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One-pot thiol-free synthetic approach to sulfides,
and sulfoxides selectivelyy

Sambasivarao Kotha, & * Naveen Kumar Gupta and Saima Ansari

A facile and efficient thiol-free one-pot method for direct synthesis of sulfides and sulfoxides under green
conditions without using any metal catalyst is reported. For this purpose, we used benzyl bromides as
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starting materials in the presence of potassium thioacetate (PTA) and Oxone® which are low-cost, and

readily accessible chemicals. This method is highly compatible with a variety of functional groups and
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Introduction

Organosulfur compounds constitute a significant part of
organic synthesis' because they are useful in medicinal chem-
istry,> materials science,® and natural product syntheses.* Thi-
oethers (sulfides) have found attractive applications in the
pharma industry.® For example, Montelukast (Singulair) is
a drug prescribed for allergies and asthma.® Ranitidine is a well-
known drug utilized in histamine-2 blockers’ (Fig. 1). Addi-
tionally, benzyl sulfides are used as near infra-red (NIR) fluo-
rescent probes for targeted cancer imaging.® Given the
versatility in the utilization of organosulfur compounds,
searching for a better and more sustainable synthetic method
seems like a necessity.

A common strategy to prepare organosulfur compounds,
especially sulphides, is to use thiols as starting materials.® The
synthesis of sulfides from thiols is promoted by the ease of their
availability and high reactivity.® However, thiols often restrict
the direct synthesis of desired sulfides due to inherent disad-
vantages such as awfully irritating smell and side effects con-
cerning health."

Our group has been engaged in the design of organosulfur
compounds using a green reagent such as rongalite."> Some of
these sulfur compounds are reported as useful synthons in C-C
bond formation and metathesis.'* Generally, thioacetate anions
are reacted with halides or alcohol derivatives to prepare thio-
acetates™ which are purified first. Then, in the next step, the
thioacetates are converted to thiols.*® Afterwards, the thiols are
transformed further to desired unsymmetrical sulfides.” We
questioned whether an easier, shorter, and odorless protocol
can be realized for the preparation of sulfides. Gratifyingly, here

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai
400076, India. E-mail: srk@chem.iith.ac.in

T Electronic supplementary information (ESI) available. CCDC 2168016 and
2168017. For ESI and crystallographic data in CIF or other electronic format see
https://doi.org/10.1039/d2ra04872h

25154 | RSC Adv, 2022, 12, 25154-25162

delivered a series of sulfides, bis-sulfides, and sulfoxides in good yields. The selective formation of
sulfoxides over sulfones is discussed via a mechanism.

we present a synthetic strategy that combines the aforemen-
tioned three steps in one-pot. Our methodology converts benzyl
halides into unsymmetrical sulfides via a one-pot operation.
This strategy avoids the formation of byproducts, usage of
transition metal catalysts, and toxic solvents. The reaction time
is short and the purification is docile. The substrate scope is
quite large and the yields are good to excellent. The advantages
of this methodology are; avoiding the usage of thiols hence
environmentally benign, reducing the number of steps in
overall sequence, and employing inexpensive reagents. A library
of benzyl sulfides is easily prepared with this strategy.

Several odorless reagents such as Na,S, rongalite, NaHS,
KSCN, potassium ethylxanthate, and potassium thioacetate are
available for the preparation of sulfur-based compounds. By
utilizing sodium sulfide/rongalite, only symmetrical sulfides®/
sulfones'” are prepared from halides and these reagents are
further explored.”® Sodium hydrosulfide (NaHS), highly hygro-
scopic and difficult to handle, is a source for HS™ which leads to
the formation of thiols and hence adding one more step
towards preparing sulfides.' KSCN leads to thiocyanate
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Fig.1 Representative biologically active organosulfur compounds.
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products as well as isothiocyanate products.”® Potassium ethyl
xanthate leads to sulfides in two steps under heating conditions
and several byproducts were observed as reported by Fochi
et al.>* Therefore, in light of these limitations, we have chosen
potassium thioacetate as our reagent due to its capacity of
preparing versatile sulfides without involving thiols in a single-
pot at room temperature as explored in this manuscript.

