Norsesquiterpenoids from the octocoral <i>Paralemnalia thyrsoides</i> (Ehrenberg 1834)

Gia Hung Phan, a,b,c Hao-Chun Hu, a,c Fang-Rong Chang, d,e Zhi-Hong Wen, d,e Jih-Jung Chen, f Hsu-Ming Chung, g,i Yu-Chi Tsai h and Ping-Jyun Sung i

Three norsesquiterpenoids, pathyspirolactones A (1) and B (2), and napali lactone (3), featuring a \(\gamma \)-spirolactone moiety, were isolated from the cultured octocoral <i>Paralemnalia thyrsoides</i>. The structures of 1–3 were determined by analyzing spectroscopic data, DP4+ computation, specific optical rotation, and X-ray diffraction. In addition, we explored the absolute configurations of pathyspirolactone A (1) and its conformation of the cyclohexane ring to resolve the stereochemical confusion of those of norsesquiterpenoid compounds. Furthermore, we proved that pathyspirolactone B (2) was the first bromine-containing norsesquiterpenoid reported from octocorals.

1 Introduction

Octocorals of the genus <i>Paralemnalia</i> (family Nephtheidae) represent a rich source of natural substances with intriguing and unique structural features. Among these metabolites, sesquiterpenoids and norsesquiterpenoids are representative compounds for the natural products from <i>Paralemnalia</i> spp. <i>Paralemnalia thyrsoides</i> (Ehrenberg 1834) is one of the most common marine invertebrates natively distributed throughout tropical and subtropical regions of the Indo-Pacific Ocean.

2 Results and discussion

Pathyspirolactone A (1) was isolated as an amorphous powder. NMR data coupled with the [M + Na] + peak in the HRESIMS at \(m/z \) 277.14129 suggested a molecular formula \(\text{C}_{14}\text{H}_{22}\text{O}_{4} + \text{Na} \) (caled for \(\text{C}_{14}\text{H}_{22}\text{O}_{4} + \text{Na} \), 277.14103) that indicated four degrees of unsaturation. IR spectrum analysis showed that 1 had absorption peaks at \(\nu_{\text{max}} \) 3422, 1762, and 1700 cm\(^{-1}\), suggesting that...
Table 1

