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containing polymeric carbon
nitride for efficient photocatalytic H2 evolution and
RhB degradation under visible light irradiation†

Man Li,‡ Xin Bai, ‡ Xi Rao, Shaohui Zheng * and Yongping Zhang *

Introducing defects in polymeric carbon nitride (CN) in a predetermined way is a great challenge to

explicate the effect of defects on the photocatalytic activity. Herein, we provide a pathway to synthesize

g-C3N4 with nitrogen defects by simply calcining melamine and trithiocyanuric acid at elevated

temperature. Nitrogen defects at the N-bridging sites lead to an intermediate energy gap between the

valence band and the conduction band, which greatly increases the photon absorption in the visible light

range. Electron paramagnetic resonance (EPR) and photoluminescence (PL) verify that the significantly

improved light utilization efficiency and rapid charge transfer correlate with nitrogen defects. The

hydrogen evolution rate of 2SCN reached 41.4 mmol h�1, about 20.7 times that of pure g-C3N4, and its

degradation rate for rhodamine B (RhB) is about 2.5 times that of CN. The experimental results proved

that the photoinduced electron–hole pairs react with adsorbed O2 to form cO2
�, facilitating the

photodegradation of organic pollutants.
1. Introduction

Polymeric carbon nitride (g-C3N4), a direct band gap semi-
conductor with a two-dimensional graphene like structure, is
considered to be one of the most promising materials in pho-
tocatalytic pollutant degradation and photocatalytic hydrogen
evolution via water splitting due to its high stability, low cost,
non-toxicity, environmental friendliness and appropriate band
gap.1–3 However, some shortcomings, such as the small specic
surface area, high recombination rate of photogenerated
electrons/holes and low absorption efficiency of visible light,
restricted the pristine polymeric carbon nitride in photo-
catalytic application. Many perspectives were explored to
improve its photocatalytic activity, including element doping,4–6

forming semiconductor heterojunctions,7 engineering defects
in catalysts,8 and metal cluster loading.9

It has been proved that the construction of defects in g-C3N4

can promote the transmission of charge carriers, so as to
effectively enhance the photocatalytic activity. According to
previous studies, it is found that higher specic surface area can
be obtained aer strong acid treatment, which increases the
number of active sites.10,11 Recently, many workers found that
polymeric carbon nitride with defective structure can be
t University, Chongqing 400715, China.
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the Royal Society of Chemistry
obtained by treating the precursor of polymeric carbon nitride
with the weak reducibility of organic acid with weak acidity.12 It
can not only increase the specic surface area, but also produce
defects, which is conducive to the utilization of charge
carriers.13 According to different preparation methods, carbon
defects or nitrogen defects can be obtained,14,15 which will also
form a sub band gap, so as to greatly expand the optical
response and improve the survival elapse of photogenerated
carriers. Moreover, defects can induce greater specic surface
area and pore structure, increase light absorption area and
improve light absorption capacity,16,17 which are conducive to
photocatalytic reaction. At molecular scale, the defect origin
and site were not well established in those studies. Further
experimental and theoretical explorations were needed to
understand defect structure and its effect on photocatalytic
activity.

The crystallinity, degree of polymerization, defect formation
of C3N4 molecular structure exhibit profound effect on its
photocatalytic performance. Our recent study revealed that
nitrogen defects in polymeric carbon nitride molecules by
cutting the network nodes is the main factor to enhance the
photocatalytic performance, besides the crystallinity and poly-
merization degree.18 Some literature reported that nano-
structured and S-doping g-C3N4 catalysts were prepared with
similar co-polymerization method by calcining melamine and
trithiocyanuric acid, and ascribed the enhanced photocatalytic
performance to synergetic effect of extended light absorption
and more catalytic sites.19–21 However, the detailed molecular
structure of g-C3N4 remained unexplored. How to isolate the
solitary defect factor and study its effect on photocatalytic
RSC Adv., 2022, 12, 24713–24723 | 24713
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Scheme 1 Schematic illustration of g-C3N4 structure.
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activity is especially important for understanding the mecha-
nism of defects. There exist two kind of sp3 tertiary N–[C]3
nitrogen vacancies, inner N-bridge vacancies characterized
the N defects and edge N-bridge vacancies increased the amino
group C–NHx, as shown in Scheme 1. We proposed a pathway to
introduce nitrogen vacancy in the sp3 N–[C]3 linkage by
calcining melamine and trithiocyanuric acid, in order to clarify
the effect of nitrogen defect on the photocatalytic enhancement.

