 to remove
scale differences that may affect the machine learning
algorithms.

2.4 FTIR measurements

A Macroscopic reectance FTIR (MA-rFTIR) is used to collect
spectra for each sample. The device consists of a portable
bruker alfpha FTIR spectrometer that is positioned on a xy
translation stage. Thus making it possible to do a pointwise
scanning of larger 2D surfaces. The spectral resolution is 4 cm−1

and the spectral range spans from 375–7500 4 cm−1. Detailed
information on the construction and implementation of this
Ma-rFTIR scanner can be found in.30 The spatial resolution is
kept similar to that of the XRD thus interpolation of the spectra
is not needed. The spectra are smoothened with a savitsky golay
lter with a window size of 25 and polynomial t of the third
degree. The postprocessing of the spectra was done using the
Spectragryph soware.31

2.5 Data analysis

The spatial resolution of the XRD measurements (1.3 mm per
pixel) and the HSI (0.17 mm per pixel) measurements are not
the same, so several steps must be taken to align these data. The
methodology for aligning the two data sets is shown in Fig. 6
and the steps are explained in more detail in the next para-
graph. It is important to note that these steps are repeated for
each mineral, e.g. each mineral is processed and evaluated
separately.

2.5.1 XRD. For each sample, the mineral abundance data is
loaded into a 2D matrix and used as the reference values. All
32778 | RSC Adv., 2022, 12, 32775–32783
samples are combined into a 3D matrix (mxnxs), where m and n
are the number of pixels in x- and y-direction, respectively, and s
is the number of samples.

The data from HSI is subjected to several preprocessing
steps, such as calibration, removal of noisy areas and
smoothing, as mentioned in Section 2.3. Aer these steps, the
size of the HSI data cube is adjusted to the dimension of the
XRD image. To reduce the size of the images, a bicubic inter-
polation method is used. The downsized data cubes are then
combined into a 4D matrix (mxnxsxb), where b is the number of
spectral bands. The next step is to combine and smooth the
XRD and HSI data cubes. For both data cubes, the rst three
dimensions are transposed into a vector of size (mxnxs). In the
end, we get a Y-vector containing the XRD data and a 2D matrix
for the hyperspectral data. So for each hyperspectral pixel
(spectrum) there is a corresponding abundance value that is
measured by the XRD for that specic mineral. This attening is
necessary to use the machine learning algorithm. The resulting
dataset is then split into a training and a testing part with a ratio
of 30/70. A small training dataset is deliberately chosen to
prevent overtting the model.

A random forest regression32 is trained on these data. This
algorithm uses several parallel decision trees whose results are
averaged to achieve a higher overall prediction accuracy. A
random subset of the dataset is used to create each decision
tree. Averaging or ensemble methods are commonly used in
machine learning to achieve higher accuracy compared to non-
ensemble methods.33 As with most machine learning algo-
rithms, there are a number of hyperparameters that can be
dened and ne-tuned. A parameter optimisation algorithm 34

is used to determine the most successful set of hyperparameters
for the model. Five-fold cross-validation is used to calculate the
mean accuracy of the model.

Aer tuning the algorithm, we can use the best parameters to
predict an abundancemap based on the test dataset. The subset
of the dataset on which the model was trained is not omitted
when calculating the correlation metrics. The correlation
metrics used are explained in more detail in the next section. All
calculations were performed on a Windows 10 computer with
an Intel Core i7-9750H with 12 cores and a speed of 2.6 GHz, 32
GB RAM and an Nvidia GTX 1650 graphics card. The open
source Python package sci-kit learn35 was used to implement
these algorithms.
2.6 Correlation metrics

Four different correlation metrics are used to evaluate the pre-
dicted HSI images with the XRD measurements. The use of the
different correlation metrics is necessary because each metric
evaluates similarity differently.36 The following metrics are used
in this article: R2, RMSE, SSID and SRE. The rst two can be
classied as statistical measures, while the last two are more
suitable for nding visual or feature correlations between
images.

