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Dihydropyrimidines (DPs) show a wide range of biological activities for medicinal applications. Among the
DP derivatives, 2-aryl-DPs have been reported to display remarkable pharmacological properties. In this
work, we describe a method for the synthesis of hitherto unavailable 6-unsubstituted 2-aryl-DPs by Pd-
catalyzed/Cu-mediated carbon-carbon cross-coupling reaction of 1-Boc 2-methylthio-DPs with
organostannane reagents. The Boc group of the substrate significantly increases the substrate reactivity.
Aryl tributylstannanes having various substituents such as MeO, Ph, CFs;, CO,Me, and NO, groups
smoothly afforded the corresponding products in high yields. Various heteroaryl tributylstannanes having
2-, or 3-thienyl, 2-, or 3-pyridinyl groups were also applicable to the reaction. Regarding the substituents
at the 4-position, the reactions of DPs bearing various aryl and alkyl substituents proceeded smoothly to

give the desired products. The Boc group of the products was removed under a standard acidic
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Accepted 23rd Septermber 2022 condition to produce N-unsubstituted DP as a mixture of the tautomers in quantitative yields. The

synthetic procedure was also applied to 4,4,6-trisubstituted 2-methylthio-DP to give novel 2,4,4,5,6-
pentasubstituted DP. Therefore, the Pd-catalyzed/Cu-mediated reaction should help expand the DP-
based molecular diversity, which would impact biological and pharmacological studies.
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kinase isoform 1 (ROCK1) inhibitor, which may be a potential
therapeutic agent for cardiovascular diseases.'> Recently 2-ary-
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Dihydropyrimidines (DPs) show a wide range of biological
activities for medicinal applications. They display calcium
channel inhibitory,' anticancer,” antibacterial,® antifungal,*
anti-HIV,” antimalarial,® anti-inflammatory,” and antioxidation®
activities. Many reviews on synthetic methods developed for the
heterocycles and their biological activities published thus far
suggest their great potential as leading compounds for devel-
oping medicines.” Among the DP derivatives, tautomeric 2-aryl-
DPs have been reported to display remarkable pharmacological
properties (Fig. 1). In 2003, Bay 41-4109 was shown to exhibit
highly potent anti-hepatitis B virus (HBV) replication activity in
vitro and in vivo.' As a Bay 41-4109 analog with good water
solubility, 6-morpholinylmethyl DP hydrochloride salt was re-
ported as a HBV capsid assembly inhibitor."* In 2008, another
tautomeric 2-aryl-DP was also developed as a Rho-associated
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lethenyl DP was reported as a potent heat shock protein 90
(Hsp90) C-terminal inhibitor, which may be a drug candidate
for cancer therapeutics.™

The biologically important tautomeric 2-aryl-DPs shown in
Fig. 1 have four substituents at the 2-, 4-, 5-, and 6-positions. In
general, these derivatives and related compounds were
synthesized by three-component cyclocondensation reaction
such as Biginelli reaction,”* or a transition-metal-catalyzed
arylation reaction from 2-thioxo-DPs prepared in advance.'*'*
Recently a one-pot synthetic method for tetrasubstituted 2-aryl-

ROCK1 inhibitor

Bay 41-4109

Fig. 1 Biologically active 2-aryl-DPs.
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DPs from o-azidocinnamates by irradiation of LED light and
base-catalyzed isomerization was also reported.** Development
of synthetic methods to access tautomeric 2-aryl-DPs with
different substituent patterns expands their structural diversity,
which impacts the DP-based drug discovery program. For
example, a conventional cyclocondensation reaction of aryla-
midine with a,B-unsaturated aldehydes gives simple 2-aryl-DPs
with fewer substituents.'® We previously reported the cycliza-
tion-elimination sequential reactions of 1,3-diazabuta-1,3-
diene with electron-deficient olefins to give hitherto unavail-
able 4,6-unsubstituted 2-phenyl-DPs and related analogs."”
With our continuing interest in developing efficient methods of
synthesizing DPs with fewer or more substituents,' we have
recently developed a general synthetic method for 6-unsub-
stituted DPs (Scheme 1). The 2-oxo- and 2-thioxo-DPs were
synthesized by an AlCl;-mediated Biginelli-type three-
component cyclocondensation reaction involving urea, alde-
hyde, and aminoacrylate.” The 2-thioxo-DPs were stepwise
converted into hitherto unavailable 2-amino-DPs via Sc(OTf);-
mediated nucleophilic substitution of 2-methylthio-DPs with
amines.” The proliferative effect of these 6-unsubstituted 2-oxo-
, 2-thioxo-, and 2-amino-DPs on the human promyelocytic
leukemia cell line HL-60 was also accessed, which led to the
discovery of a highly active 2-benzylamino-DP with ICs, of
<100 nM.” In this study, we planned that 2-methylthio-DPs or 2-
thioxo-DPs were used as precursors for the synthesis of hitherto
unavailable 6-unsubstituted 2-aryl-DPs by a transition-metal-
catalyzed 2-arylation reaction, Liebeskind-Srogl-type cross-
coupling reaction.” As a result, we realized the Pd-catalyzed/
Cu-mediated 2-arylation reaction of 1-Boc 2-methylthio-DPs
with arylstannane reagents.”” The Boc group significantly
increases reactivity of DPs. This protocol enables the synthesis
of 6-unsubstituted 2-aryl-DPs using various substituents at the
2- and 4-positions; to the best of our knowledge, the general
formula of the 2-aryl-DPs has not been reported. Owing to our
results, a series of 6-unsubstituted 2-oxo-, 2-thioxo-, and 2-
amino-, and 2-aryl-DPs becomes available, which would impact
DP-based biological and pharmacological studies.
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Results and discussion

Initial studies of 2-thioxo-DP 1 were carried out under reaction
condition A reported by Kappe'*“ [Pd(PPh;), (3.0 mol%), Cu(1)-
thiophene-2-carboxylate (CuTC, 3.0 equiv.), PhB(OH), 2 (1.5
equiv.) in THF at reflux for 18 h] and condition B reported by
Suzenet'** [Pd(PPh;), (5.0 mol%), CuBr-Me,S (2.2 equiv.),
PhSnBu; 3a (2.2 equiv.) in THF at reflux for 24 h]. These reac-
tions gave 2-phenyl-DP 4a in moderate yields of 47% under
condition A and 22% under condition B (Scheme 2).

To increase the yield of the 2-arylation product, DP 1 was
converted into 2-methylthio-DP 5 because the methylthio group
is a typical substrate for the Liebeskind-Srogl reaction (Scheme
3).>* Our previous studies on the substitution reaction of DPs
showed that a Boc group increased the electrophilicity of DPs.>
Therefore, 1-Boc 2-methylthio DP 6a was prepared by incorpo-
rating the Boc group into 5. The reaction occurred preferentially
at the 1-position of 5 to give 6a in 79% yield. The position of the
Boc group of 6a was determined; as for 1-Boc 2-phenyl DP 7a
shown in Table 1, a significant heteronuclear multiple bond
correlation (HMBC) was observed between the 6-proton and the
carbonyl carbon of the Boc group at the 1-position. Therefore,
the Boc groups of 7a and 6a were determined to be located at the
1-position. To determine a suitable substrate for the cross-
coupling reaction, the reactivity of 6a was examined and
compared with those of 1 and 5.

condition A (ref. 14a)

Ph o
CO,Et or
HN 2 condition B (ref. 14c) CO,Et
| + Ph—X /m |
SN
H Ph H
1 2 X =B(OH), 4a
3a X=SnBuj

condition A 47%
condition B 22%

Scheme 2 Reactions of 2-thioxo-DP 1 under reported reaction
conditions.
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Scheme 1 Synthesis of a series of 6-unsubstituted DPs.
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Scheme 3 Preparation of DP 5 and 6a from 1.

The optimized reaction conditions for 6a are summarized in
Table 1. The effect of two Cu sources was examined under the
same reaction condition, and results showed that CuTC worked
better than CuBr-Me,S to give a combined yield of 65% for
a desired 2-phenyl-DP 7a and 4a (entries 1 and 2). In all reac-
tions using 3 in this study, the DPs 7a and 4a were purified by

Table 1 Optimization of reaction conditions®
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column chromatography using silica gel-K,CO; (10:1) to
prevent mixing with degradation product from 3.>* Among the
Pd catalysts tested, tris(dibenzylideneacetone)dipalladium
(Pd,dbas) with (2-furyl);P used in the reaction gave a good
combined yield of 80% for 7a and 4a (entries 1, 3-5). As an
arylation reagent, PhSnBu; 3a showed a higher reactivity than
PhB(OH), 2 (entries 5 and 6). Subsequently, the effect of phos-
phine ligands was examined; only a few monodentate ligands,
such as (2-furyl);P, (2-thienyl);P, and triphenylphosphine
(Ph;P), increased the yields compared with the reaction without
phosphine (entries 5, 7-9). The reactions using other mono-
dentate ligands such as (2-MeOCgH,)sP and (cyclo-CeH;4)sP
resulted in low yields (entries 10 and 11). All bidentate ligands
including 1,1-bis(diphenylphophino)methane (dppm), 1,2-bis(-
diphenylphophino)ethane (dppe), 1,3-bis(diphenylphophino)