In this work, a series of g-C3N4 with nitrogen defects and
pore structure were prepared by simple thermal condensation
of melamine and trithiocyanuric acid. Due to the increase of
reaction active sites and abundant defect structures, the pho-
tocatalytic activity of the samples has been greatly improved.

2. Experimental details
2.1 Reagents

Melamine (C3H6N6, 99%), and trithiocyanuric acid (C3H3N3S3,
95%) were purchased from Sinopharm Chemical Reagent Co.
Ltd. All chemicals were analytical grade and used without
further purication. Deionized water was used throughout this
study.

2.2 Catalyst preparation

0.01molmelamine and different amount of trithiocyanuric acid
(0.0075 mol, 0.01 mol, 0.0125 mol) were dissolved in 60 ml
deionized water under ultrasonic stirring for 12 h, then dried in
an oven at 60 �C for 3 h. The dried precipitates were heated at
600 �C for 2 h in a tubular furnace at N2 environment, with
a ramp rate of 3 �C min�1, respectively. Accordingly, the cata-
lysts were denoted as 1SCN, 2SCN and 3SCN for trithiocyanuric
acid of 0.0075 mol, 0.01 mol, and 0.0125 mol, respectively.
0.01 mol melamine was heated at 600 �C for 2 h through
a similar process without adding trithiocyanuric acid to obtain
the pure g-C3N4, denoted as CN.

2.3 Characterization

Morphologies and structures were observed using a thermal eld
emission scanning electron microscope (FESEM, JSM-7800F),
24714 | RSC Adv., 2022, 12, 24713–24723
transmission electron microscope (TEM, Zeiss Libra 200FE),
and X-ray diffraction (XRD, Shimadzu XRD7000) with Cu Ka as
radiation source (l ¼ 1.5418 Å). The vibration state of chemical
states were measured by Fourier transform infrared spectroscopy
(FTIR, Model Frontier), X-ray photoelectron spectroscopy (XPS,
VG ESCALAB 250Xi) with radiation source of Al Ka (hn ¼ 1486.8
eV). The UV-vis diffuse reectance spectra were performed on an
Agilent Cary 5000 UV-vis NIR system with 100% BaSO4 as the
reection sample. The photoluminescence (PL) spectra were
recorded on a Hitachi F-7000 spectrophotometer with a 150 W
xenon light as the excitation source. N2 adsorption–desorption
isotherms were carried out on a Quadrasorbevo 2QDS-MP-30
specic surface area tester (BET, Quadrasorbevo 2QDS-MP-30).
The transient photocurrent response curve (I–t), Mott–Schottky
curve, electrochemical impedance spectroscopy (EIS) were per-
formed using AUTOLAB (model PGSTAT302N) electrochemical
workstation. A 500 W xenon lamp was used as the light source,
and 0.25 M Na2SO4 solution as the electrolyte. Free radical trap-
ping experiments were carried out on electron paramagnetic
resonance (EPR) spectrometer (Bruke, EMXnano) with 420 nm
LED as excitation source.
2.4 Photocatalytic hydrogen evolution

The photocatalytic hydrogen evolution evaluation was carried out
in a photocatalysis evaluation system (Suncat Instrument, Bei-
jing). The 500 W Xe lamp (zolix, gloria-x500a) with intensity of
110 mW cm�2 was used as the simulated solar light with
a wavelength l $ 420 nm. The reactor was maintained at 20 �C
with an external circulation cooling system. 10 mg photocatalyst
was dispersed in 30 ml aqueous solution with 17 vol% trietha-
nolamine (TEOA) as sacricing agent and 3 wt% Pt ion (H2PtCl6
H2O) as co-catalyst. Before turning on the light, the reactor is
pumped to a high vacuum of 10�8 torr, and then lled with
argon. Under the light irradiation process, the reaction suspen-
sion is stirred continuously. 1 ml of gas was extracted automat-
ically from the reactor at interval of 30 min, and analyzed with
a gas chromatograph (GC-2018, Shimadzu) with TDX-01 molec-
ular sieve, thermal conductivity detector and Ar carrier gas.
2.5 Photocatalytic removal of rhodamine B (RhB)