Seminal existing pathways for sulfide preparation involving
benzyl and alkenyl/alkyl moieties are presented in Fig. 2.7%** It
is observed from the literature that synthetic strategies for
Csp>-S-Csp* type of sulfides/sulfoxides are much less explored
as compared to Csp>-S-Csp® and Csp>-S-Csp® sulfides®/sulf-
oxides** despite having significant applications (Fig. 1). Our
work focuses on the less explored area of unsymmetrical Csp®-
S-Csp® hybridized organosulfur derivatives. The main theme of
our strategy involves a one-pot operation and thus avoiding
three steps used for converting bromides to sulfides through
thioacetates and thiols. Instead, we directly obtain diverse
sulfides from halides via a straightforward route in benign
solvents such as methanol or water. The application of our
method is demonstrated by preparing sulfide derivatives con-
taining the core units of biologically active compounds and to
our delight, the unsymmetrical sulfides were obtained in good
yields.

Other classes of organosulfur compounds include sulfoxides
and sulfones. Sulfoxides, along with their biological applica-
tions,* are useful as catalysts and chiral ligands in asymmetric
syntheses,*® and hence preparation of sulfoxides is an equally
attractive task. Sulfoxides have been prepared extensively from
sulfides® and control is needed to avoid the formation of
sulfone.”® To the best of our knowledge, no report is available
where halides are directly converted into unsymmetrical Csp®-
S-Csp® hybridized sulfoxides in a single-pot without involving
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Fig. 2 General overview of the preparation of organosulfur
compounds (sulfide, sulfoxide, and sulfone).
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thiols and avoiding four steps of isolation and purification. To
this end, the latter part of this article deals with the expansion
of our procedure towards the selective preparation of sulfoxides
instead of sulfones* from halides by aqueous Oxone® in the
same pot.

Results and discussion
Reaction development and optimization

To realize the one-pot strategy shown in Fig. 2, benzyl bromide
was reacted with potassium thioacetate (PTA) in methanol. The
reaction proceeds via Sx2 type of substitution with thioacetate
at the benzylic position. After 2 h, potassium carbonate was
added to the same reaction mixture to deprotect -COCH; group
and generate sulfide (S7) nucleophile. Then, sp® hybridized
primary electrophile (R-CH,-X) was added to this reaction
mixture and delivered the desired product. Table 1 summarizes
the optimization details with respect to the amount of base and
solvent used for the conversion of 1 into 2. As we increased the
equiv. of the base, we observed a drastic increase in the yield
and up to 3 equiv. of potassium carbonate is required (Table 1,
entries 1-5) to get maximum yield.

If the addition of halide is exempted after transferring K,CO;
in the reaction pot, then, compound 3 is obtained as a sole
product. We also found that non-polar and aprotic solvents
such as dichloroethane, dichloromethane, toluene, and diethyl
ether are not suitable.

Table 1 Optimization table for the preparation of sulfide 2¢

Br

PTA, MeOH rt, 2h
then K;CO:, 10 min.
\/\Br

&oo

S. no. Solvent K,CO; (equiv.) Time (h) Yield” (%) (2/3)
1 MeOH 1 16 25/55
2 MeOH 1.5 12 37/42
3 MeOH 2 8 50/26
4 MeOH 2.5 8 68/09
5 MeOH 3.0 3 78/00
6 MeOH : H,O (1:1) 3.0 10 61/14
7 H,0 3.0 10 65/12

¢ Reaction conditions: compound 1 (0.87 mmol, 1 equiv.), PTA
(0.87 mmol, 1 equiv.), MeOH (10 ml), K,CO; (2.61 mmol, 3 equiv.),
allylbromide (0.87 mmol 1 equiv.) All reactions are performed at

room temperature. ° Isolated yield.
Br S\R3
PTA, MeOH, rt, 2h s
then K,COs, 10 min. +
R¥—Br. M. 5h
1 3,78% 4
Observed Expected

RS = sp? hybridized, sp® hybridized secondary and tertiary electrophiles

Scheme 1 Attempts to prepare unsymmetrical sulfide 4.
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Alternatively, another polar protic solvent i.e. water was
tested to check the feasibility of the reaction. The reaction is
facile in MeOH : water (1 : 1) combination as well as in water
(Table 1, entry 6 and 7). However, the addition of water led to
a slight reduction in the overall yield of the reaction as
compared to the other optimized conditions (Table 1, entry 7).