Ph Ph
CO,Et _ CO,Et
N [Pd]/Ligand, [Cu] N
U + pp—X ———— )l\ |
MeS™ 2 'Il solvent Ph” 2 r\‘l
Boc reflux, 16 h R
6a 2 X=B(OH), 7a R=Boc
3a X =SnBu; 4a R=H
Combined yield Recovery (%)
Entry DP/arylating reagent” [Pd]/ligand/[Cu]® Solvent/temp./time (%) (7a + 4a) of DP
1 6a/3a Pd(PPh;),/none/CuTC THF/reflux/16 h 65 (55 + 10) 8
2 6a/3a Pd(PPh;),/none/CuBr-Me,S THF/reflux/16 h 58 (16 + 42) 35
3 6a/3a PdCl,(PPh;),/none/CuTC THF/reflux/16 h 74 (64 + 10) 13
4 6a/3a Pd(OAc),/none/CuTC THEF/reflux/16 h 54 (49 + 5) 33
5 6a/3a Pd,dba,/(2-furyl);P/CuTC THF/reflux/16 h 80 (70 + 10) 7
6 6a/2 Pd,dbas/(2-furyl);P/CuTC THF/reflux/16 h 65 (56 +9) 24
7 6a/3a Pd,dbaz/none/CuTC THF/reflux/16 h 55 (45 + 10) 43
8 6a/3a Pd,dba;/Ph;P/CuTC THF/reflux/16 h 63 (58 +5) 27
9 6a/3a Pd,dbas/(2-thienyl);P/CuTC THEF/reflux/16 h 63 (56 + 7) 31
10 6a/3a Pd,dba;/(2-MeOCgH,);P/CuTC THF/reflux/16 h 16 (16 +0) 76
11 6a/3a Pd,dbas/(cyclo-CeH,4)sP/CuTC THF/reflux/16 h 11 (11 +0) 86
12 6a/3a Pd,dba;z/dppm/CuTC THEF/reflux/16 h 21 (21 +0) 68
13 6a/3a Pd,dba;/dppe/CuTC THEF/reflux/16 h 17 (17 + 0) 70
14 6a/3a Pd,dba,/dppp/CuTC THF/reflux/16 h 22 (22 + 0) 65
15 6a/3a Pd,dba;/dppb/CuTC THF/reflux/16 h 49 (41 + 8) 48
16 6a/3a Pd,dba;/dppf/CuTC THF/reflux/16 h 51 (44 +7) 44
17 6a/3a Pd,dbas/rac-BINAP/CuTC THEF/reflux/16 h 26 (26 +0) 58
18 6a/3a None/none/CuTC THF/reflux/16 h 3(3+0) 95
19 6a/3a Pd,dbas/(2-furyl);P/none THEF/reflux/16 h 0 96
20 6a/3a Pd,dbas/(2-furyl);P/CuTC Dioxane/70 °C/16 h 74 (66 + 8) 22
21 6a/3a Pd,dba,/(2-furyl);P/CuTC DMF/70 °C/16 h 78 (62 + 16) 18
22 6a/3a Pd,dba;/(2-furyl);P/CuTC Toluene/70 °C/16 h 66 (63 +3) 27
23 6a/3a Pd,dba,/(2-furyl);P/CuTC 1,2-DCE/70 °C/16 h 78 (72 + 6) 20
24 6a/3a Pd,dba;/(2-furyl);P/CuTC CH,Cl,/reflux/16 h 81 (79 +2) 18
25 6a/3a Pd,dbas/(2-furyl);P/CuTC CH,Cl,/reflux/30 h 93 (91 + 2) 2
26 1/3a Pd,dbas/(2-furyl);P/CuTC CH,Cl,/reflux/30 h 24 (only 4a) 0
27 5/3a Pd,dbas/(2-furyl);P/CuTC CH,Cl,/reflux/30 h 55 (only 4a) 15
28P 6a/3a Pd,dbas/(2-furyl),P/CuTC CH,Cl,/reflux/30 h 82 (80 + 2) 10

¢ Reaction conditions: 6a (0.25 mmol), 3a (0.50 mmol), Pd catalyst (5.0 mol%), ligand (20 mol%), and Cu reagent (0.50 mmol) in solvent (3 mL) were
reacted under Ar. ? Pd,dba; (1.0 mol%) and (2-furyl);P (8.0 mol%) were used.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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propane (dppp), 1,1-bis(diphenylphophino)butane (dppb), 1,1
bis(diphenylphophino)ferrocene (dppf), and racemic BINAP
(rac-BINAP) gave low yields (entries 12-17). As a result, the best
ligand was determined to be (2-furyl);P (entry 5). We confirmed
that either reaction in the absence of Pd,dbas/(2-furyl);P or
CuTC hardly proceeded with the recovery of only 6a (entries 18
and 19); therefore, the addition of these reagents was essential
for the reaction. To examine the effect of solvents, several polar
and nonpolar solvents, such as dioxane (1,4-dioxane), DMF,
toluene, 1,2-DCE (1,2-dichloroethane), and CH,Cl,, were used
(entries 20-24). Although a small effect on the yields was
observed, the reaction in CH,Cl, showed a superior result and
good mass balance to give a combined yield of 81% for 7a and
4a with 18% recovery of 6a (entry 24). When the reaction was
conducted for a longer time of 30 h, the combined yield of 7a
and 4a was increased to 93% (entry 25). When the optimized
reaction condition was applied to the reactions using 1 or 5 as
a substrate, the desired 4a was obtained in lower yields of 24%
and 55%, respectively (entries 26 and 27). Therefore, the best
substrate among 1, 5, and 6a for the reaction was determined to
be 6a. The Boc group in 6a had a significant effect on the
reactivity of 6a probably owing to its high electrophilicity being
further increased by the group. When lower amount of Pd,dba;
(1 mol%) and (2-furyl);P (8 mol%) were used, the combined
yield slightly decreased to 82% (entry 28).

With the optimized condition in hand, we examined the scope
of the Pd-catalyzed/Cu-mediated reaction using diverse aryl
tributylstannanes 3 and DP derivatives 6 (Scheme 4). Regarding 3,
we found no clear preference for either electron-donating or
electron-withdrawing substituents of the phenyl group. When 6a
(R = Ph) was reacted with p-methoxyphenyl- or p-tolyl tributyl-
stannanes, the desired DPs 7b and 7c were produced in high
yields of 98% and 95%, respectively. Aryl tributylstannanes
having other substituents such as Ph, CF; CO,Me, and NO,
groups at the para position smoothly afforded to give the prod-
ucts 7d-7g in 84-88% yields. The reactions using m-nitrophenyl
or 3,5-bis(trifluoromethyl)phenyl tributylstannanes also pro-
ceeded smoothly to afford the products 7h and 7i in 86% and
89% yields, respectively. Various heteroaryl tributylstannanes
having 2-thienyl, 3-thienyl, 2-pyridinyl, and 3-pyridinyl groups
also reacted with 6a to give 7j-7m, albeit with low yields of 31—
33% in the case of pyridine. We next examined the reaction scope
for 6 using different substituents at the 4-position. We prepared
seven 4-aryl-DPs 6a-6g having substituents such as H, OMe, Me,
Br, Cl, and CF; groups at the para position and ClI group at the
ortho position. 4-n-Propyl-DP 6h and 4-cyclohexyl-DP 6i were also
prepared. The synthetic procedure and the characteristic data of
these DPs 6a-6i were shown in the experimental section.
Regarding the aryl group of 6 at the 4-position, the reactions of
DPs bearing substituents at the para position, proceeded
smoothly to give the desired products 7n-7r in 84-98% yields.
The reaction of the DP with the ortho-chlorophenyl group at the 4-
position gave a DP 7s in 87% yield. Alkyl substituents such as n-
propyl and cyclohexyl groups were also tolerated in the reaction
to afford 7t and 7u in good yields.

The Pd-catalyzed/Cu-mediated reaction was applied to 4,4,6-
trisubstituted 2-methylthio-DP 8 (Scheme 5)."** An attempt to

28116 | RSC Adv, 2022, 12, 28113-28122
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7h R=3-NO, 86% s Boc
7 2-thienyl  91%
7k 3-thienyl  79%
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CO,Et
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P! |
| N
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71 2-pyridyl  31%2
7m  3-pyridyl 33%
7n R=4-OMe 98% R
70 R=4-Me 89% CO,Et
7p R=4-Br 86% N| |
79 R=4Cl 84% )\
7r R=4CF, 84% il
7s R=2Cl 87% Boc
7t R=n-Pr 81%
7u  R=cyclo-CgHyy 84%

Scheme 4 Synthesis of 6-unsubstituted 2-aryl-DPs 7. Reaction
conditions: 6 (0.25 mmol), 3 (0.50 mmol, 2.0 equiv.), Pd,dbas
(2.5 mol%), (2-furyl)sP (20 mol%), CuTC (0.50 mmol, 2.0 equiv.), and
CH,Cl, (3 mL) at reflux for 30 h under Ar. ¢ 3 (4.0 equiv.), Pd,dbas
(5.0 mol%), (2-furyl)sP (40 mol%), CuTC (4.0 equiv.) were used.

incorporate a Boc group to N-unsubstituted 8 using NaH/Boc,O
failed owing to the steric congestion around the nitrogen atom.
However, the reaction of 8 under the optimized conditions in
Table 1 proceeded smoothly to give 2,4,4,5,6-pentasubstituted

Pd,dbas
Me Me (2-furyl)P Me Me
-furyl)z
CO,Et CO,Et
N4 | z cuTC N4 | 2
/“\ + PhSnBus; |
MeS~ 2 N 6 "Me CH,Cl, Ph” 2 H 6 Me
reflux, 30 h
8 3a 9 71%

Scheme 5 Synthesis of 2,4,4,5,6-pentasubstituted DP 9.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ra05155a

Open Access Article. Published on 03 October 2022. Downloaded on 7/31/2025 12:14:08 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

DP 9 in 71% yield. Such fully substituted 2-aryl-DP 9 has not
been found in literature. Further optimization of the reaction
condition for the synthesis of related pentasubstituted DPs is in
progress.