<table>
<thead>
<tr>
<th>Position</th>
<th>(\delta_H^a) (J in Hz)</th>
<th>(\delta_C^b) Mult(^c)</th>
<th>(\delta_H^a) (J in Hz)</th>
<th>(\delta_C^b) Mult(^c)</th>
<th>(\delta_H^a) (J in Hz)</th>
<th>(\delta_C^b) Mult(^c)</th>
<th>(\delta_C^h) (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1β(axial)</td>
<td>3.70 dd (11.6, 4.8)</td>
<td>73.4, CH</td>
<td></td>
<td></td>
<td></td>
<td>4.27 m(^f)</td>
<td>65.0</td>
</tr>
<tr>
<td>1α(axial)</td>
<td></td>
<td></td>
<td>4.59 dd (12.0, 4.4)</td>
<td>58.2, CH</td>
<td>4.36 dd (10.4, 4.4)</td>
<td>63.8, CH</td>
<td></td>
</tr>
<tr>
<td>2β(axial)</td>
<td>1.63 m</td>
<td>30.4, CH(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2α(axial)</td>
<td></td>
<td></td>
<td>2.23 m; 2.08 ddd (14.4, 12.0, 4.0)</td>
<td>29.8, CH(_2)</td>
<td>2.12 m; 1.94 m</td>
<td>28.9, CH(_2)</td>
<td>1.78–2.0</td>
</tr>
<tr>
<td>3β(axial)</td>
<td>1.41 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3α(axial)</td>
<td></td>
<td></td>
<td>1.89 m; 1.45 dddd (14.0, 4.0, 4.0, 4.0)</td>
<td>28.1, CH(_2)</td>
<td>1.83 m; 1.50 m</td>
<td>27.0, CH(_2)</td>
<td>1.44–1.79</td>
</tr>
<tr>
<td>4</td>
<td>2.17 m</td>
<td>34.3, CH</td>
<td>2.56 m(^d)</td>
<td>33.2, CH</td>
<td>2.53 m</td>
<td>33.2, CH</td>
<td>2.38</td>
</tr>
<tr>
<td>5</td>
<td>46.7, C</td>
<td></td>
<td></td>
<td>46.4/C</td>
<td></td>
<td></td>
<td>45.3</td>
</tr>
<tr>
<td>6</td>
<td>91.8, C</td>
<td></td>
<td></td>
<td>91.1, C</td>
<td></td>
<td></td>
<td>92.0</td>
</tr>
<tr>
<td>7</td>
<td>177.9, C</td>
<td></td>
<td></td>
<td>175.8, C</td>
<td></td>
<td></td>
<td>177.0</td>
</tr>
<tr>
<td>8</td>
<td>2.74 ddd (17.2, 12.4, 8.0); 2.47 ddd (17.2, 11.2, 4.2)</td>
<td>29.6, CH(_2)</td>
<td>2.74 m(^b); 2.53 m(^d)</td>
<td>29.7, CH(_2)</td>
<td>2.68 m(^f); 2.46 m</td>
<td>29.4, CH(_2)</td>
<td>2.48–2.67</td>
</tr>
<tr>
<td>9</td>
<td>2.37 m; 2.19 m</td>
<td>26.3, CH(_2)</td>
<td>2.48 m; 2.41 m</td>
<td>26.2, CH(_2)</td>
<td>2.39 d (10.0); 2.37 dd (10.0, 2.0)</td>
<td>24.8, CH(_2)</td>
<td>2.30</td>
</tr>
<tr>
<td>10</td>
<td>2.47 s</td>
<td>48.9, CH(_2)</td>
<td>2.89 d (16.0); 2.76 d (16.0)(^e)</td>
<td>46.4, CH(_2)</td>
<td>2.84 d (16.0); 2.70 dd (16.0)(^e)</td>
<td>46.8, CH(_2)</td>
<td>2.80–2.73 (two doublets, (J = 15.1))</td>
</tr>
<tr>
<td>11</td>
<td>208.4, C</td>
<td></td>
<td></td>
<td>207.9, C</td>
<td></td>
<td></td>
<td>207.0</td>
</tr>
<tr>
<td>12</td>
<td>2.20 s</td>
<td>32.3, CH(_3)</td>
<td>2.16 s</td>
<td>33.0, CH(_3)</td>
<td>2.16 s</td>
<td>32.9, CH(_3)</td>
<td>2.09 s</td>
</tr>
<tr>
<td>13</td>
<td>0.99 d (7.2)</td>
<td>16.6, CH(_3)</td>
<td>1.03 d (7.6)</td>
<td>15.7, CH(_3)</td>
<td>1.01 d (7.6)</td>
<td>15.7, CH(_3)</td>
<td>0.96 d (7.7)</td>
</tr>
<tr>
<td>14</td>
<td>0.91 s</td>
<td>15.0, CH(_3)</td>
<td>1.23 s</td>
<td>18.6, CH(_3)</td>
<td>1.18 s</td>
<td>18.0, CH(_3)</td>
<td>1.12 s</td>
</tr>
</tbody>
</table>

\(^a\) Spectra recorded at 400 MHz in CDCl\(_3\). \(^b\) Spectra recorded at 100 MHz in CDCl\(_3\). \(^c\) Multiplicity deduced by DEPT and HSQC spectra and indicated by usual symbols. \(^d\) Signals overlapped. \(^e\) Signals overlapped. \(^f\) Signals overlapped. \(^g\) Data were reported by Coelho and Diaz.16 These data were recorded at 500 MHz for \(^1\)H and 125 MHz for \(^13\)C in CDCl\(_3\). The coupling pattern and coupling constants were assigned as “two similar coupling constants (\(J = 4.2, 2.9\) Hz)\(^h\)” in the content text of the ref. 16.

Fig. 2 Key COSY and HMBC correlations of 1.

