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Stereoselective synthesis of C3-tetrasubstituted
oxindoles via copper catalyzed asymmetric
propargylationfy
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Herein, a copper catalyzed asymmetric propargylation of 2-oxindole-3-carboxylate esters with terminal
propargylic esters is described. This strategy successfully provides a direct approach to constructing
a broad range of chiral C3-tetrasubstituted oxindoles with contiguous tertiary and quaternary carbon
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Introduction

As privileged scaffolds in a large family of natural alkaloid
compounds, pharmaceuticals and bioactive products, oxindoles
bearing a tetrasubstituted carbon stereocenter at the C3 posi-
tion widely exist in a range of structural frameworks and
architectures owing to their potential biological and pharma-
cological activities (Fig. 1a)." As a result, tremendous efforts
have been devoted to achieving these motifs.> With the devel-
opment of asymmetric organocatalysis and transition metal
catalysis, catalytic asymmetric protocols to directly construct
C3-tetrasubstituted oxindoles with an all-carbon quaternary
stereocenter using 3-substituted oxindoles as nucleophiles have
received extensive attention in the past decades (Fig. 1b).’
Despite these impressive numerous works, the efficient
synthesis of chiral C3-tetrasubstituted oxindoles bearing
contiguous stereocenters remains one of the most difficult
issues in asymmetric catalysis.

Recently, asymmetric propargylation reactions of readily
available racemic terminal propargylic esters catalyzed by non-
precious chiral copper complexes have emerged as a promising,
fruitful and attractive method to construct useful chiral prop-
argyl compounds.* However, although a variety of nucleophiles
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can participate in copper catalyzed propargylation substitu-
tion,” the efficient construction of contiguous tertiary and all-
carbon quaternary stereocenters is still a difficult problem for
this methodology.® In 2020, Hu and co-workers reported
a copper catalyzed asymmetric propargylation reaction of 3-aryl
substituted oxindoles affording 3,3-disubstituted oxindoles in
highly diastereo- and enantioselective results.” Recently, the
stereodivergent synthesis of natural product frameworks via
asymmetric catalytic transformations using simple starting
materials has aroused widely concern and development.® To the
best of our knowledge, the stereoselective synthesis of chiral C3-

a) Selected bioactive compounds of 3,3-disbstituted oxindoles:
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b) Construction of C3-tetrasubstituted oxindoles with 3-substituted oxindoles:
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Fig.1 Representative examples of C3-tetrasubstituted oxindoles and
our strategy.
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tetrasubstituted oxindoles with contiguous tertiary and all-
carbon quaternary stereocenters via copper catalyzed asym-
metric propargylation reaction is still highly desirable. Herein,
we report a copper catalyzed asymmetric propargylation
substitution of 2-oxindole-3-carboxylate esters® with terminal
propargylic esters providing a concise strategy for the stereo-
selective synthesis of chiral C3-tetrasubstituted oxindoles
bearing contiguous tertiary and quaternary carbon
stereocenters.

Results and discussion

To investigate our study, we chose 2-oxindole-3-carboxylate
esters 1a and terminal propargylic acetate 2a as model
substrates in the presence of 10 mol% of copper catalyst in
methanol (Table 1). A series of chiral Pybox ligands were first
screened, we can successfully get the desired chiral prop-
argylation products 3a in good yields and moderate enantiose-
lectivities albeit in low diastereoselectivity, in which L(+)-
leucinol-derived chiral ligand L6 is the best choice (Table 1,
entries 1-7). Performing the reaction at lower temperature
resulted in increased yield and enantioselectivity, but not

Table 1 Optimization of the reaction conditions®

Il

CO,Et Cul (10 mol%) EtOz tOz
OAc L* (12 mol%) Ph
o+ )\ - 0
N Ph % iProNEt (2.2 eq) N
\ MeOH, r.t.
1a 2a (R,R)- 3a (S,R)- 3a
| S L1:R=Ph o
N L2:R = tBu 1
N

o) o]
I \\) L3:R = iPr
N N—/  La:R=cCy
R R
X

Y&é
ST

9
L6 '\<

Entry Ligand Time (h) Yield® (%) ee (%) dr[(RR)/(S,R)] (%)
1 L1 1 93 44/60  1:1.7
2 L2 1 66 27/4 11:1
3 L3 1 85 59/48  1.1:1
4 L4 1 73 27/4 1:1