Later on, we attempted sp> hybridized, and sp® hybridized

sulfide derivatives.

View Article Online

compound 4. In each case, we failed to detect the expected
sulfide 4. Instead, we observed a common product 3 in good
yield. The possibility of secondary nucleophilic substitution
reaction at a less hindered sp® hybridized center leads to the
formation of unsymmetrical sulfide 4 (Scheme 1). So, it was
concluded that this one-pot methodology is useful with reactive
electrophiles such as primary alkyl halide to generate various

secondary and tertiary electrophiles to deliver the desired
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Scheme 2 Synthesis of unsymmetrical sulfides containing unsaturated and saturated aliphatic side chains. Reaction conditions: compound 1
(0.87 mmol, 1 equiv.), PTA (0.87 mmol, 1 equiv.), MeOH (10 ml), K,COs (2.61 mmol, 3 equiv.), R'=CH,~Br (0.87 mmol, 1 equiv.). All reactions are

performed at room temperature.
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Substrate scope

Having identified the optimal reaction conditions, the attention
was turned towards establishing the generality of this trans-
formation. To this end, benzyl bromide was reacted with several
unsaturated halides and to our delight, the desired unsymmet-
rical sulfides were obtained in good to excellent yields. Notice-
ably, the aliphatic chain length of the halide has an inverse
relationship with respect to the yield. As the number of methy-
lene units (-CH,) increases in the electrophile, a slight decrease
in the yield was observed. After the preparation of unsymmetrical
sulfides containing unsaturated aliphatic side chains, the atten-
tion was shifted towards the synthesis of unsymmetrical sulfides
containing saturated alkane side chains. In this regard, various
substituted benzyl bromides were treated with alkyl bromides of
varying chain lengths to prepare unsymmetrical sulfides con-
taining benzylic and aliphatic moieties (Scheme 2).

During the expansion of substrate scope, we observed that
unsubstituted aromatic systems gave higher yields of the desired
sulfides as compared to substituted aromatic systems (-EWG and
-EDG). Additionally, we observed better yields when -Br is
present in the benzylic system at different positions like ortho-,
meta-, and para-positions, on the same sequence. Further, we
also noticed slightly lower yields due to the presence of the -m
effect group present in the aromatic system (-CHO, -CN group).
In conclusion, the presence of an electron donating group in the
benzylic system enhances the nucleophilicity of the sulfide ion,
and hence favors relatively higher yields, whereas the presence of
an electron withdrawing group decreases the nucleophilicity of
sulfide ion and as a result, a slight reduction in the yields was
observed. To study the role of chain length on the yields of
sulfides, we kept the benzylic system constant and treated it with
alkyl bromides of different chain lengths. We found that no
drastic change in the final yields of the sulfides 9 was observed.
Evidently, a slight decrease in the yields was observed as we go
lower to higher carbon chains of the electrophiles. It is worth
mentioning that if the series of sulfides 6b-6h would have been
prepared from thiols, the required thiol would be 3-methyl-2-
butene-1-thiol which has a skunky beer smell.*® This reason
may be attributed to why these sulfides, nonetheless quite
simple, have not been prepared before. The efficacy of this
methodology is realized in the easy retrieval of such sulfides
without utilizing smelly thiols (Scheme 2).