� The correlation coefficient or R2 will measure the correla-
tion between the pixel values of the XRD image and the HSI
image.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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� The Root Mean Square Error (RMSE) is a measure for the
difference in value on a pixel level between the two images.
RMSE is an oen used similarity comparison metric, however
when the values are shied slightly, this will have a major
impact on the RMSE value. While the overall image will still
have a similar appearance. RMSE is calculated using eqn (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

½Iði; jÞ � Kði; jÞ�2
vuut (2)

with N as the total number of pixels, I as the XRD image and K as
the HSI image.

� Structural Similar Index Measure (SSIM)37 will focus on the
perceptual difference between the images. This algorithm is
traditionally used to assess the image quality aer compression
is applied. SSIM is calculated using eqn (3). The output is
a value between −1 and 1 with 1 being a complete identical
image.

SSIMðx; yÞ ¼
�
2mxmy þ c1

��
2sxy þ c2

�
�
mx

2 þ my
2 þ c1

��
sx

2 þ sy
2 þ c2

� (3)

With mx the average of x, my the average of y, sx2 the variance of
x, sy2 the variance of y, sxy the covariance of x and y, c1 = (k1L)

2,
c2 = (k2L)

2 two variables to stabilize the division with weak
denominator, L the dynamic range of the pixel-values (typically
this is 2#bits per pixel − 1, k1 = 0.01 and k2 = 0.03 by default.

� Signal to Reconstruction Error ratio (SRE)38 measures the
error relative to the power of the signal. The authors show that
using SRE is better suited to make errors comparable between
images of varying brightness. SRE is expressed in decibels (dB)
and calculated with eqn (4)

SRE ¼ 10 log10
mx

2

ky� xk2
.
n

(4)

With x being the XRD abundance map, y the predicted HSI
abundance map, mx the average value of x and n the amount of
pixels in the XRD or HSI abundance map.
Fig. 7 FTIR Reflectance spectra for four different positions in sample six. T
literature for each mineral. (G = goethite, M = maghemite, L = lepidocr

© 2022 The Author(s). Published by the Royal Society of Chemistry
3 Results
3.1 FTIR analysis

To conrm the XRD analysis, FTIR is used to evaluate theminerals
present in the sample. Sample six was measured with an FTIR
scanner to obtain both spatial and spectral information. Fig. 7
shows the spectra from four different locations. These locations
are indicated by circles on the RGB image in Fig. 8. The XRD
analysis showed that the highest concentration for each of the
categories was measured at these four locations. The different
spectra show that when the abundance of a particular mineral is
high, the distinct spectral features are also found in the FTIR
spectra. The XRD measurements for position 1 show an abun-
dance of 73.44% of lepidocrocite, which is conrmed by the
pronounced spectral features at 1023 and 750 cm−1. Also present
at this position is 22.54% goethite, which is also visible in the
spectrum, with peaks in the range of 790 and 900 cm−1. For
position 2, the XRD measurements indicate the presence of
54.22% goethite and 24.43% lepidocrocite. Looking at the FTIR
spectra, we see that the spectra of both goethite and lepidocrocite
are present. Compared to position 1, the features of goethite are
more pronounced, indicating that a higher concentration of
goethite is present. Position 3, as expected, has no signicant
features consistent with the corrosion spectra, being identied as
iron in the XRD analysis. Position 4 has a broad feature in the 620–
660 cm−1 range indicating the presence of maghemite. The XRD
measurements show thatmaghemite is indeed themost abundant
mineral at this position.
3.2 Visual comparison

A comparison between themeasured XRD abundancemaps and
the predicted abundance maps from the HSI measurements for
sample six can be found in Fig. 9. From this comparison, we see
that they look quite similar from a visual point of view. The
overall intensity of the images is the same, and they also have
the same features (light and dark spots). On closer inspection,
we can see that there are some differences in the location of the
above features. For example, the iron spot in the lower le area
he vertical lines represent the distinct features that are described in the
ocite).

RSC Adv., 2022, 12, 32775–32783 | 32779
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Fig. 8 RGB image of sample six. The green circles indicate the FTIR
measurement location.