10 mg photocatalyst was dispersed in 60 ml rhodamine B
aqueous solution (25 mg L�1). The light source was a 300 W
HSX-F300 xenon lamp. The solution was kept in the dark for
30 min to reach the adsorption equilibrium. Then the solution
was exposed to visible light for degradation. At 3 min interval,
1 ml suspension was taken out and centrifuged, and measured
the characteristic UV-vis absorption spectra. The maximum
absorption peak was recorded and used to evaluate the
concentration of RhB. The degradation rate of RhB aqueous
solution at time t can be calculated by the following formula:

Degradation rate ¼ (1 � Ct/C0) � 100%

where C0 is the adsorption–desorption equilibrium concentra-
tion of RhB, and Ct is the RhB concentration at irradiation time t.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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3. Results and discussion

Catalysts 1SCN, 2SCN, and 3SCN presents a similar XRD
patterns as CN, shown in Fig. 1 (a), in which the strong peak at
27.3� is attributed to the (002) diffraction plane of the inter-
planar stacking of conjugated aromatic units, and the weak
(100) at 13.1� is associated with the in-plane repeated motif of
the tri-s-triazine ring.22–25 Detailed analyses revealed the inten-
sity of the (002) diffraction peaks for SCN decreases dramati-
cally compared to CN with introducing nitrogen defects and S
doped g-C3N4, which indicates that introducing certain amount
of nitrogen defects reduces the compactness of repeating layers.
EPR signals in Fig. 1(b) showed the obvious symmetrical peak
with g ¼ 2.0038, characterizing the density of nitrogen defects.
The weak signal for pure CN is caused by the unpaired C atom
in the aromatic heterocycles in g-C3N4.26 As for SCN, the signal
for unpaired electronic augments drastically, indicating the
increase nitrogen defects. With the increase of ratio of trithio-
cyanuric acid, the nitrogen defect content increases accord-
ingly, then reaches a plateau at certain point, further increase
the defects means more missing the edge N-bridge atoms, thus
explains that 2SCN has highest defects density. N2 adsorption–
desorption isotherms in Fig. 1(c) depicted that all catalysts
exhibit a typical type IV isotherm with a H3 hysteresis loop,
indicating the presence of mesopores.27 The specic surface
area is 23.2 m2 g�1, 65.3 m2 g�1, 70.8 m2 g�1, and 54.6 m2 g�1,
for CN, 1SCN, 2SCN, and 3SCN, respectively. That indicates that
the introducing nitrogen defects have a signicant effect on the
specic surface area of the samples, and 2SCN with highest
specic surface area among all samples. The total pore volume
is 0.16m3 g�1, 0.32 m3 g�1, 0.38 m3 g�1, and 0.22m3 g�1, for CN,
Fig. 1 XRD patterns (a), EPR spectra (b) BET isotherms (c) and pore size

© 2022 The Author(s). Published by the Royal Society of Chemistry
1SCN, 2SCN, and 3SCN, respectively. The corresponding mes-
oporous distribution of the sample is shown in Fig. 1(d). The
mesoporous size is mainly distributed in the range of 2–6 nm.
The mesoporous distribution on the material surface helps to
increase the specic surface area of the material and enhance
the photocatalytic activity. The presence of mesopores favors
multiple light scattering/reection, resulting in enhanced har-
vesting of the exciting light and thus improved photocatalytic
activity.28

SEM images in Fig. 2(a) showed that the pure g-C3N4

appeared as the stacked bulk structures. SCN appeared as
irregular nanorods with length of around 5 mm and diameter
around several hundred micrometers. There existed many
microporous features and small cracks, the density of micro-
cracks and pores on the surface of the samples increase, as
shown in Fig. 2(b–d). That is consistent with the BET data.

XPS survey spectra in Fig. 3(a) showed there exist the C 1s,
and N 1s signals, and the signal for S is almost illegible. XPS N
1s spectra in Fig. 3(b) could be tted into three peaks with
binding energy at 398.5 eV, 399.7 eV, 400.8 eV, corresponding to
sp2 aromatic N atoms in aromatic tri-s-triazine C–N skeleton
(N1, C–N]C), sp3 hybrid tertiary amine N atoms (N2, N–[C]3),
amino functional groups at the edge of the aromatic ring plane
(N3, C–NHx).29–32 XPS S 2p spectra in Fig. 3(c) showed the S
atoms mainly exist in one state with binding energy of 163.1 eV,
corresponding to the C–S bond formed by substituting N atom
in the aromatic tri-s-triazine. The S atomic ratio remains rela-
tively low for samples 1SCN, 2SCN, and 3SCN, indicating only
fractional S atoms were doped in g-C3N4. There exist two kind of
sp3 tertiary N–[C]3 nitrogen vacancies, inner N-bridge vacancies
characterized the N defects and edge N-bridge vacancies
distribution (d) of CN and SCN at different nitrogen defects.

