
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 4
:1

0:
10

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Morphological a
aWet Chemistry Laboratory, Department of M

of Engineering and Technology, Karachi, 7

yahoo.com
bDepartment of Metallurgical Engineering

Technology, 75270, Karachi, Pakistan
cDepartment of Chemistry, The Women Univ
dDepartment of Physics, King Khalid Univers

of Saudi Arabia
eLaboratoire de Physique de la Matière Cond

des Sciences de Tunis, Université Tunis El M

Tunisia

Cite this: RSC Adv., 2022, 12, 32986

Received 29th July 2022
Accepted 11th October 2022

DOI: 10.1039/d2ra04760h

rsc.li/rsc-advances

32986 | RSC Adv., 2022, 12, 32986–
nd optical investigation of 2D
material-based ternary nanocomposite: Bi2O3/
MgO/GO synthesized by a co-precipitation
technique

Ashwa Urooj,a Malika Rani, *a Aqeel Ahmad Shah,b Samina Aslam,c Rabia Siddiqui,a

Aisha Siddiqa,a R. Neffati de and Ali Dad Chandio b

A ternary oxide nanocomposite based on Bi2O3/MgO/GO was prepared using a co-precipitation method

for photoconductive device applications. The structure and morphology of the as-prepared

nanocomposite were characterized analytically using X-ray diffraction (XRD), scanning electron

microscopy (SEM), electron dispersive spectroscopy (EDS) techniques, and optical characterization was

made using Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL), and UV-vis

spectroscopy techniques. The heterostructure of the crystal with a crystallite size of 28.064 nm and the

purity of the phase are depicted by XRD patterns. Scanning electron microscopy revealed its morphology

showing an average grain size of 0.27 mm, and the purity of the nanocomposite was confirmed by EDS,

which showed the presence of Mg, Bi, C, and O. The band gap of the Bi2O3/MgO/GO nanocomposite

was 4.02 eV by PL comparable with 5.718 eV by UV-vis spectroscopy, which evidenced that the material

may have potential applications in far UVC emissive devices. The zeta potential observed was 48.0 mV,

indicating the stability of the ternary nanocomposite.
1 Introduction

Since the last two decades, research on GO has been an emerging
area for scientists because of its various fascinating properties.
Graphene (single layer hexagonal lattice with sp2-bonded carbon
atoms) has unique properties.1–5 Aer the pragmatic innovation of
graphene sheets in 2004, research on graphene-based materials
has intensied.6 The identical large theoretically calculated surface
area (2620 m2 g−1) with a possibly small manufacturing cost of
graphene makes it an advantageous and encouraging material for
its concrete applications in the management of environmental
pollutants.7,8 van der Waals interactions between the atoms of
graphene make conservation of its enormous surface area chal-
lenging.9 The removal ofmetals fromwater and gaseous pollutants
in the atmosphere has been studied using modied graphite
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oxides.10–22 Development in reducing the effects of aiming pollut-
ants is achieved using amendment in carnal properties and
apparent chemistry of graphite oxide. Presently, numerous GO-
based metal/metal oxide composites are extensively used as
capacitors and biosensors.23–26 Bismuth oxide (Bi2O3) has been
inspected comprehensively owing to its electrical and optical
properties such as photoconductivity, photoluminescence, dielec-
tric permittivity, refractive index, and large energy band gap. All
these properties make bismuth oxide a potential candidate for its
uses in areas including optoelectronic devices and sensors.27,28