The Boc group of 7 was removed under a standard acidic
condition (TFA in CH,Cl,) to produce N-unsubstituted 1,4-DP 10
and 1,6-DP 11 as a mixture of the tautomers (Scheme 6). To
analyze the tautomeric behavior of 10 and 11, "H NMR spectra of
a mixture of 10a/11a, 10b/11b, and 10g/11g were measured in
CD;0D and DMSO-dj, respectively (0.01 M, 25 °C). In CD;0D, only
average spectra of 10/11 were observed because of the relatively
fast tautomerization in the protic solvent. On the other hand, two
individual tautomers of 10/11 were observed in the ratio of
1.0 : 1.0-2.5 : 1.0 in DMSO-d,. The ratio of 10/11 in DMSO-d, was
affected by substituents at the para position of the 2-phenyl group;
the ratios were 1.0 : 1.0 for 10b/11b (R = OMe), 1.6 : 1.0 for 10a/
11a (R = H), and 2.5 : 1.0 for 10g/11g (R = NO,). These results
indicate that the electron-donating property of the MeO group
stabilized 1,6-DP 11b and increased the ratio of 11b owing to the
resonance effect from the MeO group to the carbonyl group at the
5-position. In contrast, the electron-withdrawing property of the
NO, group weakens the effect and destabilizes 1,6-DP 11g. The
thermodynamic preference of 1,4-DPs such as 10a and 10g over
11a and 11g was supported by our previous experimental and
theoretical studies on 2-substituted DP tautomers.>

In summary, we have developed a Pd-catalyzed/Cu-mediated
cross-coupling reaction for the synthesis of 6-unsubstituted 2-
aryl-DPs 7 from 1-Boc 2-methylthio-DP 6. The incorporation of
the Boc group at the nitrogen atom of 6 significantly increased
the reactivity of 6. The method is compatible with diverse DP
substrates and aryl tributylstannane reagents. The method is
also applicable to the reaction using 8 for the synthesis of highly
pentasubstituted 2-aryl-DP 9. The Boc group of 7 was removed
quantitatively to obtain a tautomeric mixture of 10/11. The
synthetic procedure should help expand the DP-based molec-
ular diversity, which would impact biological and pharmaco-
logical studies.

Experimental section
General information

Melting points were determined with an AS ONE melting point
apparatus ATM-02 (AS ONE Corporation, Japan) or Yanaco

Ph
)j/COZEt CO,Et
7a,7b,7g ——> O)\ N
rt,3h //
R
97%-99% 10a R=H 11a R=H 1.6:1.07
10b R=OMe 11b R=0OMe 1.0:1.02
10g R=NO, 11g R=NO, 25:1.02

ratio of 10:11 in DMSO-dg (0.01 M, 25 °C).

Scheme 6 Synthesis and analysis of 2-aryl-DP tautomers.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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melting point apparatus MP-J3 without correction. 'H NMR
spectra were recorded on a Bruker AVANCE™ III 600 (600 MHz,
Bruker Japan K.K., Japan) or JEOL JNM-ECZ500R (500 MHz,
JEOL Ltd., Japan) with tetramethylsilane (6 0 ppm) in CDCl; or
dimethylsulfoxide (6 2.49 ppm) in DMSO-dg, or methanol (6 3.30
ppm) in CD;OD as internal standards. "*C NMR spectra were
recorded on a Bruker AVANCE™ III 600 (150 MHz) or JEOL
JNM-ECZ500R (125 MHz) with chloroform (6 77.0 ppm) in
CDCl; or dimethylsulfoxide (6 39.7 ppm) in DMSO-ds or meth-
anol (6 49.0 ppm) in CD;0D as internal standards. Multiplicities
for "H NMR were designated as s = singlet, d = doublet, t =
triplet, q = quartet, dd = doublet of doublets, dt = doublet of
triplets, dq = doublet of quartets, tt = triplet of triplets, ddd =
doublet of doublets of doublets, m = multiplet, and br = broad.
Infrared spectra (IR) were measured on a JASCO FT/IR-6100 or
JASCO FT/IR-4100 Fourier transform infrared spectrophotom-
eter (JASCO Corporation, Japan). Mass spectra were recorded on
a JEOL JMS-700 mass analyzer (JEOL Ltd., Japan). High-
resolution spectroscopy (HRMS) was performed using a JEOL
JMS-700 mass analyzer.

Synthesis of starting materials 6

Following the literature procedure," 1-tert-butyl 5-ethyl 2-
methylthio-4-phenyl-1,4-dihydropyrimidine-1,5-dicarboxylate
(6a)," 1-tert-butyl 5-ethyl 4-(4-methoxyphenyl)-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6b), 1-tert-butyl 5-ethyl 4-
(4-methylphenyl)-2-methylthio-1,4-dihydropyrimidine-1,5-
dicarboxylate (6¢), 1-tert-butyl 5-ethyl 4-(4-bromophenyl)-2-
methylthio-1,4-dihydropyrimidine-1,5-dicarboxylate  (6d), 1-
tert-butyl 5-ethyl 4-(4-chlorophenyl)-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6e), 1-tert-butyl 5-ethyl 4-
[4-(trifluoromethyl)phenyl]-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6f), 1-tert-butyl 5-ethyl 4-
(2-chlorophenyl)-2-methylthio-1,4-dihydropyrimidine-1,5-
dicarboxylate (6g), 1-tert-butyl 5-ethyl 2-methylthio-4-propyl-1,4-
dihydropyrimidine-1,5(4H)-dicarboxylate (6h)," 1-tert-butyl 5-
ethyl 4-cyclohexyl-2-methylthio-1,4-dihydropyrimidine-1,5-
dicarboxylate (6i) were prepared.

1-tert-Butyl 5-ethyl 4-(4-methoxyphenyl)-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6b). Pale yellow oil. "H
NMR (CDCl;, 600 MHz): 6 = 1.23 (t,] = 7.2 Hz, 3H), 1.59 (s, 9H),
2.28 (s, 3H), 3.78 (s, 3H), 4.14 (dq,J = 10.8, 7.2 Hz, 1H), 4.17 (dq,
J =10.8, 7.2 Hz, 1H), 5.67 (s, 1H), 6.84 (d, ] = 8.4 Hz, 2H), 7.22
(d,J = 8.4 Hz, 2H), 7.93 (s, 1H). *C NMR (CDCl;, 150 MHz): 6 =
14.1, 15.9, 28.0, 55.2, 58.3, 60.5, 85.7, 111.9, 113.8, 128.3, 132.3,
134.7, 148.4, 149.2, 158.9, 165.3. IR (neat): 2981, 1741, 1711,
1669, 1607, 1510, 1335, 1250, 1155, 1082, 1044 cm™'. HRMS-
FAB: m/z [M + H]" caled for C,0H,,N,05S: 407.1641; found:
407.1644.

1-tert-Butyl 5-ethyl 4-(4-methylphenyl)-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6¢). Pale yellow oil. "H
NMR (CDCl;, 600 MHz): 6 = 1.23 (t,] = 7.2 Hz, 3H), 1.59 (s, 9H),
2.29 (s, 3H), 2.32 (s, 3H), 4.14 (dq,J = 10.8, 7.2 Hz, 1H), 4.17 (dq,
J = 10.8, 7.2 Hz, 1H), 5.70 (s, 1H), 7.11 (d, J = 8.4 Hz, 2H), 7.19
(d,J = 8.4 Hz, 2H), 7.93 (s, 1H). '*C NMR (CDCl;, 150 MHz): 6 =
14.1, 15.9, 21.1, 28.0, 58.6, 60.5, 85.7, 111.9, 127.0, 129.1, 132.4,
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137.0, 139.4, 148.5, 149.2, 165.3. IR (neat): 2981, 1739, 1712,
1669, 1600, 1371, 1335, 1251, 1154, 1083, 1043 cm™'. HRMS-
FAB: m/z [M + H]" caled for CyoH,,N,0,S: 391.1692; found:
391.1697.