© 2022 The Author(s). Published by the Royal Society of Chemistry

Paper

RSC Adv., 2022, 12, 27970–27976 | 27971

The relative stereochemistry of 1 was deduced mainly from the NOE interactions in the NOESY experiment, Chem3D
the β-face, anchoring stereochemical analysis. In the NOESY experiment (Fig. 3), the correlations of H$_3$-14 with H-1 and H$_2$-9 showed that these protons were positioned on the same face of the molecule, and therefore they were assigned as β-protons. One of the methylene protons at C-3 (δ_H 1.41) exhibited a correlation with H$_3$-14, leading to its assignment as H-3β, while the other was denoted as H-3α (δ_H 1.61). The correlation between H-3β and H$_2$-13 reflected the β-orientation of the CH$_3$-13 group at C-4. The configuration at the cyclohexane ring in 1 is worthy of comment. H-1 was found to exhibit correlations with H$_3$-14, as well as coupling between H-1 and H$_2$-2 (J = 11.6, 4.8 Hz), indicating that both H-1 and C-14 methyl at C-5 should be oriented at β-axial positions. Therefore, based on the above findings, the configurations of the stereogenic carbons of 1 were determined as (1S*, 4S*, 5R*, 6R*).

It is very interesting to note that the structure of 1 as we presented herein had been reported and named epi-pathylactone A, a synthetic product by Coelho and Diaz in 2002.16 Although these two compounds possessed the same relative configurations (1S*, 4S*, 5R*, 6S*) (Fig. 3 and 4), the different chemical shifts and coupling constants of H-1 in 1 (δ_H 3.70, 1H, dd, J = 11.6, 4.8 Hz) and epi-pathylactone A (δ_H 4.27, 1H, J = 4.2, 2.9 Hz)16 demonstrated that H-1 had significantly different dihedral angles with H-2x and H-2β in both compounds, respectively. Furthermore, the 1H-NMR spectra of compound 1 at temperatures of 0, 25, and 50 °C were also measured to discover the 1H chemical shift changes in those spectra. However, the critical proton NMR signal on C-1 (δ_H 3.70) in the different temperature experiments was quite similar (Fig. S27–S29†). Therefore, compound 1 was proposed as a new conformational isomer and did not undergo conformational interconversion after heat.

Based on the Newman projection analysis, H-1 in 1 expressed anti with H-2x and gauche with H-2β; H-1 in epi-pathylactone A showed gauche with the methylene protons on C-2 (Fig. 5), indicating H-1 should be in a β-axial position in 1 and β-equatorial in epi-pathylactone A. In addition, the conformational variation in the cyclohexane ring led to the structural difference in those compounds, resulting in the absolute configuration of 1 being hard to discuss by the reference comparison.

For solving the absolute stereochemistry issue of compound 1, the DP4+ analysis was selective for double-checking the configuration of position C-1, which was the most confusing location for the type of compounds. The structures of 1-1S*, 4S*, 5R*, 6R* (diastereomer 1) and 1-1R*, 4S*, 5R*, 6R* (diastereomer 2) were computed GIAO-NMR data by Gaussian 09, and the calculated results were analysis by DP4+ (Fig. S11†). The DP4+ analysis results of 1-1S*, 4S*, 5R*, 6R* displayed the match ratio 99.94%, 99.98%, and 100.00% in sDP4+ (all data), uDP4+ (all data), respectively (Table S1†). Furthermore, the possible configurations of 1-1S, 4S, 5R, 6R and 1-1R, 4R, 5S, 6S were input into spartan’16 and Gaussian 09 software for calculating conformational search, structure optimization, and specific optical rotation (SOR) value. As a result, the calculated SOR value of 1-1S, 4S, 5R, 6R [66] was consistent with the experiment result of 1 (positive) (Table S2†). This is the first to clarify the absolute configuration of these
was correlated to the methine proton at δH 4.36, 1H, dd, J = 10.4, 4.4 Hz/δC 63.8, CH-1 (Fig. S25 and S26†) with a bromine atom in 2 (δH 4.59, 1H, dd, J = 12.0, 4.4 Hz 4.0 Hz/δC 58.2, CH-1). To the best of our knowledge, compound 2 is the first bromine-containing norsesquiterpenoid reported from octocorals.