However, alkaline earth metal like magnesium oxide (MgO) show
its properties like simplicity of association with other elements of
composite and pronounced adsorption capacity.29,30 Also, MgO
nanoparticles (MgO NPs) have been used for the removal of
formaldehyde, catechol, dyes, phenol, and uoride from
wastewater.29–34Hence, for the removal of pollutants, GO decorated
withMgONPs, i.e.GO/MgOnanocomposites (NCs) can be revealed
as potential adsorbents. The enormous band gap of MgO (z5 eV)
is a limiting factor for its oxidative uses. Thus, employing ZnO
(band gap z 3.2 eV) as a pairing agent with MgO realizes the
narrowing of the band gap in a nanocomposite, improving the
active sites. The reduced light adsorption in semiconductors,
nanoparticle size, and their pronounced affinity to agglomerate,
which declines the active surface area of the catalyst, is an issue
that needs to be considered.35,36
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Oxides of bismuth (Bi) are perceived as very potent in lieu of
the dynamic visible light, particularly the hybridization of O 2p
and Bi 6s states, primarily in the formation of a tapered band
gap; this is why the photocatalytic reaction of ZnO has been
enhanced.37–39 A heterostructure based on Bi-oxide, i.e., Bi2O3–

ZnO40 shows its coupling to enhance the photo-catalytic activity,
which decelerates the proportion of Bi2O3, in recombination of
the photo-induced electron–hole pairs. Owing to the tapered
band gap of 2.8 eV, Bi2O3 is a promising candidate for photo-
catalytic activity because of its capacity to corrode H2O.41–44

Owing to the properties of Bi2O3, MgO, and GO it was decided
to study the nanocomposite's behavior using these oxides, which
may change its band gap, so that it can be used for other appli-
cations such as photovoltaic energy storage and in far UVC emis-
sive devices.

The Bi2O3/MgO/GO family has nevertheless been investi-
gated to the best of our knowledge. In the current study, we
investigated the Bi2O3/MgO/GO nanocomposite prepared via
a co-precipitation method. The prepared sample (Bi2O3/MgO/
GO) was studied and investigated and it exhibited a large
energy gap in the UV-vis analysis. Results unveil a pronounced
efficiency for photovoltaic and far UVC emissive devices in
future applications. Their characteristics were studied using X-
ray diffraction (XRD), FTIR spectroscopy, scanning electron
microscopy (SEM), energy dispersive electron spectroscopy
(EDX), Raman spectroscopy, photoluminescence (PL), UV-vis
analysis, and zeta potential analysis. The main objective of
the present research is to study the changes in the energy gap
regarding the suitability of this composite for various applica-
tions in the treatment of UV-visible light.
2 Experimental section
2.1. Materials and preparation

2.1.1. Chemicals. Graphite powder, potassium permanga-
nate (KMnO4), sodium nitrate (NaNO3), hydrochloric acid (HCl),
sulphuric acid (H2SO4), distilled water, magnesium(II) nitrate
hexahydrate [Ni(NO3)2$6H2O], bismuth(III) nitrate pentahydrate
[Bi(NO3)3$5H2O], sodium hydroxide (NaOH), and ethanol were all
purchased from Sigma-Aldrich and used without verication.

2.1.2. Preparation of graphene oxide. Graphene oxide was
prepared by Hummers technique via the oxidation of
graphite.45–47 Step-wise Hummers' method that we used is as
follows:

� Graphite powder (2 g) and sodium nitrate (NaNO3) (2 g)
were dissolved in 50 mL of sulphuric acid (H2SO4) in a 1000 mL
beaker with constant stirring on an ice bath (0–5 °C).

� The temperature of the solution was maintained for 2 h.
Then, potassium permanganate (6 g) was gradually and slowly
added to the solution formaintaining its temperature below 15 °C.

� Then, 184 mL of distilled water was gradually poured and
the solution was stirred for 2 h. Aer removing the ice bath, the
suspension was stirred for 2 h at 35 °C.

� For 10–15 min the above solution was maintained in
a reux system at 98 °C. It changed the temperature to 30 °C and
aer 10 min it gave a brown-colored solution.
© 2022 The Author(s). Published by the Royal Society of Chemistry
� Aer 10 min the temperature was decreased to 25 °C and
maintained for 3 h.

� Finally, 40 mL of hydrogen peroxide (H2O2) was added to
the reaction mixture, which lightened up the dark colour of the
solution to bright yellow.