1-tert-Butyl 5-ethyl 4-(4-bromophenyl)-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6d). Pale yellow oil. 'H
NMR (CDCl;, 600 MHz): 6 = 1.23 (t, ] = 7.2 Hz, 3H), 1.60 (s, 9H),
2.28 (s, 3H), 3.78 (s, 3H), 4.14 (dq, / = 10.8, 7.2 Hz, 1H), 4.18 (dq,
J =10.8, 7.2 Hz, 1H), 5.68 (s, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.43
(d,J = 8.4 Hz, 2H), 7.94 (s, 1H). "*C NMR (DMSO-d,, 150 MHz):
6 = 14.1, 15.7, 27.6, 58.0, 60.6, 86.1, 110.1, 120.8, 129.4, 131.7,
132.7, 141.8, 148.61, 148.65, 164.4. IR (neat): 2981, 1743, 1711,
1669, 1597, 1486, 1371, 1335, 1251, 1154, 1083, 1043, 1011,
847 cm ™. HRMS-FAB: m/z [M + H]" calcd for C;oH,,  BrN,0,S:
455.0640; found: 455.0644.

1-tert-Butyl 5-ethyl 4-(4-chlorophenyl)-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6e). Pale yellow oil. 'H
NMR (CDCl;, 600 MHz): 6 = 1.23 (t,] = 7.2 Hz, 3H), 1.60 (s, 9H),
2.28 (s, 3H), 4.14 (dq, J = 10.8, 7.2 Hz, 1H), 4.18 (dq, J = 10.8,
7.2 Hz, 1H), 5.70 (s, 1H), 7.23 (d, ] = 8.4 Hz, 2H), 7.28 (d, ] =
8.4 Hz, 2H), 7.94 (s, 1H). *C NMR (CDCl;, 150 MHz): § = 14.1,
15.9, 28.0, 58.3, 60.7, 86.1, 111.2, 128.56, 128.57, 132.7, 133.2,
140.9, 149.0, 149.1, 165.1. IR (neat): 2981, 1744, 1711, 1669,
1598, 1334, 1251, 1233, 1154, 1084, 1043 cm ™~ '. HRMS-FAB: m/z
[M + H]" caled for C1oH,4*>CIN,0,S: 411.1145; found: 411.1149.

1-tert-Butyl 5-ethyl 4-4-(trifluoromethyl)phenyl]-2-
methylthio-1,4-dihydropyrimidine-1,5-dicarboxylate (6f). Pale
yellow oil. *"H NMR (CDCl;, 600 MHz): § = 1.24 (t, ] = 7.2 Hz,
3H), 1.60 (s, 9H), 2.29 (s, 3H), 4.15 (dq,J = 10.8, 7.2 Hz, 1H), 4.19
(dq,J = 10.8, 7.2 Hz, 1H), 5.79 (s, 1H), 7.42 (d, J = 8.4 Hz, 2H),
7.57 (d,J = 8.4 Hz, 2H), 7.97 (s, 1H). *C NMR (CDCl;, 150 MHz):
6 = 14.1, 15.9, 27.9, 58.5, 60.7, 86.2, 110.8, 124.1 (q, J = 270.0
Hz), 125.4 (q, J = 3.8 Hz), 127.5, 129.6 (q, / = 33.0 Hz), 133.0,
146.2, 149.0, 149.5, 165.0. IR (neat): 2981, 1743, 1711, 1669,
1598, 1371, 1334, 1251, 1233, 1154, 1084, 1043 cm ™ !. HRMS-
FAB: m/z [M + H]" caled for CyoH,4F3N,0,S: 445.1409; found:
445.1406.

1-tert-Butyl 5-ethyl 4-(2-chlorophenyl)-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6g). Pale yellow oil. 'H
NMR (CDCl;, 600 MHz): 6 = 1.15 (t, ] = 7.2 Hz, 3H), 1.61 (s, 9H),
2.22 (s, 3H), 4.08 (dq, J = 10.8, 7.2 Hz, 1H), 4.12 (dq, J = 10.8,
7.2 Hz, 1H), 6.12 (s, 1H), 7.15-7.23 (m, 3H), 7.38 (dd, J = 7.2,
1.2 Hz, 1H), 8.10 (s, 1H). *C NMR (CDCl;, 150 MHz): 6 = 14.0,
15.9, 28.0, 56.2, 60.5, 85.9, 109.7, 127.0, 128.6, 128.9, 129.8,
133.6, 133.8, 139.6, 147.7, 149.1, 165.1. IR (neat): 2982, 1739,
1714, 1671, 1600, 1337, 1253, 1221, 1155, 1087, 1036 cm .
HRMS-FAB: m/z [M + H]" caled for CyoH,4>°CIN,0,S: 411.1145;
found: 411.1154.

1-tert-Butyl 5-ethyl 4-cyclohexyl-2-methylthio-1,4-
dihydropyrimidine-1,5-dicarboxylate (6i). Colorless crystals,
mp 111-112 °C (n-hexane-EtOAc). "H NMR (CDCl;, 600 MHz):
6 = 0.85-0.94 (m, 1H), 1.05-1.37 (m, 4H), 1.29 (t,] = 7.2 Hz, 3H),
1.48-1.77 (m, 6H), 1.58 (s, 9H), 2.31 (s, 3H), 4.20 (dq, J = 10.8,
7.2 Hz, 1H), 4.23 (dq,J = 10.8, 7.2 Hz, 1H), 4.54 (d, 1H, ] = 4.8
Hz), 7.83 (s, 1H). *C NMR (CDCl;, 150 MHz): 6 = 14.2, 15.7,
26.1, 26.35, 26.41, 27.4, 28.0, 29.2, 44.3, 60.3, 60.4, 85.3, 111.3,
133.3,147.3,149.3, 165.8. IR (KBr): 2923, 2848, 1743, 1709, 1663,
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1604, 1370, 1332, 1260, 1235, 1146, 1071, 1020 cm ‘. HRMS-
FAB: m/z [M + H]' caled for CyoH3,N,0,S: 383.2005; found:
383.2010.

General procedure for synthesis of 2-aryl-DPs 7 and 9

1-tert-Butyl 5-ethyl 2,4-diphenyl-1,4-dihydropyrimidine-1,5-
dicarboxylate (7a). Under an atmosphere of Ar, a mixture of
6a (94.0 mg, 0.250 mmol, 1.0 equiv.), phenyltributylstannane 2a
(184 mg, 0.501 mmol, 2.0 equiv.), Pd,dba; (5.8 mg,
0.00633 mmol, 0.025 equiv.), (2-furyl);P (11.6 mg, 0.0500 mmol,
0.20 equiv.), and CuTC (96 mg, 0.503 mmol, 2.0 equiv.) in
CH,Cl, (3.0 mL) was heated at reflux for 30 h. The mixture was
filtered through a Celite pad and washed with EtOAc (20 mL).
The filtrate was washed with aqueous 1 M NaOH solution (10
mL), and the organic layer was separated. The aqueous layer was
extracted with EtOAc (10 mL). The combined organic layers were
washed with water (5 mL) and brine (5 mL), dried over anhy-
drous Na,SO,, filtered, and concentrated under reduced pres-
sure. The residue was purified by flash column chromatography
(silica gel-K,COj3, 10:1;** eluent: n-hexane-EtOAc, 11:1 to
6 : 1) to give 7a (93.0 mg, 0.229 mmol, 91%) as colorless crystals.
Mp 139-141 °C (n-hexane-EtOAc). 'H NMR (CDCl;, 600 MHz):
6=1.18 (s, 9H), 1.28 (t,/ = 7.2 Hz, 3H), 4.20 (dq,/ = 10.8, 7.2 Hz,
1H), 4.24 (dq, J = 10.8, 7.2 Hz, 1H), 5.94 (s, 1H), 7.28 (t, ] =
7.8 Hz, 1H), 7.32-7.44 (m, 7H), 7.47 (d, ] = 7.8 Hz, 2H), 8.13 (d, ]
= 1.2 Hz, 1H). "*C NMR (CDCl;, 150 MHz): 6 = 14.2, 27.3, 58.7,
60.7, 84.6, 114.2, 127.0, 127.2, 127.5, 128.1, 128.7, 129.7, 133.6,
136.7, 141.0, 149.5, 151.3, 165.0. IR (KBr): 2981, 1726, 1709,
1673, 1353, 1267, 1243, 1154, 1070, 754, 703 cm ™ *. HRMS-FAB:
m/z [M + H]" caled for Cp4H,,N,04: 407.1971; found: 407.1975.

1-tert-Butyl ~ 5-ethyl  2-(4-methoxyphenyl)-4-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7b). Eluent in chroma-
tography: n-hexane-EtOAc, 6 : 1 to 4 : 1. Yield: 98%; pale yellow
oil. "H NMR (CDCl;, 600 MHz): 6 = 1.23 (s, 9H), 1.28 (t, J =
7.2 Hz, 3H), 3.83 (s, 3H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 4.24 (dq,
J=10.8,7.2 Hz, 1H), 5.92 (s, 1H), 6.89 (d, ] = 9.0 Hz, 2H), 7.27 (t,
J=7.8Hz, 1H), 7.33 (t, ] = 7.8 Hz, 2H), 7.37 (d, ] = 7.8 Hz, 2H),
7.43 (d,] = 9.0 Hz, 2H), 8.09 (d, ] = 1.2 Hz, 1H). "*C NMR (CDCl;,
150 MHz): 6 = 14.2, 27.4, 55.4, 58.5, 60.7, 84.3, 113.4, 114.6,
126.9, 127.4, 128.6, 128.8, 128.9, 133.7, 141.0, 149.6, 151.1,
161.0, 165.0. IR (neat): 2980, 1733, 1711, 1669, 1609, 1514, 1354,
1250, 1152, 1025 cm ‘. HRMS-FAB: m/z [M + H]" caled for
C,5H,oN,05: 437.2076; found: 437.2094.