RSC Adv., 2022, 12, 24713–24723 | 24715
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Fig. 2 SEM images of CN (a), 1SCN (b), 2SCN (c), and 3SCN (d).
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increased the amino group C–NHx. The percentage of N-
containing species is listed in Table 1. With the increase of
trithiocyanuric acid, the percentage of N atoms in amino groups
(N3, C–NHx) increases gradually, and the ratio of N–[C]3
nitrogen decreases accordingly. The percentage of the bridging
tertiary N atoms (N2, N–[C]3) decrease, indicating some
tertiary N atoms are missing to form nitrogen defects located at
the tertiary nitrogen lattice sites.18 The inner N-bridge vacancies
are related to the N defects, and formation of edge N-bridge
vacancies induces the additional NHx group. That explains
why 2SCN has highest content of N defects observed in EPR
spectra.

The transient photocurrent response curve in Fig. 4(a) shows
that the photocurrent response of S-doped g-C3N4 increases
Fig. 3 XPS core level survey spectra (a), and high-resolution N 1s (b), an

24716 | RSC Adv., 2022, 12, 24713–24723
according the trend of nitrogen defect density.33–35 All samples
can respond continuously and stabilizedly under the same
continuous bias voltage, with 2SCN exhibits the highest
photocurrent responses. Fig. 4(b) shows the PL spectrum of the
sample at the excitation wavelength of 373 nm. Obviously, the
pure phase CN has a strong emission peak near 442 nm. The PL
intensity of SCN samples is much lower than that of the pure
phase CN. With the increase of N defects, the PL intensity of the
sample becomes weaker, and the uorescence quenching of
2SCN is the most obvious.36,37 EIS in Fig. 4(c) showed that the
order of arc radius is 2SCN < 3SCN < 1SCN < CN, which proves
that themigration rate of surface migration rate of SCN samples
becomes faster with the increase of defect content. The results
show that the separation efficiency of photogenerated carriers
d S 2p (c) of the samples.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The component ratios of the N 1s spectra for different
samples

Samples Binding energy (eV) Peak assignment Atomic percentage

CN 398.3 C–N]C (sp2) 76.14
399.4 N–[C]3 (sp

3) 13.43
400.7 C–NHX 10.43

1SCN 398.4 C–N]C (sp2) 76.18
399.7 N–[C]3 (sp

3) 12.97
400.8 C–NHX 10.85

2SCN 398.5 C–N]C (sp2) 76.11
399.7 N–[C]3 (sp

3) 12.86
400.8 C–NHX 11.03

3SCN 398.5 C–N]C (sp2) 76.14
399.8 N–[C]3 (sp

3) 12.77
400.9 C–NHX 11.09
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of the sample has been signicantly improved.35 The above
results conrm that the introduction of nitrogen defects
enhances the electron hole separation efficiency, reduces the
charge transfer resistance, improves the stability of charge
carriers and enhances the photocurrent density.38

As shown in Fig. 5(a), light harvest intensity at visible light
range follows the sequence: 2SCN > 1SCN > 3SCN > CN. Samples
with nitrogen defects exhibit strong absorption and extended
visible light absorption with wide shoulder tail, denoted as
Urbach tail.39,40 The Urbach tail is attributed to the electronic
states located within the band gap, known as midgap states.18

According to the Kubelka–Munk function plot shown in
Fig. 5(b), the intrinsic band gap value is 2.75 eV for all samples.
That means that introduction of N defects increased the visible
light absorption, with the intrinsic electronic structure less
affected. Mott–Schottky plots in Fig. 5(c) showed that the slopes
of the tted curves of all samples are positive, indicating that
the samples are n-type semiconductors.40 The at band poten-
tial vs. Ag/AgCl is �0.82 eV, �1.01 eV, �1.10 eV and �1.18 eV,
for CN, 1SCN, 2SCN, and 3SCN, respectively. Then the VB
(valence band) and CB (conduction band) position is calculated
by adding CB potential with band gap. The midgap is 2.18 eV,
2.10 eV, and 2.01 eV, for 3SCN, 1SCN, and 2SCN, respectively, by
the Kubelk-Munk method in Fig. 5(b). The energy band struc-
ture of all samples was illustrated in Fig. 5(d). As the midgap
states are close to the edge of CB, the electrons can be more
Fig. 4 Transient photocurrent responses (a), PL spectra (b), and EIS (c) o

© 2022 The Author(s). Published by the Royal Society of Chemistry
easily excited from VB to midgap states. Nitrogen defects in g-
C3N4 induced the formation of deeper midgap states to
accommodate more charge carriers excited by photons of longer
wavelengths, consistent with UV-vis results.