� A 200 mL of water was added to the above solution and
stirred for 1 h.

� Stirring was stopped and the solution was placed at room
temperature. Aer 3–4 h, the particles settled down to the
bottom of beaker and the residual water is poured to ltration
process.

� The resultant solution was centrifuged several times add-
ing 10% HCl and DI water until it formed a gel-like texture and
the pH became neutral.

� The gel-like material was vacuum dried at 60 °C for more
than 24 h to obtain graphene oxide (GO) granules for our
nanocomposite.

2.1.3. Preparation of Bi2O3/MgO/GO ternary nano-
composite by the co-precipitation method. The following steps
for the co-precipitation method48–52 were used in the prepara-
tion of Bi2O3/MgO/GO ternary nanocomposite:

� 0.01 g of GO prepared by Hummers' method was dissolved
in 100 mL of DI water in a beaker, which was sonicated for
60 min.

� Two solutions having 0.1 M of Bi(NO3)3$5H2O and
Ni(NO3)2$6H2O each prepared individually were mixed with
a solution of GO.

� The reaction bath obtained was placed on a hot plate for
magnetic stirring at 70 °C. Aer maintaining the temperature at
70 °C, 0.1 M solution of sodium hydroxide was added to this
solution to get neutral pH.

� For 1 h the solution was continuously stirred and heated at
the same temperature. A black-colored precipitate was formed.
The precipitate was washed three times with a solution of ethanol
and distilled water before being dried in an oven at 50 °C.

� The nanocomposite attained was later annealed at
a temperature of 150 °C for 2 h.
2.2. Characterizations

To determine the crystal phase and conguration of synthesized
samples, a Bruker X-ray diffraction D8-Discover instrument was
used with monochromatic high-intensity Cu-Ka radiation (l =

1.5406 �A). The surface state and structures of the prepared
sample were observed using the JS M-6380A SEM (JEOL, Japan)
instrument for SEM and EDX analysis. A PE Lamada 356 UV-vis
spectrometer was used for UV-vis scanning spectrophotometry.
A photoluminescent spectrometer (FLS1000 by Edinburgh
Instruments) was used for PL analysis. The NanoBrook ZetaPlus
analyser was used for zeta potential measurements. A Bruker
FTIR spectrometer was used for the FTIR analysis.
3 Results and discussion
3.1. X-ray diffraction analysis

X-Ray diffraction is used to determine the phase and crystal
structure of a material (Fig. 1).53
RSC Adv., 2022, 12, 32986–32993 | 32987
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The XRD pattern of Bi2O3/MgO/GO with peaks at 2q values of
31°, 38°, 44°, and 64° represent (006), (113), (024), and (003) planes
using the JCPDS card #76-1730 and 78-0430, indicating the peaks
for Bi2O3 and MgO, respectively. A hump from 10° to 40° conrms
the ternary nanocomposite formation. The area of crystalline peak
is 838.425 (au)2 and the area of all peaks is 957.312 (au)2. The
material crystallinity is observed using the formula in eqn (1).

Crystallinity ¼ area of crystalline peak

area of all peak
� 100 (1)

The crystallinity observed is 87% and the highest peak obtained
is at 44° with the (024) plane. The advantage of this method is that
all the functional groups are removed resulting in a favorable
suppression of graphene onto the synthesized nanocomposite.54 A
strong diffraction peak centered at 2q = 10.3° with (001) peak of
GO55 having a crystallite size of 0.23 nm is elaborated in Table 1.
The crystal size of GO signicantly decreases in the
Fig. 1 XRD pattern of (a) Bi2O3/MgO/GO and (b) stacked XRD pattern o

Table 1 Parameters observed from the X-ray diffraction of Bi2O3/MgO/

2q (degree) q (degree) Intense peak of FWHM M

11.13 (GO) 5.56 0.63617 0
31.19 15.59 0.09662 0
38.18 19.09 0.76094 1
44.30 22.15 0.43316 0
64.75 32.37 0.39360 0

Fig. 2 SEM image of (a) GO and (b and c) Bi2O3/MgO/GO.