1-tert-Butyl 5-ethyl 2-(4-methylphenyl)-4-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7c). Eluent in chroma-
tography: n-hexane-EtOAc, 11:1 to 6:1. Yield: 95%; pale
yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.20 (s, 9H), 1.28 (t, ]
= 7.2 Hz, 3H), 2.38 (s, 3H), 4.19 (dq, J = 10.8, 7.2 Hz, 1H), 4.24
(dq,J = 10.8, 7.2 Hz, 1H), 5.93 (s, 1H), 7.17 (d, J = 8.4 Hz, 2H),
7.27 (t,J = 7.2 Hz, 1H), 7.33 (t,] = 7.2 Hz, 2H), 7.35-7.40 (m, 4H),
8.10 (d, J = 1.2 Hz, 1H). "*C NMR (CDCl;, 150 MHz): 6 = 14.2,
21.3, 27.4, 58.6, 60.6, 84.4, 114.3, 126.9, 127.2, 127.4, 128.6,
128.7, 133.6, 133.7, 139.8, 141.0, 149.5, 151.4, 165.0. IR (neat):
2980, 1734, 1712, 1670, 1615, 1354, 1315, 1246, 1152,
1028 cm™'. HRMS-FAB: m/z [M + HJ" caled for C,sHyoN,O4:
421.2127; found: 421.2135.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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1-tert-Butyl  5-ethyl  4-phenyl-2-[(1,1-biphenyl)-4-yl]-1,4-
dihydropyrimidine-1,5-dicarboxylate (7d). Eluent in chroma-
tography: n-hexane-EtOAc, 12:1 to 5:1. Yield: 88%; pale
yellow amorphous. "H NMR (CDCl;, 600 MHz): 6 = 1.21 (s, 9H),
1.29 (t,J = 7.2 Hz, 3H), 4.20 (dq,J = 10.8, 7.2 Hz, 1H), 4.25 (dq, ]
=10.8, 7.2 Hz, 1H), 5.95 (s, 1H), 7.29 (t,/ = 7.2 Hz, 1H), 7.35 (t,]
= 7.2 Hz, 2H), 7.37 (t,J = 7.2 Hz, 1H), 7.40 (d, ] = 7.2 Hz, 2H),
7.45 (t, ] = 7.2 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.60 (d, J =
7.2 Hz, 2H), 7.61 (d, ] = 8.4 Hz, 2H), 8.14 (d, 1H, J = 1.2 Hz). *C
NMR (CDCl;, 150 MHz): 6 = 14.2, 27.4, 58.7, 60.7, 84.6, 114.3,
126.7, 127.0, 127.1, 127.5, 127.70, 127.73, 128.6, 128.8, 133.6,
135.5, 140.3, 141.0, 142.6, 149.4, 151.0, 165.0. IR (KBr): 2980,
1734, 1711, 1669, 1370, 1355, 1246, 1152, 754 cm . HRMS-FAB:
m/z [M + H]' caled for C3,H;,N,0,: 483.2284; found: 483.2292.

1-tert-Butyl 5-ethyl 2-[4-(trifluoromethyl)phenyl]-4-phenyl-
1,4-dihydropyrimidine-1,5-dicarboxylate (7e). Eluent in chro-
matography: n-hexane-EtOAc, 12 : 1 to 6 : 1. Yield: 79%; pale
yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.21 (s, 9H), 1.28 (t, ]
= 7.2 Hz, 3H), 4.20 (dq, = 10.8, 7.2 Hz, 1H), 4.24 (dq, J = 10.8,
7.2 Hz, 1H), 5.93 (s, 1H), 7.30 (tt, ] = 6.6, 1.8 Hz, 1H), 7.33-7.39
(m, 4H), 7.58 (d, J = 8.4 Hz, 2H), 7.64 (d, ] = 8.4 Hz, 2H), 8.12 (d,
J = 0.6 Hz, 1H). >C NMR (CDCl;, 150 MHz): 6 = 14.2, 27.4, 58.9,
60.8, 85.1, 114.2, 123.8 (q, J = 271.5 Hz), 125.1 (q, J = 3.5 Hz),
127.0, 127.6, 127.8, 128.8, 131.6 (q, J = 33.0 Hz), 133.3, 140.2,
140.6, 149.0, 149.9, 164.8. IR (neat): 2981, 1739, 1713, 1673,
1326, 1247, 1154, 1068, 1025, 851 cm ™. HRMS-FAB: m/z [M +
H]" caled for Cy5H,6F3N,04: 475.1845; found: 475.1855.

1-tert-Butyl 5-ethyl 2-[4-(methoxycarbonyl)phenyl]-4-phenyl-
1,4-dihydropyrimidine-1,5-dicarboxylate (7f). Eluent in chro-
matography: n-hexane-EtOAc, 8:1 to 4:1. Yield: 86%; pale
yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.19 (s, 9H), 1.28 (t, ]
= 7.2 Hz, 3H), 3.94 (s, 3H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 4.24
(dq,J = 10.8, 7.2 Hz, 1H), 5.94 (s, 1H), 7.30 (tt, J = 7.2, 1.8 Hz,
1H), 7.35 (t, ] = 7.2 Hz, 2H), 7.38 (dd, J = 7.2, 1.8 Hz, 2H), 7.54
(d,J = 8.4 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H), 8.12 (d, J = 1.2 Hz,
1H). **C NMR (CDCl;, 150 MHz): 6 = 14.2, 27.4, 52.2, 58.9, 60.8,
85.0,114.2,127.0, 127.3, 127.7, 128.7, 129.4, 131.0, 133.3, 140.7,
141.0, 149.1, 150.3, 164.8, 166.4. IR (neat): 2980, 1723, 1671,
1355, 1280, 1247, 1152 cm™ . HRMS-FAB: m/z [M + H]" calcd for
C,6HpoN,Og: 465.2026; found: 465.2025.

1-tert-Butyl 5-ethyl 2-(4-nitrophenyl)-4-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7g). Eluent in chroma-
tography: n-hexane-EtOAc, 10:1 to 5:1. Yield: 86%; pale
yellow oil. 'H NMR (CDCl;, 600 MHz): 6 = 1.26 (s, 9H), 1.28 (t, ]
= 7.2 Hz, 3H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 4.24 (dq, ] = 10.8,
7.2 Hz, 1H), 5.94 (s, 1H), 7.29-7.39 (m, 5H), 7.63 (d, J = 8.4 Hz,
2H), 8.10 (s, 1H), 8.24 (d, J = 8.4 Hz, 2H). *C NMR (CDCl;, 150
MHz): § = 14.1, 27.5, 59.1, 60.9, 85.4, 114.3, 123.3, 127.0, 127.9,
128.2, 128.8, 133.0, 140.3, 142.7, 148.3, 148.8, 149.1, 164.6. IR
(neat): 2980, 1739, 1712, 1672, 1600, 1524, 1348, 1246,
1152 ecm™'. HRMS-FAB: m/z [M + HJ" caled for C,4H,6N3Og:
452.1822; found: 452.1831.

1-tert-Butyl 5-ethyl 2-(3-nitrophenyl)-4-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7h). Eluent in chroma-
tography: n-hexane-EtOAc, 10:1 to 4:1. Yield: 86%; pale
yellow oil. 'H NMR (CDCl;, 600 MHz): 6 = 1.26 (s, 9H), 1.28 (t, ]
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= 7.2 Hz, 3H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 4.25 (dq, J = 10.8,
7.2 Hz, 1H), 5.94 (d, ] = 1.2 Hz, 1H), 7.29-7.40 (m, 5H), 7.57 (t, ]
= 7.8 Hz, 1H), 7.83 (ddd, J = 7.8, 1.8, 1.2 Hz, 1H), 8.12 (d, ] =
1.2 Hz, 1H), 8.28 (ddd, ] = 7.8, 2.4, 1.2 Hz, 1H), 8.31 (dd, ] = 2.4,
1.8 Hz, 1H). "*C NMR (CDCl;, 150 MHz): § = 14.1, 27.5, 59.0,
60.9, 85.4, 114.5, 122.3, 124.3, 127.0, 127.9, 128.8, 129.2, 133.15,
133.22, 138.3, 140.3, 147.8, 148.8, 148.9, 164.6. IR (neat): 2979,
1738, 1712, 1674, 1616, 1533, 1348, 1318, 1245, 1152, 1024,
752 cm™'. HRMS-FAB: m/z [M + H]" caled for C,4;H,6N;O¢:
452.1822; found: 452.1825.

1-tert-Butyl 5-ethyl  2-[3,5-bis(trifluoromethyl)phenyl]-4-
phenyl-1,4-dihydropyrimidine-1,5-dicarboxylate (7i). Eluent in
chromatography: n-hexane-EtOAc, 15:1. Yield: 89%; pale
yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.24 (s, 9H), 1.28 (t,]
= 7.2 Hz, 3H), 4.19 (dq, J = 10.8, 7.2 Hz, 1H), 4.25 (dq, ] = 10.8,
7.2 Hz, 1H), 5.94 (s, 1H), 7.29-7.40 (m, 5H), 7.90 (s, 2H), 7.93 (s,
1H), 8.12 (d, J = 0.6 Hz, 1H). "*C NMR (CDCl;, 150 MHz): § =
14.1,27.4, 59.2, 60.9, 85.6, 114.6, 122.98 (q, / = 271.5 Hz), 123.04
(q,] = 2.7 Hz), 127.1, 127.5, 128.0, 128.9, 131.7 (q,J = 33.0 Hz),
133.0, 138.8, 140.2, 148.4, 148.7, 164.5. IR (neat): 2982, 1743,
1714, 1675, 1341, 1280, 1244, 1150 cm ™. HRMS-FAB: m/z [M +
H]" caled for CogH,5FgN,0,: 543.1719; found: 543.1704.