The relative configuration of 2 was elucidated from the interactions observed in a NOESY experiment. Furthermore, it was found to be compatible with that of 2 offered by computer modeling (Fig. 7) and that obtained from vicinal proton coupling constant analysis. In the NOESY spectrum of 2, H-1 showed a correlation with one proton of CH2-10 (δδ 2.76) and a large coupling constant with H-2β (J = 12.0 Hz), indicating an z-axial orientation of H-1. The methyl proton H3-14 exhibited correlations with H3-13 and H3-9 but without H3-10, revealing the β-orientations of Me-13, Me-14, and C-9 methylene at C-4, C-5, and C-7, respectively. Moreover, 2-1R*, 4S*, 5R*, 6R* (diastereomer 1) and 2-1S*, 4S*, 5R*, 6R* (diastereomer 2) were further submitted into Gaussian 09 for computed GIAO-NMR data for DP4+ analysis. The analysis results of 2-1R*, 4S*, 5R*, 6R* exhibited a 100% matched ratio with the experimental data of 2 in sDP4+ (all data), uDP4+ (all data), and DP4+ (all data) (Table S1†). Consequently, the relative configuration of 2 was elucidated to be 1R*, 4S*, 5R*, 6R*.

Furthermore, the SOR was used for determining the absolute configuration of 2. The calculated SOR of 2-1R, 4S, 5R, 6R and 2-1S, 4R, 5S, 6S exhibited a positive (12) and a negative (−12) value, respectively (Table S1†). The experiment SOR data of 2 (positive) was matched with the 2-1R, 4S, 5R, 6R. However, as the similar issue of 1, the absolute configuration of C-1 cast doubt on 2.

Moreover, the absolute configuration of napalilactone (3) was fully established by a single-crystal X-ray diffraction analysis with the Flack parameter x = −0.04(4).18,19 The computer-generated ORTEP diagram (Fig. 8) showed the absolute configuration of stereogenic centers of 3 were 1R, 4S, 5R, 6R. Based on the principles of biogenetics and the above DP4+ analysis, pathyspirolactone B (2) can be verified as the same absolute configuration as 3.

Based on the past reports, Paralemmalia spp. showed a promising anti-inflammatory effect and cytotoxic activity.7,8,10,14 Therefore, in vitro anti-inflammatory activity tests, upregulation of pro-inflammatory inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in LPS-stimulated RAW 264.7 macrophage cells were evaluated using immunoblot analysis. At a concentration of 10 μM, norsesquiterpenoids 1 and 2 were found to be inactive to reduce the level of iNOS and COX-2 in relation to control cells stimulated with LPS only. Using trypan blue staining to measure the cytotoxic effects of the compounds, it was observed that 1 and 2 did not induce cytotoxicity in RAW 264.7 macrophage cells.

3 Conclusions

In summary, we obtained three norsesquiterpenoids, including pathyspirolactones A (1) and B (2), and napalilactone (3) from octocoral P. thyrsoides. We further explored the conformation of
the cyclohexane ring moiety to resolve the stereochemical confusion of those of norsesquiterpenoid compounds. Moreover, we demonstrated the absolute configurations of pathyspiro lactones based on analyzing spectroscopic data, specific optical rotation, DP+ computation, and X-ray diffraction. However, because the screening platforms were limited and lots of material were consumed in physical and spectral experiments, the other possible bioactivities for the new interesting natural substances will not be assayed at this stage.