Fig. 9 Side by side comparison of the individual XRD abundancemaps
and the predicted abundance maps calculated by the machine
learning algorithm (random forest regressor) for sample six. The green
circles represent the locations with the highest abundance of that
specific mineral. The FTIR spectra of these locations are displayed in
Fig. 7.
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is clearly 4 pixels in size, whereas the prediction from HIS
predicts only 2 pixels as a large iron concentration. This obvi-
ously has a very large impact on the comparison metrics and
also on the overall error between XRD and HSI abundance area.
It is clear from the comparison that the two most important
corrosion minerals are lepidocrocite and goethite, and to
a lesser concentration also maghemite, while the presence of
iron is almost negligible.
3.3 Analytical comparison

The results of the HSI and XRD comparison are shown in Table
2. For sample one, only iron is detected from the XRD
measurements. However, the RGB images in Fig. 2a show that
there is corrosion present, but this is very early stage corrosion
(aer one hour). The signals of iron are abundantly in the
32780 | RSC Adv., 2022, 12, 32775–32783
resulting diffractogram, thus making it impossible to distin-
guish this early stage corrosion from the background using
XRD. Therefore, sample one is not included in the overview
table. For each sample and mineral, the R2, RMSE, SSIM and
SRE values were calculated. When looking at the correlation
value of R2 in Table 2, it is noticeable that there are large
differences between the different minerals and samples. In
particular, the R2 values for iron are remarkably low. This can be
explained by the small amount of iron abundance data available
for this sample. Another possible to source of error is that iron
is difficult to predict because of the difference in sampling
depth between the different methods. Iron will be the layer that
at the deepest probing depth. Thus, its abundance depends on
the corrosion layers on top.

This can be seen in Fig. 10, which shows the abundance
values for the XRD (y-axis) and HSI (x-axis). It is noticeably that
the iron category is mainly located in the lower le corner and is
quite distributed, which has a large impact on the R2 metric.
When calculating the RMSE metric, the normalised values
between 0 and 1 are used. This explains the overall small values.
The largest values occur in the iron abundancemaps, this is due
to the limited variance of the data points for iron. This metric
does not penalise individual clusters that are misclassied, as
these rare large errors are offset by frequent small errors. This
highlights the disadvantage of using the RMSE for this partic-
ular type of correlation metric. When looking at SRE scores, the
differences are greater compared to the RMSE. SRE corrects for
a shi in intensity so that the mediation effect of larger scores is
offset. The SRE scores show that iron is again difficult to
predict, as evidenced by the fact that it consistently scores the
lowest. When comparing the three corrosion minerals,
maghemite has the lowest, though still acceptable, score.
Finally, the SSIM metric shows that the differences are very
small when looking at the main features in the picture. This
conclusion can also be drawn by looking at the comparison
image in Fig. 9, where the main features are the same between
the XRD and HSI images.
3.4 Total abundance comparison

Next to the visual comparison of the predictions versus the
ground truth XRD values, it is also possible to express the
abundance per mineral as a percentage of the total abundance.
This value shows how much of the mineral in a sample is
identied through XRD. We can compare these total abundance
values from the XRD measurements to the total abundance
values of the HSI predicted images and subsequently calculate
the percentage error between them. These values are displayed
in the last two columns of Table 2.

As can be seen from the table, the amount of iron steadily
decreases, while the total abundance of the corrosion minerals
increase. The order in which these minerals form (lepidocrocite
/ goethite / maghemite) has been previously shown in the
literature, and this order is also apparent from the XRD and HSI
measurements. As previously mentioned, the XRD measure-
ments for sample one only contained iron. No other mineral
were to be found. Very early stage corrosion was not detected
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Results of the predicted hyperspectral abundance maps, evaluated using four different correlation metrics. The values marked in bold
show anomalous values and indicate a bad performance of the regression analysis. In the last column, negative percentages indicate an
underprediction of the total abundance, whereas positive values demonstrate an overprediction

Random forest regression Total abundance

R2 RMSE SRE SSIM
XRD abundance
(%)

Difference XRD
vs. HSI (%)