1-tert-Butyl 5-ethyl 4-phenyl-2-(thiophen-2-yl)-1,4-
dihydropyrimidine-1,5-dicarboxylate (7j). Eluent in chromatog-
raphy: n-hexane-EtOAc, 11 :1 to 6 : 1. Yield: 91%; pale yellow
oil. '"H NMR (CDCl;, 600 MHz): 6 = 1.28 (t, ] = 7.2 Hz, 3H), 1.32
(s, 9H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 4.24 (dq, J = 10.8, 7.2 Hz,
1H), 5.94 (s, 1H), 7.03 (dd, J = 4.8, 3.6 Hz, 1H), 7.23 (dd, J = 3.6,
1.2 Hz, 1H), 7.26 (t, ] = 7.2 Hz, 1H), 7.32 (t,] = 7.2 Hz, 2H), 7.35
(d, J = 7.2 Hz, 2H), 7.38 (dd, J = 4.8, 1.2 Hz, 1H), 8.01 (d, J =
1.2 Hz, 1H). *C NMR (CDCl;, 150 MHz): 6 = 14.2, 27.5, 58.6,
60.7, 84.6, 115.6, 126.7, 126.8, 127.5, 127.8, 128.0, 128.6, 133.7,
138.4, 140.4, 146.6, 149.4, 164.8. IR (neat): 2978, 1735, 1711,
1664, 1340, 1245, 1151 cm™ . HRMS-FAB: m/z [M + H]" calcd for
C,,H,5N,0,S: 413.1535; found: 413.1534.

1-tert-Butyl 5-ethyl 4-phenyl-2-(thiophen-3-yl)-1,4-
dihydropyrimidine-1,5-dicarboxylate (7k). Eluent in chroma-
tography: n-hexane-EtOAc, 8 : 1 to 4 : 1. Yield: 79%; pale yellow
oil. 'H NMR (CDCl;, 600 MHz): 6 = 1.276 (t, J = 7.2 Hz, 3H),
1.281 (s, 9H), 4.19 (dq, J = 10.8, 7.2 Hz, 1H), 4.23 (dq, J = 10.8,
7.2 Hz, 1H), 5.90 (s, 1H), 7.16 (dd, J = 4.8, 1.2 Hz, 1H), 7.26-7.30
(m, 2H), 7.33 (t,/ = 7.8 Hz, 2H), 7.37 (d,J = 7.8 Hz, 2H), 7.54 (dd,
J = 3.0, 1.2 Hz, 1H), 8.07 (d, J = 1.2 Hz, 1H). **C NMR (CDCl,
150 MHz): 6 = 14.2, 27.4, 58.5, 60.7, 84.5, 114.4, 125.2, 125.8,
126.8, 126.9, 127.5, 128.6, 133.5, 137.5, 140.8, 147.0, 149.4,
164.9. IR (neat): 2980, 1733, 1711, 1669, 1371, 1342, 1245, 1151,
1025 cm ™. HRMS-FAB: m/z [M + H]" caled for C,,H,5N,0,S:
413.1535; found: 413.1527.

1-tert-Butyl 5-ethyl 4-phenyl-2-(pyridin-2-yl)-1,4-
dihydropyrimidine-1,5-dicarboxylate (71). Tributyl(pyridin-2-yl)
stannane (4.0 equiv.), Pd,dba; (5.0 mol%), (2-furyl);P
(40 mol%), and CuTC (4.0 equiv.) were used. Eluent in chro-
matography: n-hexane-EtOAc-Et;N, 80:20:1 to 20:40:1.
Yield: 31%; pale yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.22
(s, 9H), 1.26 (t, ] = 7.2 Hz, 3H), 4.17 (dq, J = 10.8, 7.2 Hz, 1H),
4.23 (dq, J = 10.8, 7.2 Hz, 1H), 5.94 (s, 1H), 7.29 (t, ] = 7.2 Hz,
1H), 7.33-7.38 (m, 3H), 7.41 (d, J = 7.2 Hz, 2H), 7.68 (d, J =
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7.8 Hz, 1H), 7.75 (ddd, J = 7.8, 7.8, 1.8 Hz, 1H), 8.17 (d, ] =
1.2 Hz, 1H), 8.55-8.57 (m, 1H). "*C NMR (CDCl;, 150 MHz): 6 =
14.2, 27.4, 58.9, 60.6, 84.2, 112.5, 123.1, 124.3, 127.1, 127.6,
128.7, 133.6, 136.8, 141.0, 148.0, 149.4, 150.4, 154.2, 165.0. IR
(neat): 2980, 2932, 1741, 1711, 1671, 1362, 1321, 1244, 1155,
1075, 1025, 750 cm ‘. HRMS-FAB: m/z [M + H]" caled for
C,3H,6N;0,: 408.1923; found: 408.1927.

1-tert-Butyl 5-ethyl 4-phenyl-2-(pyridin-3-yl)-1,4-
dihydropyrimidine-1,5-dicarboxylate (7m). Eluent in chroma-
tography: n-hexane-EtOAc, 5:1 to 1: 2. Yield: 33%; colorless
crystals, mp 107-108 °C (n-hexane-EtOAc). "H NMR (CDCl;, 600
MHz): 6 = 1.24 (s, 9H), 1.28 (t, ] = 7.2 Hz, 3H), 4.20 (dq, J = 10.8,
7.2 Hz, 1H), 4.24 (dq, J = 10.8, 7.2 Hz, 1H), 5.95 (s, 1H), 7.28-
7.39 (m, 6H), 7.80 (dt, J = 7.8, 1.8 Hz, 1H), 8.13 (d, J = 1.2 Hz,
1H), 8.65 (dd, J = 4.8, 1.8 Hz, 1H), 8.69 (d, J = 1.8 Hz, 1H). *C
NMR (CDCl;, 150 MHz): 6 = 14.2, 27.5, 58.9, 60.8, 85.2, 114.3,
123.0, 127.0, 127.8, 128.8, 132.7, 133.2, 134.8, 140.6, 148.1,
148.7,149.0, 150.4, 164.7. IR (KBr): 2980, 1726, 1711, 1673, 1356,
1312, 1244, 1154, 1071 cm™ . HRMS-FAB: m/z [M + H]" calcd for
C,3H,N;0,: 408.1923; found: 408.1918.

1-tert-Butyl  5-ethyl  4-(4-methoxyphenyl)-2-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7n). Eluent in chroma-
tography: n-hexane-EtOAc, 6 : 1 to 3 : 1. Yield: 92%; pale yellow
oil. '"H NMR (CDCl;, 600 MHz): 6 = 1.18 (s, 9H), 1.28 (t, ] =
7.2 Hz, 3H), 3.80 (s, 3H), 4.19 (dq,J = 10.8, 7.2 Hz, 1H), 4.23 (dq,
J = 10.8, 7.2 Hz, 1H), 5.86 (s, 1H), 6.87 (d, J = 9.0 Hz, 2H), 7.30
(d, J = 9.0 Hz, 2H), 7.36 (t, J = 7.2 Hz, 2H), 7.41 (tt, ] = 7.2,
1.8 Hz, 1H), 7.45 (dd, J = 7.2, 1.8 Hz, 2H), 8.12 (d, J = 0.6 Hz,
1H). *C NMR (CDCl;, 150 MHz): § = 14.2, 27.3, 55.2, 58.1, 60.6,
84.5, 114.0, 114.3, 127.2, 128.05, 128.10, 129.6, 133.28, 133.33,
136.7, 149.5, 150.9, 159.0, 165.0. IR (neat): 2980, 1734, 1712,
1670, 1610, 1511, 1354, 1317, 1247, 1153, 1035 cm™*. HRMS-
FAB: m/z [M + H]" caled for Cy5H,oN,05: 437.2076; found:
437.2081.

1-tert-Butyl 5-ethyl 4-(4-methylphenyl)-2-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (70). Eluent in chroma-
tography: n-hexane-EtOAc, 10:1 to 5:1. Yield: 89%; pale
yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.17 (s, 9H), 1.28 (t, ]
= 7.2 Hz, 3H), 2.34 (s, 3H), 4.19 (dq, J = 10.8, 7.2 Hz, 1H), 4.23
(dgq,J = 10.8, 7.2 Hz, 1H), 5.89 (s, 1H), 7.15 (d, J = 8.4 Hz, 2H),
7.27 (d,] = 8.4 Hz, 2H), 7.36 (t,] = 7.2 Hz, 2H), 7.41 (tt,] = 7.2,
1.8 Hz, 1H), 7.46 (dd, J = 7.2, 1.8 Hz, 2H), 8.12 (d, J = 1.2 Hz,
1H). *C NMR (CDCl;, 150 MHz): 6 = 14.2, 21.1, 27.3, 58.5, 60.6,
84.4,114.3,126.9, 127.2, 128.1, 129.3, 129.6, 133.4, 136.7, 137.2,
138.1,149.5,151.1, 165.0. IR (KBr): 2979, 1734, 1712, 1669, 1354,
1245, 1151 cm ‘. HRMS-FAB: m/z [M + H]" caled for
C,5H2N,0,: 421.2127; found: 421.2131.