Afterward, we tried a similar strategy with benzylic systems as
electrophiles and prepared symmetrical (15a-f) and unsymmet-
rical (16-18) sulfides containing dibenzylic moieties in good
yields (Scheme 3). Higher yields were observed here as compared
to when aliphatic systems as electrophiles were employed for the
preparation of sulfides (Scheme 2). Next, we turned towards the
preparation of bisbenzylthio systems. In this regard, several
dibromides were successfully converted into bis(benzylthio)
derivatives (19-24) in good to excellent yields (Scheme 4). The
single-crystal structures for 20a and 21b are presented in Fig. 3.

Sulfoxide preparation

To prepare sulfoxide and sulfone derivatives via a single-pot
operation starting with benzyl bromide 1, we tried the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 Synthesis of symmetrical and unsymmetrical sulfides
containing aromatic rings. Reaction conditions: compound 1
(0.87 mmol, 1 equiv.), PTA (0.87 mmol, 1 equiv.), MeOH (10 ml), K,COs
(2.61 mmol, 3 equiv.), R/R>*~CH,~Br (0.87 mmol, 1 equiv.). All reactions
are performed at room temperature.

oxidation sequence with Oxone® (Scheme 5). In this regard, we
used Oxone® in water and after careful monitoring of the
reaction mixture by thin-layer chromatography and by NMR
data, we found the selective formation of sulfoxides in a one-pot
operation. By using different equivalents of Oxone® (0.5 to 1.5
equiv.), we noticed a mixture of compounds 2, 25 (trace
amount), and 26a were formed. By increasing the equivalents of
Oxone® from 1.5 to 2.2 equiv., the formation of compound 26a
was increased and complete conversion of sulfide into sulfoxide
26a was noticed. Earlier reports®®* state that if the equivalent of
Oxone® used is more than 1.5, then conversion to sulfone
predominates however, in our case, even if Oxone® content was
increased up to 3.0 equiv. sulfoxide was the only product ob-
tained. This study led us to the conclusion that a controlled and
easy one-pot reaction selectively provides sulfoxides as a major
product directly from halides. In contrast, when we isolated and
purified the sulfide 2, then subjected to oxidation with Oxone®
(3 equiv.) in water : methanol (1 : 1), sulfone 25 was found to be
the major product (Scheme 5).

Substrate scope of sulfoxides

Having optimized the conditions to prepare sulfoxide in one-
pot, we explored the substrate scope and studied other sulfox-
ides. Fortunately, we obtained diverse sulfoxides starting from
benzyl bromides in a single step. Various unsymmetrical sulf-
oxides (26-33) prepared are included in Scheme 6. Benzyl sulf-
oxides (32 and 33) were obtained in good to excellent yields. A
similar trend like sulfides was observed with respect to yield as
discussed previously (Scheme 2).
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Allenes are useful synthons for several critical trans-
formations.** Therefore, the preparation of such sulfoxides is
a worthwhile exercise. There are reports which deal with sulfide
allenyl derivatives.** However, sulfoxide allenyl derivatives are quite
limited and were prepared via a multi-step synthetic protocol.*
With this methodology, they are prepared quite easily. Allenyl
sulfoxides were observed when the propargyl bromides were used
as electrophiles. The expected sulfoxides 28 and 29 having prop-
argyl group as a side chain were only isolated as minor products

/@As/\%\/ s \/©/ Br when the aromatic ring in benzyl bromide was substituted with a -
Br Br and -CN group at para-position respectively (Scheme 6).

Mechanistic studies

20a CCDC No. 2168016

Later on, we were concerned about the mechanism of sulfoxide
formation instead of sulfone (Scheme 7) even if the equivalents
of Oxone® were increased from the reported methods.””* In the
first step, during the formation of intermediate A, the liberation
of KBr is proposed. Here, KBr is playing a prominent role when
we added Oxone® to generate sulfoxides. In the presence of KBr
and Oxone®, the formation of potassium sulfate and