32988 | RSC Adv., 2022, 12, 32986–32993
nanocomposite. The FWHW of plane (024) is 0.295200 and thus
the average crystallite size obtained through the Scherrer eqn (2) is
28.064 nm (Table 1).

D ¼ Kl

b cos q
(2)
3.2. Scanning electron microscopy (SEM)

The surface morphology of Bi2O3/MgO/GO was inspected using
scanning electron microscopy. The nanocomposite of bismuth
oxide and magnesium oxide are distributed over the surface of
GO (Fig. 2). The SEM image shows the spherical particles of
MgO with a fuzz-like structure distributed over GO in abun-
dance, having a particle size of 0.4 mm.56 Fig. 2 shows a pris-
matic plate-like structure of Bi2O3, approximately 15 mm in
average, indicating that recrystallization has occurred at some
f the ternary nanocomposite with GO.

GO

iller indices Crystalline size D (nm) (Average) D (nm)

01 0.23 (GO) 28.064
06 85.36
13 11.04
24 19.80
03 23.89

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Energy dispersive spectrum of the Bi2O3/MgO/GO nanocomposite.

Fig. 4 (a) Absorption spectrum of Bi2O3/MgO/GO and (b) Tauc plot of Bi2O3/MgO/GO for direct band gap energy.
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NaOH concentration, which improved its crystallinity.57 The
nanocomposite has an average grain size of 0.27 mm.
3.3. Energy dispersive spectroscopy (EDX)

The EDX method is used for determining the elemental
composition or chemical analysis of a material. It is based on
the interaction of samples with an X-ray source. Moseley's law
precisely identies the locations of peaks and is far superior
than the EDX technique. The EDX of the ternary oxide nano-
composite, Bi2O3/MgO/GO, is shown in Fig. 3. The peak of
Table 2 EDS results of the Bi2O3/MgO/GO nanocomposite

Element Weight% Ato

C K 13.21 21.
O K 10.90 57.
Mg L 20.62 8.
Bi M 55.24 12.

© 2022 The Author(s). Published by the Royal Society of Chemistry
carbon shows the presence of GO in the formation of the
nanocomposite of Bi2O3 and MgO. The ratios of C, O, Mg, and
Bi according to their atomic% and weight% are given in Table 2.
A histogram is also shown along with Table 2 for a pictorial
explanation of elements present in the composite. EDS is
principally accurate up to the morsel quantity of metals present
in the base material. It can be clearly seen from the graph that
the percentage of bismuth is high in the heterostructure crystal
of the Bi2O3/MgO/GO nanocomposite. The carbon peak is very
small and its appearance indicates the presence of some species
mic%

23
83
3
62

RSC Adv., 2022, 12, 32986–32993 | 32989
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with carbon. As we are using GO, the probable reason for the
appearance of the carbon peak in EDX is the presence of GO in
the composite.
Fig. 6 FTIR spectra of Bi2O3/MgO/GO.
3.4. UV-vis spectroscopy

The band gap of ternary nanocomposite is measured via UV-vis
spectroscopy. The modication in the optical band gap and the
absorption behavior of lms played an important role in opto-
electronic device implementation.58 The absorption spectrum
obtained via UV-vis spectroscopy exhibits maximum absorption
at 202.6 nm. The energy band gap value of the ternary nano-
composite measured using the Tauc plot is a direct band gap of
5.718 eV. This indicates the choice of the ternary nano-
composite as a favourable element for far UVC emissive device
applications.
3.5. Zeta potential

Zeta potential is basically the measurement of the nanoparticle
surface tension. A higher absolute value means a stronger
repulsive force between the nanoparticles and a lower nano-
particle surface tension. Zeta potential is basically the
measurement of particles that are dispersed and migrate with
a potential difference.59 The measurement of zeta potential are
used to evaluate to surface electric potential such as electro-
phoresis, ultrasonic method and streaming potential to
measure its stability.60