1-tert-Butyl 5-ethyl 4-(4-bromophenyl)-2-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7p). Eluent in chroma-
tography: n-hexane-EtOAc, 10:1 to 5:1. Yield: 86%; pale
yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.17 (s, 9H), 1.29 (t, /
= 7.2 Hz, 3H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 4.24 (dq, J = 10.8,
7.2 Hz, 1H), 5.88 (s, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.38 (t, ] =
7.2 Hz, 2H), 7.41-7.46 (m, 3H), 7.47 (d, ] = 8.4 Hz, 2H), 8.14 (d, J
= 0.6 Hz, 1H). *C NMR (CDCl;, 150 MHz): 6 = 14.2, 27.3, 58.1,
60.8, 84.8, 113.5, 121.5, 127.2, 128.1, 128.7, 129.8, 131.7, 133.8,
136.5, 140.1, 149.3, 151.5, 164.8. IR (neat): 2980, 1737, 1711,
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1671, 1371, 1353, 1245, 1152, 1011 cm ™~ '. HRMS-FAB: m/z [M +
H]" caled for CyuHye °BrN,Oy: 485.1076; found: 485.1068.

1-tert-Butyl 5-ethyl 4-(4-chlorophenyl)-2-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7q). Eluent in chroma-
tography: n-hexane-EtOAc, 8 : 1 to 5 : 1. Yield: 84%; pale yellow
oil. 'H NMR (CDCl;, 600 MHz): 6 = 1.17 (s, 9H), 1.29 (t, ] =
7.2 Hz, 3H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 4.24 (dq, J = 10.8,
7.2 Hz, 1H), 5.89 (d, J = 1.2 Hz, 1H), 7.32 (s, 4H), 7.38 (t, ] =
7.2 Hz, 2H), 7.41-7.46 (m, 3H), 8.14 (d,/ = 1.2 Hz, 1H). >*C NMR
(CDCl3, 150 MHz): § = 14.2, 27.3, 58.0, 60.8, 84.8, 113.6, 127.2,
128.1, 128.3, 128.8, 129.8, 133.3, 133.8, 136.5, 139.5, 149.3,
151.5, 164.8. IR (neat): 2980, 1737, 1711, 1671, 1371, 1353, 1246,
1153, 1015 cm ‘. HRMS-FAB: m/z [M + H]" caled for
C,4H,6> CIN,O,: 441.1581; found: 441.1575.

1-tert-Butyl 5-ethyl 4-[4-(trifluoromethyl)phenyl]-2-phenyl-
1,4-dihydropyrimidine-1,5-dicarboxylate (7r). Eluent in chro-
matography: n-hexane-EtOAc, 7:1 to 5:1. Yield: 84%; pale
yellow oil. "H NMR (CDCl;, 600 MHz): 6 = 1.18 (s, 9H), 1.29 (t, ]
= 7.2 Hz, 3H), 4.21 (dq, J = 10.8, 7.2 Hz, 1H), 4.25 (dq,J = 10.8,
7.2 Hz, 1H), 5.98 (s, 1H), 7.39 (t, ] = 7.8 Hz, 2H), 7.44 (tt, ] = 7.8,
1.2 Hz, 1H), 7.46 (dd, J = 7.8, 1.2 Hz, 2H), 7.51 (d, ] = 7.8 Hz,
2H), 7.61 (d, J = 7.8 Hz, 2H), 8.16 (d, J = 1.2 Hz, 1H). *C NMR
(CDCl;, 150 MHz): 6 = 14.2, 27.3, 58.3, 60.9, 84.9, 113.3, 124.1 (J
=271.5 Hz), 125.6 (J = 3.8 Hz), 127.2, 127.3, 128.2, 129.8 (q, ] =
31.5 Hz), 129.9, 134.0, 136.4, 144.9, 149.3, 151.8, 164.8. IR (neat):
2982, 1738, 1711, 1672, 1618, 1354, 1326, 1245, 1152, 1125,
1067 cm™'. HRMS-FAB: m/z [M + H]" caled for Cy5H,F3N,04:
475.1845; found: 475.1850.

1-tert-Butyl 5-ethyl 4-(2-chlorophenyl)-2-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7s). Eluent in chroma-
tography: n-hexane-EtOAc, 10 : 1 to 5 : 1. Yield: 87%; colorless
crystals, mp 135-136 °C (n-hexane-EtOAc). "H NMR (CDCl;, 600
MHz): 6 = 1.17 (s, 9H), 1.22 (t,] = 7.2 Hz, 3H), 4.14 (dq, J = 10.8,
7.2 Hz, 1H), 4.17 (dq, J = 10.8, 7.2 Hz, 1H), 6.27 (s, 1H), 7.20-
7.25 (m, 3H), 7.33 (t, ] = 7.2 Hz, 2H), 7.35-7.40 (m, 3H), 7.42-
7.46 (m, 1H), 8.29 (s, 1H). **C NMR (CDCl;, 150 MHz): 6 = 14.1,
27.3, 56.5, 60.7, 84.6, 112.3, 127.1, 127.2, 128.0, 128.7, 128.9,
129.5, 130.1, 134.1, 134.9, 136.9, 138.4, 149.5, 150.6, 164.7. IR
(KBr): 2978, 1728, 1711, 1665, 1350, 1262, 1249, 1156 cm .
HRMS-FAB: m/z [M + H]" caled for C,4H,6> CIN,O,: 441.1581;
found: 441.1588.

1-tert-Butyl 5-ethyl 2-phenyl-4-propyl-1,4-dihydropyrimidine-
1,5-dicarboxylate (7t). Eluent in chromatography: n-hexane-
EtOAc, 10:1 to 5:1. Yield: 84%; pale yellow oil. 'H NMR
(CDCl;, 600 MHz): 6 = 0.98 (t, ] = 7.2 Hz, 3H), 1.18 (s, 9H), 1.32
(t,] = 7.2 Hz, 3H), 1.43-1.70 (m, 4H), 4.23 (dq, ] = 10.8, 7.2 Hz,
1H), 4.26 (dq, J = 10.8, 7.2 Hz, 1H), 4.80 (t, ] = 6.0 Hz, 1H), 7.36
(t,/ = 7.2 Hz, 2H), 7.40 (tt, ] = 7.2, 1.8 Hz, 1H), 7.43 (dd, ] = 7.2,
1.8 Hz, 2H), 8.02 (d,J = 1.2 Hz, 1H). **C NMR (CDCl;, 150 MHz):
6 = 14.1, 14.2, 18.4, 27.3, 38.0, 55.0, 60.5, 84.2, 115.1, 127.1,
128.0, 129.4, 133.7, 137.0, 149.6, 150.6, 165.2. IR (neat): 2960,
2935, 1733, 1712, 1670, 1370, 1351, 1245, 1153 cm ™ *. HRMS-
FAB: m/z [M + H] caled for Cp;H,oN,0,4: 373.2127; found:
373.2135.

1-tert-Butyl 5-ethyl 4-cyclohexyl-2-phenyl-1,4-
dihydropyrimidine-1,5-dicarboxylate (7u). Eluent in chroma-
tography: n-hexane-EtOAc, 20:1 to 6:1. Yield: 81%; pale
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yellow oil. *"H NMR (CDCl;, 600 MHz): § = 1.02-1.45 (m, 5H),
1.18 (s, 9H), 1.32 (t,J = 7.2 Hz, 3H), 1.60-1.89 (m, 6H), 4.22 (dq, ]
=10.8, 7.2 Hz, 1H), 4.26 (dq, ] = 10.8, 7.2 Hz, 1H), 4.73 (d, ] =
5.4 Hz, 1H), 7.36 (t,] = 7.2 Hz, 2H), 7.40 (t,] = 7.2 Hz, 1H), 7.45
(d,J = 7.2 Hz, 2H), 8.03 (d, J = 1.2 Hz, 1H). *C NMR (CDCl;, 150
MHz): 6 = 14.2, 26.3, 26.4, 27.4, 27.7, 29.2, 44.1, 60.2, 60.5, 84.0,
113.9, 127.1, 128.0, 129.4, 133.9, 137.0, 149.6, 150.6, 165.5. IR
(neat): 2928, 2853, 1731, 1713, 1670, 1371, 1351, 1318, 1244,
1154, 1012 cm ‘. HRMS-FAB: m/z [M + H]" caled for
C,4H33N,0,: 413.2440; found: 413.2446.