Fig. 6(a) shows the hydrogen evolution rate of pure g-C3N4 is
2.0 mmol h�1 under visible light irradiation (l$ 420 nm). While
the hydrogen evolution rate of 2SCN reached 41.4 mmol h�1,
about 20.7 times of that of pure g-C3N4. The average quantum
efficiency of 2SCN reaches 11.1%, while the average quantum
efficiency of pure g-C3N4 is only 0.3%. It demonstrates that the
introduction of nitrogen defects can greatly improve the pho-
tocatalytic performance of the catalysts. In order to verify the
stability of the sample, the 2SCN was cycled under the same
experimental conditions as shown in Fig. 6(b). Aer four cycles,
the hydrogen evolution performance of the sample did not
change, which proved that the photocatalysis of the sample was
stable and could be reused.

Fig. 7 (a) showed the photocatalytic degradation of RhB of
the catalysts under visible light irradiation (l $ 420 nm). The
photocatalytic degradation rate reaches 45%, 90%, 97%, and
87% in 18minutes, for CN, 1SCN, 2SCN, and 3SCN, respectively.
The degradation rate of 2SCN is about 2.5 times of that of CN. In
order to verify the stability of its degradation activity, the cata-
lyst of 2SCN was tested repeatedly for four times. Our results
were comparable to that of MoS2.41 As shown in Fig. 7(b), the
photocatalytic activity of the sample was still stable aer four
cycles of testing, indicating that the catalyst had stable physical
and chemical properties.

The degradation rate did not change obviously by adding
tert-butyl alcohol (t-BuOH) and methanol (MeOH), as shown in
Fig. 8(a), which indicated hydroxyl radicals and holes are not
the reactants for the degradation of RhB. While the photo-
catalytic reactions were inhibited dramatically by adding ben-
zoquinone (BQ), indicating the radical superoxide (cO2

�) is the
active radicals in the RhB degradation process. DMPO (5,5-
dimethyl-1-pyrrole N-oxide) was used as a free radical trapping
agent in electron paramagnetic resonance (EPR) analysis to
detect free radical intermediates (cOH and cO2

�) generated
under specic potential. Upon visible light irradiation, 2SCN in
the methanol dispersion system showed obvious 1 : 1 : 1 : 1
peaks corresponding to cO2

� and no signals corresponding to
cOH were observed, as shown in Fig. 8(b). The experimental
f the samples.

RSC Adv., 2022, 12, 24713–24723 | 24717
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Fig. 5 UV-vis diffuse reflectance spectra (a), converted Kubelka–Munk plots (b), Mott–Schottky plots (c), and Schematic band gap structures (d)
of the samples.

Fig. 6 Hydrogen evolution (a) of the samples under visible light irradiation. (b) Stability of SCN600.

Fig. 7 Photocatalytic degradation of RhB (a) under visible light irradiation. (b) Stability of 2SCN.

24718 | RSC Adv., 2022, 12, 24713–24723 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Degradation rate of 2SCN in the presence of various scavengers (a). EPR spectra in a methanol dispersion for DMPO-cO2
� and in an

aqueous dispersion for DMPO-cOH (b).
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results proved that the photoinduced electron–hole pairs react
with adsorbed O2 to form cO2

�.42

Experimental results veried that nitrogen defects were
introduced in g-C3N4, and a trace amount of S atoms were
doped as well, which improved the transfer and separation of
photoinduced carriers and photocatalytic activity. Further
theoretical calculations were performed to understand the
effects of N defects and S doping on the electronic structure and
catalytic performance of g-C3N4. The pure g-C3N4, N-defected g-
Fig. 9 Front and side view of optimized structures of pure (left), N-defec
of three molecules. The molecular flatness parameter (MPP) is the root m
plane. The structure (iso-value of 0.001 a.u.) obtained at the B3LYP/6-3