21b CCDC No. 2168017 h

Fig. 3 Single-crystal structures of 20a and 21b (shown at 50% thermal
ellipsoids).
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Scheme 5 TLC behavior during the selective formation of sulfoxides.
Conditions: compound 1 (0.87 mmol, 1 equiv.), PTA (0.87 mmol, 1
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(0.87 mmol, 1 equiv.). Oxone® (1.91 mmol, 2.2 equiv.) in 10 ml H,O. All
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Scheme 6 One-pot preparation of sulfoxides. Conditions: compound
1 (0.87 mmol, 1 equiv.), PTA (0.87 mmol, 1 equiv.), MeOH (10 ml),
K,COs3 (2.61 mmol, 3 equiv.), R2/R*~CH,-Br (0.87 mmol, 1 equiv.).
Oxone® (1.91 mmol, 2.2 equiv.) in 10 ml H,O. All reactions are per-
formed at room temperature.
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hypobromous acid (HOBr) takes place. From HOBr, bromine
moiety is attached to sulfur atom and forms intermediate B
containing S-Br bond which leads to the formation of inter-
mediate C by reacting with water. Based on the mechanism as
previously reported, we suggest that the formation of sulfur
bromo bond is a key factor to reduce the reactivity of sulfur
atom thus inhibiting further oxidation.** Because of this bond
formation, only one oxygen atom can be attached to the sulfur
atom and hence the formation of the sulfoxides (26-33)
predominates in a one-pot reaction.

Gram scale synthesis

The methodology is tested for the gram-scale synthesis of
sulfide and sulfoxide to demonstrate the synthetic utility of the
developed reaction. When 1.5 g of benzyl bromide was used for
gram-scale synthesis under the optimized conditions, then
1.15 g (80%) sulfide 2 and 1.20 g (76%) sulfoxide 26a were ob-
tained respectively, hence showing the scalability of our one-pot
operation (Scheme 8).

Late stage functionalization

Given the importance of sulfide (thioether) in pharmaceuticals
we speculated that combining the sulfide core with natural
products or biologically active compounds will be a useful
exercise as these products could be further useful in medicinal
chemistry. Therefore, we carried out the preparation of sulfide
derivatives starting with biologically active compounds by late-
stage functionalization. After having bromoderivatives of citro-
nellol, thymol, vitamin E (tocopherol), and estrone (refer ESI
page S347), we adopted the optimized conditions to prepare
interesting sulfides 34 which are useful substrates for biological
properties. Various derivatives prepared are listed in Scheme 9.

Sl g

KHSO5 + KBr —— > K,S0, + HQBr

_PTA.MeOH _
-KBr

Oxone®

1
2 "N s
Hor.8Zo"

?r
SR é’ H,0 o~
H
(o B

Scheme 7 Plausible mechanism for the formation of sulfoxides from
benzyl halides in one-pot containing oxone—KBr combination.

0
% PTA, MeOH, rt, 2h BrpTA MeOH, t, 2h !
then K,CO5, 10 min. then K,CO;, 10 min. ~
X gy 3h Xy 30
Oxone® in H,0, 3h
2,1.15g, 80% 1,159 26a, 1.20 g, 76%

Scheme 8 Gram-scale synthesis of sulfide 2 and sulfoxide 26a in one-
pot.
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Scheme 9 Late-stage functionalization of

compounds into sulfides.

biologically active

Conclusions

To summarize, a wide range of sulfur-containing scaffolds are
prepared efficiently. The preparation of sulfides/sulfoxides from
halides that usually requires three to four steps has been ach-
ieved in a one-pot operation. This methodology involves a thiol-
free path and hence much greener and odorless than the
earlier reported methods. Potassium thioacetate has acted as an
efficient surrogate for unsymmetrical Csp>~S-Csp® type sulfides
which are not much explored yet. Numerous benzylic sulfides
and sulfoxides containing alkyl, alkenyl, alkynyl, and phenyl
moieties are prepared and their structures are unambiguously
established by spectral data. Selective preparation of sulfoxides
and sulfone is also realized. Allenyl sulfoxides were prepared via
facile one-pot operation which can be further utilized in several
transformations. A series of sulfides containing biologically
active scaffolds were prepared by late-stage functionalization.
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