Ethyl 4,4,6-trimethyl-2-phenyl-1,4-dihydropyrimidine-5-
carboxylate (9). Eluent in chromatography: n-hexane-EtOAc—
Et;N, 150 : 50 : 1 to 100 : 50 : 1. Yield: 71%; colorless crystals,
mp 86-88 °C (n-hexane-Et,0). "H NMR (CD3;0D, 500 MHz): 6 =
1.31 (t, J = 7.5 Hz, 3H), 1.47 (s, 6H), 2.09 (s, 3H), 4.20 (q, ] =
7.5 Hz, 2H), 7.45 (t,J = 7.0 Hz, 2H), 7.51 (t,J = 7.0 Hz, 1H), 7.67
(d,J = 7.0 Hz, 2H). *C NMR (CD;0D, 125 MHz): 6 = 14.6, 19.9,
30.2, 54.9, 61.1, 109.7, 128.6, 129.5, 131.9, 135.7, 146.4 (br),
155.8 (br), 169.3. IR (neat): 2969, 1690, 1644, 1478, 1459, 1268,
1225, 1166, 1109, 1073, 1055, 770, 693 cm ™', HRMS-FAB: m/z [M
+ H]Jr caled for C;6H,1N,0,: 273.1603; found: 273.1602.

General procedure for synthesis of tautomeric 2-aryl-DPs 10
and 11

Ethyl 2,4-diphenyl-1,4-dihydropyrimidine-5-carboxylate
(10a) and ethyl 2,6-diphenyl-1,6-dihydropyrimidine-5-
carboxylate (11a). To a solution of 7a (334 mg, 0.822 mmol) in
CH,Cl, (8.0 mL) was added trifluoroacetic acid (2.50 mL, 32.7
mmol) at 0 °C. The reaction mixture was stirred at room
temperature for 3 h, and 2 M NaOH aqueous solution (20 mL) and
EtOAc (20 mL) were added. The organic layer was separated, and
the aqueous layer was extracted with EtOAc (20 mL). The
combined organic layers were washed with water (5 mL), brine (5
mL), dried over anhydrous Na,SO,, filtered, and concentrated
under reduced pressure. The residue was purified by flash column
chromatography (silica gel; eluent: n-hexane-EtOAc-Et;N,
150 : 60 : 1t0 100 : 100 : 1) to give a tautomeric mixture of 10a and
11a (249 mg, 0.813 mmol, 99%) as yellow crystals. Mp 152-153 °C
(n-hexane-EtOAc). "H NMR of the mixture of tautomers, 10a : 11a
= 1.6 : 1 (DMSO-ds, 500 MHz): 6 = 1.147 (10a, t, ] = 7.0 Hz, 3H),
1.152 (11a, t, ] = 7.0 Hz, 3H), 3.98-4.12 (10a, m, 2H + 11a, m, 2H),
5.45 (11a, d, J = 3.5 Hz, 1H), 5.57 (10a, s, 1H), 7.16-7.56 (10a, m,
8H + 11a, m, 8H), 7.38 (10a, d, J = 5.5 Hz, 1H), 7.66 (11a, s, 1H),
7.80 (10a, d, ] = 8.5 Hz, 2H), 7.88 (11a, d,] = 8.5 Hz, 2H), 9.28 (11a,
d,J = 3.5 Hz, 1H), 9.88 (10a, d, J = 5.5 Hz, 1H). 'H NMR, average
spectrum of the tautomers (CD;OD, 500 MHz): 6 = 1.21 (t, ] =
7.0 Hz, 3H), 4.10 (dq, J = 10.5, 7.0 Hz, 1H), 4.13 (dq, J = 10.5,
7.0 Hz, 1H), 5.58 (s, 1H), 7.25 (t, ] = 7.5 Hz, 1H), 7.33 (t,] = 7.5 Hz,
2H), 7.39 (d, ] = 7.5 Hz, 2H), 7.45 (t, ] = 7.5 Hz, 2H), 7.53 (t, ] =
7.5 Hz, 1H), 7.58 (s, 1H), 7.69 (d, J = 7.5 Hz, 2H). "*C NMR, average
spectrum of the tautomers (CD;OD, 125 MHz): 6 = 14.6, 56.6, 61.3,
107.5 (br), 128.1, 128.3, 128.8, 129.6, 129.8, 132.5, 135.0, 140.7 (br),
146.2, 156.8 (br), 168.0. IR (neat): 2974, 1694, 1684, 1620, 1478,
1393, 1299, 1228, 1095, 756, 713, 698 cm ™. HRMS-FAB: m/z [M +
H]" caled for C;9H;9N,0,: 307.1447; found: 307.1444.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

Ethyl 2-(4-methoxyphenyl)-4-phenyl-1,4-dihydropyrimidine-
5-carboxylate (10b) and ethyl 2-(4-methoxyphenyl)-6-phenyl-
1,6-dihydropyrimidine-5-carboxylate (11b). Eluent in chroma-
tography: n-hexane-EtOAc-Et;N, 100:100:1 to 75:150: 1.
Yield: 98%; pale yellow amorphous. "H NMR of the mixture of
tautomers, 10b : 11b = 1 : 1 (DMSO-dg, 500 MHz): 6 = 1.11-1.18
(10b, t,J = 7.0 Hz, 3H + 11b, t, ] = 7.0 Hz, 3H), 3.76-3.81 (10b, s,
3H + 11b, s, 3H), 3.97-4.12 (10b, m, 2H + 11b, m, 2H), 5.41 (11b,
d,J = 3.5 Hz, 1H), 5.54 (10b, s, 1H), 6.95-7.90 (10b, m, 9H + 11b,
m, 9H), 7.37 (10b, d, ] = 5.5 Hz, 1H), 7.64 (10b, s, 1H), 9.16 (11b,
d,J = 3.5 Hz, 1H), 9.79 (10b, d, ] = 5.5 Hz, 1H). 'H NMR, average
spectrum of the tautomers (CD;OD, 500 MHz): 6 = 1.21 (t, ] =
7.0 Hz, 3H), 3.83 (s, 3H), 4.10 (dq, / = 10.5, 7.0 Hz, 1H), 4.13 (dq,
=10.5, 7.0 Hz, 1H), 5.55 (s, 1H), 6.98 (d, J = 8.5 Hz, 2H), 7.25 (t, ]
= 7.0 Hz, 1H), 7.32 (t,] = 7.0 Hz, 2H), 7.37 (d, ] = 7.0 Hz, 2H), 7.60
(s, 1H), 7.66 (d, ] = 8.5 Hz, 2H). "*C NMR, average spectrum of the
tautomers (CD;OD, 125 MHz): 6 = 14.6, 55.9, 56.1, 61.2, 107.7
(br), 115.0, 126.9, 128.0, 128.8, 129.5, 130.1, 142.1 (br), 146.3,
157.2 (br), 164.0, 168.0. IR (neat): 1691, 1670, 1605, 1480, 1251,
1225, 1173, 1097, 1075, 1029, 838, 754, 697 cm ™. HRMS-FAB: m/z
[M + H]' caled for CyoH,,N,03: 337.1552; found: 337.1568.

Ethyl 2-(4-nitrophenyl)-4-phenyl-1,4-dihydropyrimidine-5-
carboxylate (10g) and ethyl 2-(4-nitrophenyl)-6-phenyl-1,6-
dihydropyrimidine-5-carboxylate (11g). Eluent in chromatog-
raphy: n-hexane-EtOAc-Et;N, 150:100:1 to 100:100: 1.
Yield: 97%; orange amorphous. "H NMR of the mixture of
tautomers, 10g : 11g = 2.5 : 1 (DMSO-ds, 500 MHz): 6 = 1.14
(11g, t, ] = 7.0 Hz, 3H), 1.16 (11g, t, ] = 7.0 Hz, 3H), 3.97-4.12
(10g, m, 2H + 11g, m, 2H), 5.49 (11g, d, / = 3.0 Hz, 1H), 5.62
(10g, s, 1H), 7.16-7.44 (10g, m, 5H + 11g, m, 5H), 7.41 (10g, d, ] =
5.0 Hz, 1H), 7.67 (11g, s, 1H), 8.05 (10g, d, J = 8.5 Hz, 2H), 8.12
(11g, d,J = 8.5 Hz, 2H), 8.30 (10g, d, ] = 8.5 Hz, 2H), 8.32 (11g, d,
J = 8.5 Hz, 2H), 9.54 (11g, d, J = 3.0 Hz, 1H), 10.15 (10g, d, J =
5.0 Hz, 1H). 'H NMR, average spectrum of the tautomers
(CD;0D, 500 MHz): 6 = 1.21 (t,] = 7.0 Hz, 3H), 4.10 (dq,J = 10.5,
7.0 Hz, 1H), 4.13 (dq,J = 10.5, 7.0 Hz, 1H), 5.63 (s, 1H), 7.26 (t, ]
= 7.5 Hz, 1H), 7.34 (t, ] = 7.5 Hz, 2H), 7.40 (d, ] = 7.5 Hz, 2H),
7.44-7.70 (brs, 1H), 7.92 (d, J = 9.0 Hz, 2H), 8.30 (d, ] = 9.0 Hz,
2H). 13C NMR, average spectrum of the tautomers (CD;0D, 125
MHz): § = 14.5, 57.4, 61.4, 105.5-108.5 (br), 124.7, 128.2, 128.9,
129.5, 129.7, 137.0-141.0 (br), 140.8, 146.1, 150.8, 153.0-156.0
(br), 167.7. IR (neat): 1695, 1674, 1600, 1521, 1487, 1344, 1297,
1242,1190, 1097, 1072, 851, 752, 698 cm . HRMS-FAB: m/z [M +
H]" caled for C;oH;gN30,: 352.1297; found: 352.1305.
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