© 2022 The Author(s). Published by the Royal Society of Chemistry
C3N4, and SCN were built up by using GaussView Rev 5.0.8,43 as
shown in Fig. 9(a). Gaussian 09 Rev E.01 soware package44

were selected to perform structural optimization and obtain
frontier molecular orbitals including the highest occupied
molecular orbital and lowest unoccupied molecular orbital
(HOMO/LUMO). All calculations were at the B3LYP/6-31G*
theoretical level.45,46 Meanwhile, we used the Multiwfn Rev 3.7
soware package45 to gain molecular planarity, the van der
Waals volume and surface area. Obviously, as shown in
ted (middle), and SCN (right); (b) quantitative measurement of planarity
ean square deviation of the individual atomic distances from the fitted
1G* level.
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Table 2 The molecule volume, surface area, and molecular specific
surface area of the three molecules

g-C3N4

N-defected
g-C3N4 SCN

Molecule volume (Å3) 1678.03 1705.80 1719.66
Molecule surface area (Å2) 1314.10 1393.87 1400.70
Specic surface area (m2 g�1) 4109.55 4384.06 4364.50
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Fig. 9(b), the N defects and S doping make the planarity of the
structures worse, increasing the molecular atness parameter
(MPP) by introducing N defects. Furthermore, to explain the
performance of catalysis of these compounds, the van derWaals
volume and surface area, and molecule specic surface area
(SSA) were calculated and presented in Table 2 and Fig. S1.† The
order of molecular volume and surface area is pure g-C3N4 < N-
defected g-C3N4 < SCN. However, due to the smaller molecular
mass, the order of SSA of these compounds is pure g-C3N4 < SCN
< N-defected g-C3N4. Not surprisingly, all these compounds
have very large SSAs (>4100 m2 g�1), which are larger than that
of pure g-C3N4.

Next, Fig. S2† demonstrates the maps of density of states of
all three compounds. Clearly, the valence bands of both pure g-
C3N4, N-defected g-C3N4, and SCN are mainly composed of
Fig. 10 HOMO, LUMO, and gap energy of pure (a), N defected (b), and SC
color of codes: C atom-gray, N atom-blue, and S atom-yellow.

24720 | RSC Adv., 2022, 12, 24713–24723
atomic orbitals of N atoms. And the conduction bands of both
pure g-C3N4 and N-defected g-C3N4 are contributed by atomic
orbitals of C + N atoms, and that of S-doped g-C3N4 with N
defection consists of the atomic orbitals of C + N + S atoms.
Remarkably, the HOMO energy of SCN is much higher than
both of other two compounds.

The HOMO and LUMO images and energy gaps of three
compounds are given in Fig. 10. In Fig. 10(a), the HOMO (holes
aer photoexcitation) map of pure g-C3N4 indicates that the
central C and N atoms provide oxygen oxidation sites, while the
LUMO (excited electrons aer photoexcitation) shows that the
edge C and N atoms are the reduction sites for H2. Fig. 10(b)
displays that the N defections in g-C3N4 changes the positions
of oxidation and reduction sites, which are opposite to those of
pure g-C3N4. Fig. 10(c) shows that the combination of N defec-
tions and S introductions cause in a clear separation of HOMO
and LUMO. Compared to pure g-C3N4, its carrier mobility
becomes faster with the longer separation of HOMO (holes) and
LUMO (electrons). The band gaps of pure, N-defective, and SCN
are 3.53 eV, 3.50 eV, and 1.06 eV, respectively. The band gap of
N-defective g-C3N4 is slightly reduced compared to that of pure
g-C3N4, and the electron potential well caused by N defects is
conducive to electron capture and inhibits electron–hole
recombination.
N (c) obtained at B3LYP/6-31G* theory level (iso-value of 0.03 a.u.). The

© 2022 The Author(s). Published by the Royal Society of Chemistry
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4. Conclusions

In summary, graphite carbon nitride with certain amount of
nitrogen defects was synthesize by calcining melamine and
thiocyanate acid at different temperatures. For SCN, the
percentage of N–[C]3 decreases and the percentage of –NH2

increases with increase the ratio of thiocyanate acid, resulting
in the formation of nitrogen defects in inner S–[C]3 linkage. The
nitrogen defects induced the midgap states, which provides
capture sites for photogenerated carriers, thus effectively pre-
venting the recombination of photogenerated electrons and
holes. Therefore, the quantum efficiency of the photocatalyst
with nitrogen defect has been greatly improved. DFT modula-
tions veried that N-defective g-C3N4 has a slightly reduced
band gap compared to that of pure g-C3N4, and deteriorated
molecular atness and increased specic surface area caused
by N defects is conducive to electron capture and inhibits
electron–hole recombination, thus enhanced the photocatalytic
activity of g-C3N4.
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