Sample one Iron 0.74 0.07 43.68 0.81 100 −25.23
Lepidocrocite — — — — — —
Goethite — — — — — —
Maghemite — — — — — —

Sample two Iron 0.54 0.05 44.95 0.83 66.26 1.97
Lepidocrocite 0.62 0.07 41.18 0.83 33.74 −1.25
Goethite — — — — — —
Maghemite — — — — — —

Sample three Iron 0.13 0.10 31.72 0.73 12.32 −3.27
Lepidocrocite 0.55 0.06 44.31 0.83 40.67 4.79
Goethite 0.62 0.08 44.19 0.87 31.45 1.21
Maghemite 0.57 0.05 40.41 0.82 15.56 −10.80

Sample four Iron −1.1 0.14 26.45 0.73 5.21 −3.85
Lepidocrocite 0.41 0.09 44.91 0.80 49.26 −0.19
Goethite 0.53 0.08 43.20 0.83 32.43 0.40
Maghemite 0.36 0.09 31.85 0.73 13.10 3.28

Sample ve Iron 0.29 0.09 24.30 0.87 2.39 13.37
Lepidocrocite 0.67 0.06 39.92 0.88 31.59 −2.70
Goethite 0.70 0.08 42.20 0.89 35.73 0.19
Maghemite 0.67 0.05 39.97 0.89 30.28 1.72

Sample six Iron 0.59 0.08 32.05 0.89 2.35 13.86
Lepidocrocite 0.69 0.06 45.04 0.91 32.82 −0.63
Goethite 0.72 0.05 42.28 0.88 34.80 −1.25
Maghemite 0.69 0.07 35.59 0.89 30.03 5.41
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using XRD, this explains the very large error between XRD and
HSI.

What stands out is that if the XRD abundance is large, the
difference between XRD and HSI will be smaller. The only
exception is the maghemite in sample three with an XRD-HSI
difference of 10.8% while still having an overall XRD abun-
dance of 15.56%. A possible explanation of the large errors for
iron and maghemite is that these categories show no distinct
Fig. 10 Correlation plot between abundance values of the XRD
measurements and the predicted HSI measurements.

© 2022 The Author(s). Published by the Royal Society of Chemistry
spectral features in the SWIR range. This makes it very difficult
to distinguish between the two categories. When the total XRD
abundance is larger than 20%we see that the overall differences
between XRD and HSI are small, ranging from −2.7 to 5.41%.
These low error gures, show that HSI can be an accurate
replacement to detect iron compounds in the corrosion
samples.
4 Conclusions

In this study, we assessed the use of hyperspectral imaging for
the quantication of corrosion minerals in carbon steel
samples. Using ground truth from scanning XRD measure-
ments, we are able to create a machine learning model based on
the hyperspectral measurements. The results show that this
model is able to achieve a good correlation between the pre-
dicted hyperspectral abundance maps and the XRD measure-
ments, for each of the corrosion minerals. The largest
discrepancy between XRD and HSI is the fact that XRD is not
able to identify very early stage corrosion. In sample one, aer
one hour of continuous salt spray, we visually see that there is
a large corrosion patch, and this is also apparent in the hyper-
spectral predictions.

This study was limited by the absence of long stage, multi-
layered atmospherical corrosion. When the corrosion process is
more matured, the literature shows that a multilayered corro-
sion structure occurs. This multilayered corrosion structure was
RSC Adv., 2022, 12, 32775–32783 | 32781
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not accounted for in this study, and it is possible that the
performance of the proposed hyperspectral imaging method
will decrease when measuring subsurface corrosion mineral
compositions. Notwithstanding these limitations, the study
suggests that for early stage corrosion, hyperspectral imaging
can be used to quantify early stage atmospherical corrosion on
carbon steel. Considering the large scanning area for the
hyperspectral camera, ease of use, and portability, it is a feasible
option to use in a non-laboratory setting. More research could
be done using more advanced articial intelligence methods
such as deep learning architectures, yet these methods typically
require more data to provide a benet over more traditional
machine learning methods that have been implemented in this
article.
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