4 Experimental

4.1 General experimental procedures

Optical rotation values were measured using a JASCO P-1010 digital polarimeter. IR spectra were obtained with a Thermo Scientific Nicolet iS5 FT-IR spectrophotometer. NMR spectra were recorded on a 400 MHz Jeol ECZ spectrometer using the residual CHCl$_3$ ($\delta$$_H$ 7.26 ppm) and CDCl$_3$ signals ($\delta$$_C$ 77.0 ppm) as internal standards for 1H and 13C NMR, respectively; coupling constants (J) are presented in Hz. ESI-MS and HRESIMS were recorded using a Bruker 7 Tesla SolarIX FTMS system. Column chromatography was carried out with silica gel (230–400 mesh, Merck). TLC was performed on plates precoated with silica gel 60 F254 (Merck) and RP-18W/UV254 (0.15 mm-thick, 400 mesh, Merck). NP-HPLC was performed using a system comprised of a Hitachi L-5110 pump, a Hitachi L-2455 photodiode array detector, and a Rheodyne 7725i injection port with a reverse-phase column (Supelco, Ascentis® C18, 581343-U, 250 mm x 10 mm, 5 μm).

4.2 Animal material

Specimens of Paralamellina thyroides (Ehrenberg, 1834) used for this study were collected from the culturing tank in the NMumba in June 2021. A voucher specimen was deposited in the NMumba (voucher no.: NMumba-TW-SC-2021-902). Identification of the species of this organism was performed by comparison as described in previous studies.20–22

4.3 Extraction and isolation

The freeze-dried and sliced bodies of the coral specimen (wt/ dry weight = 2031/299 g) were extracted by 95% EtOH to yield a crude extract I (31.7 g) and continued to be extracted by the mixture of MeOH/CH$_2$Cl$_2$ (1:1) to give an extract II (29.5 g). Then extracts I and II were partitioned with EtOAc and H$_2$O to obtain the EtOAc-soluble layers A (8.9 g) and B (1.8 g), respectively. The EtOAc layers A and B were then combined, placed in a silica column, and eluted by hexane/EtOAc (pure hexane to pure EtOAc, stepwise) to yield ten fractions A–J. Fraction G (121.3 mg) was further separated by normal-phase HPLC on Galaksil® EF-SiO$_2$ column with a mixture of n-hexane and acetone (65:35) at a rate of 5 mL min$^{-1}$ to give four subfractions (G$_1$–4). G$_1$ (63.2 mg) was subjected to the normal-phase HPLC system with an isocratic solvent system of n-hexane and ethyl acetate (80:20, 5 mL min$^{-1}$) to yield 12 fractions (G$_{1A}$–L). G$_{1L}$ (48.6 mg) was then separated by the normal-phase HPLC system using a mixture of n-hexane and acetone (80:20, 5 mL min$^{-1}$) to obtain 15 subfractions (G$_{2L1}$–15). G$_{2L10}$ (10.9 mg) was further purified by reverse-phase HPLC on Ascentis® C18 column with an isocratic solvent system of MeOH and H$_2$O (55:45, 5 mL min$^{-1}$) to obtain compound 1 (0.2 mg). Fraction D (710.1 mg) was subjected to the normal-phase HPLC system with a mixture of n-hexane and ethyl acetate (85:15, 5 mL min$^{-1}$) to give nine subfractions (D1–9). D7 (18.2 mg) was further purified by the reverse-phase HPLC using a mixture solvent system of MeOH: H$_2$O (50:50, 5 mL min$^{-1}$) to obtain compounds 2 (0.3 mg) and 3 (11.6 mg).

4.4 Structural characterization of undescribed compounds

4.4.1 Pathyspiro lactone A (1). Amorphous powder; [a]$_D$ +185 (c 0.01, CHCl$_3$); IR (ATR) ν_max 3422, 1762, 1700 cm$^{-1}$; 1H (400 MHz, CDCl$_3$) and 13C (100 MHz, CDCl$_3$) NMR data (see Table 1); ESI-MS: m/z 277 [M + Na]$^+$; HRESIMS m/z 277.14129 (calcd for C$_{14}$H$_{22}$O$_4$ + Na, 277.14103).

4.4.2 Pathyspiro lactone B (2). Amorphous powder; [a]$_D$ +44 (c 0.01, CHCl$_3$); IR (ATR) ν_max 1777, 1712 cm$^{-1}$; 1H (400 MHz, CDCl$_3$) and 13C (100 MHz, CDCl$_3$) NMR data (see Table 1); ESI-MS: m/z 339 [M + Na]$^+$, 341 [M + 2 + Na]$^+$; HRESIMS m/z 339.05646 (calcd for C$_{14}$H$_{22}$BrO$_3$ + Na, 339.05663).