The changes during dilution are very sensitive. Conse-
quently, the diluted solution measurement cannot determine
the exact value of zeta potential.61 The zeta potential is calcu-
lated by using Henry equation that is given by eqn (3),

z ¼ 4ph

3
�U � 300� 300� 1000 (3)

where 3 is the dielectric constant, U is the mobility of electro-
phoretic, and h is the viscosity of the solution. The zeta poten-
tial observed is 48.0 mV as shown in Fig. 5. The zeta deviation is
5.91 mV. The conductivity observed from the zeta potential
graph is 0.0657 mS cm−1. The value of conductivity for ternary
nanocomposite evidence the presence of a large energy gap as
calculated in UV-vis.62
Fig. 5 Zeta distribution data of Bi2O3/MgO/GO.

32990 | RSC Adv., 2022, 12, 32986–32993
3.6. Fourier transform infrared (FTIR) spectroscopy

In the prepared material, the existence of bonding and func-
tional groups can be analyzed using Fourier transform infrared
spectroscopy. A study of FTIR is a crucial specication than any
other absorption study and is used to represent an absorbent
functional group.63 In Fig. 6, there are peaks in the 565.32–
722.29 cm−1 region, which indicate vibrations in Mg–O and Bi–
O bonds, and the peak at 870.04 cm−1 indicates Bi–O–Bi
bonding.64 A broad band at around 1437.41 cm−1 is because of
the C]O stretching frequency, which exhibits the presence of
an aromatic ring. Peaks at 2511.62 cm−1 and 2922.02 cm−1

show the existence of mono-saturated aromatic overtones. A
broad band at around 3427.83 cm−1 is attributed to the
stretching frequency of H–O–H.65 FTIR results show the exis-
tence of GO, Bi2O3, and MgO in the nanocomposite.

3.7. Photoluminescence

Photoluminescence is used to investigate the transfer behavior
of photo-generated electrons and holes of semi-conductor
substances. Photoluminescence causes an increase in
quantum connement by changing band gap.66,67 Graphite with
zero band gap does not exhibit photoluminescence properties
but its band opens due to quantum connement that comes
due to a decrease in the size. Moreover, the band gap calculated
is 4.02 eV using the formula in eqn (4), which is in close
approximation to the calculated value of the UV-vis band gap
energy i.e., 5.718 eV. The difference in the band gap calculated
using PL (Fig. 7) and UV-vis spectroscopy (Fig. 4) may be due to
defects, impurities, dopants, and the contribution of the non-
radiative energy transfer to the actual energy that is measured
by the device.

Eg ¼ 1240

lðnmÞ ðeVÞ (4)

The band gap of GO calculated is in the 3.1–3.6 eV range and
using FWHM it shows that the distribution of particles is in the
nanometer scale.68,69 The PL graph shows that the absorption
peak moves towards a lower wavelength range in the ternary
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Photoluminescence spectra of Bi2O3/MgO/GO.
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nanocomposite and is in close approximation to the value of the
energy gap calculated via UV-vis spectroscopy (Fig. 4).
4 Conclusion

Bi2O3/MgO/GO ternary oxide nanocomposite was prepared
using the co-precipitation method. The nanocomposite ob-
tained was characterized by SEM, XRD, EDS, UV-vis, PL, and
FTIR techniques and using zeta potential. Crystallinity observed
through X-ray diffraction is 87% and the average crystallite size
is 35.02 nm. The band gap of the Bi2O3/MgO/GO nano-
composite obtained from PL spectroscopy is comparable with
that obtained from UV-vis spectroscopy, which demonstrates its
use in far UVC device applications. The value of zeta potential
shows its excellent stability. In general, the characterizations of
the 2D material-based ternary nanocomposite reveal its poten-
tial in photovoltaic and energy storage applications if it is
further analyzed for its electrochemical and magnetic proper-
ties in future.
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