4.4.3 Napalilactone (3). Colorless crystal (CDCl$_3$); [a]$_D$ +46 (c 0.58, CHCl$_3$); 1H (400 MHz, CDCl$_3$) and 13C (100 MHz, CDCl$_3$) NMR spectra please see the ESI Fig. S25 and S26; ESI-MS: m/z 295 [M + Na]$^+$, 297 [M + 2 + Na]$^+$ (C$_{14}$H$_{22}$ClO$_3$ + Na).

4.5 Single-crystal X-ray crystallography of napalilactone (3)

Suitable colorless prisms of napalilactone (3) were obtained from CDCl$_3$. The crystal (0.599 × 0.512 × 0.081 mm3) was identified as being of the orthorhombic system, space group P2$_1$2$_1$2$_1$ (#19), with a = 8.2367(2) Å, b = 9.9002(3) Å, c = 17.2237(5) Å, $V = 1404.51(7)$ Å3, $Z = 4$, D_calc = 1.290 Mg m$^{-3}$, λ (Mo Kα) = 0.71073 Å. Intensity data were obtained on a crystal diffractometer (Bruker, model: D8 Venture) up to θ_max of 30.0°. All measurement data of 39 483 reflections were collected, of which 4100 were independent. The structure was solved by direct methods and refined by a full-matrix least-squares on the F2 procedure.23 The refined structural model converged to a final R$_1 = 0.0460$; wR$_2 = 0.1060$ for 3494 observed reflections [I > 2σ(I)] and 172 variable parameters; and the absolute configuration was determined from the Flack parameter x = $-0.04(4)$.18,19 Crystallographic data for the structure of napalilactone (3) were submitted to the Cambridge Crystallographic Data Center (CCDC) with supplementary publication number CCDC 2190441 (data can be obtained from the CCDC website at https://www.ccdc.cam.ac.uk/conts/retrieving.html).

4.6 In silico calculations

The structure was optimized the minimized energy in MM2 level and outputted as an xyz file. The file was submitted into...
spartan’16 software (Wavefunction Inc.; Irvine, CA, USA) at MMFF94 to generate conformational search results. The output data were imported into the Gaussian 09 software (Gaussian Inc.; Wallingford, CT, USA) and optimized using the time-dependent density functional theory (TDDFT) methodology at the B3LYP/6-31G* level in the gas phase, and at the B3LYP/6-31(d) levels in the solvent phase for SOR calculation, and the GIAO-DFT at the PCM/mprw91/6-311 + g(dp) level in the solvent phase for GIAO-NMR DP4+ analysis. All the computed results were averaged by the proportion of each solvent phase for GIAO-NMR DP4+ analysis. All the computed dependent density functional theory (TDDFT) methodology at the B3LYP/6-31G* level in the gas phase, and at the B3LYP/6-31(d) levels in the solvent phase for SOR calculation, and the GIAO-DFT at the PCM/mprw91/6-311 + g(dp) level in the solvent phase for GIAO-NMR DP4+ analysis. All the computed SOR and NMR results were averaged by the proportion of each conformer.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors are grateful to Hsiao-Ching Yu and Chao-Lien Ho of the High Valued Instrument Center, National Sun Yat-sen University, for obtaining the mass (MS000600) and NMR (NMR 001100) spectra (MOST 111-2731-M-110-001). This work was mainly funded by grants from the National Museum of Marine Biology and Aquarium and the National Science and Technology Council (MOST 109-2320-B-291-001-MY3 and 111-2320-B-291-001 (1/3)), Taiwan, awarded to P.-J. S. All funding is gratefully acknowledged.

Notes and references

21 C. F. Dai, Ocean Center, National Taiwan University, Taipei, Taiwan, 2021, pp. 436–437.Octocorallia Fauna of Taiwan.