5 L5 1 60 59/48  1.1:1
6 L6 1 90 71/79 1:1.2
7 L7 1 80 62/54 1.5:1
8¢ L6 5 92 90/94 1:1.5
9% L6 5 95 86/92 1:1.3
104 16 5 40 54/75 1:1.5
11¥ L6 20 95(92)" 91/95 1:1.6

% Unless noted, reactions were performed with 1a (0.20 mmol), 2a (0.3
mmol), Cul (0.02 mmol), L (0.022 mmol) and iPr,NEt (0. 44 mmol) in
anhydrous MeOH (3 mL) at r.t. for 1 h. * Determined by "H NMR of
the reaction mlxture containing 1,3,5-trimethoxybenzene as an
1nterna1 standard. “ee and dr [(R, R)/(S R)], determined by chiral
HPLC. ¢ Reaction performed at 0 °C. ° Using Et;N instead of iPr,NEt.
s Us1ng K,CO; instead of iPr,NEt. ¢ Reaction performed at —15 °C.
" Isolated yield in parentheses.
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diastereoselectivity (Table 1, entry 8). However, changing the
base could not improve the reaction results (Table 1, entries 9
and 10). Ultimately, further lowering the reaction temperature
to —15 °C gave excellent yield and enantioselectivity, but the
diastereoselectivity remained unimproved (Table 1, entry 11).
Although the diastereoselectivity was not so satisfactory, the two
diastereomers (R,R)-3a and (S,R)-3a can be separated by silica
gel chromatography.

With the optimized reaction conditions in hand, a series of
2-oxindole-3-carboxylate esters 1 were first evaluated, providing

CO,Et
7 X
R o+
ZN
R

Cul (10 mol%)
OPG |6 (12 mol%)

2 lemord) |
N+ PrNEt(22eq)
MeOH, -15 °C
2

R? =aryl, PG = Ac
R? = alkyl, PG = COC¢F5

Variation of 2-oxindole-3-carboxylate esters 1

ll

EtO,C,

@5§

3a: 92% yield
(R,R)-3a: 36% yield, 91% ee
(S,R)-3a: 56% yield, 95% ee

Il

EtO,C

Ph
(¢]
N

\
3d: 84% yield
(R,R)-3d: 34% yield, 90% ee
(S,R)-3d: 50% yield, 95% ee

Il

EtO,C

Ph
o
N

(.
3g: 80% yield
(R,R)-3g: 37% yield, 67% ee
(S,R)-39: 43% yield, 94% ee

6% yield
(R.R)- 31 40% yield, 91% ee
(S,R)-3i: 56% yield, 96% ee

3l: 91% yield
(R,R)-31: 39% yield, 88% ee
(S,R)-3l: 52% yield, 96% ee

!
EtO,C *
L5
N
\
3n: 99% yield

(R,S)-3n: 43% yield, 98% ee
(S,S)-3n: 56% vyield, 96% ee

H\

EtO,C

3b: 93% yleld
(R,R)-3b: 42% yield, 90% ee
(S,R)-3b: 51% yield, 88% ee

I

EtO,C

o]
N
\
3e: 87% vyield
(R,R)-3e: 38% yield, 92% ee
(S,R)-3e: 49% yield, 94% ee

Il

3h: 89% yield
(R,R)-3h: 43% yield, 92% ee
(S,R)-3h: 46% yield, 91% ee

3j: 81% yield
(R,R)-3j: 35% yield, 87% ee
(S,R)-3j: 46% yield, 96% ee

3m: 75% yield
(R,S)-3m: 37% vyield, 91% ee
(S,S)-3m: 38% yield, 85% ee

W\

EtO.C > Ph
@fﬁf
N

\
30: 90% vyield
(R,S)-30: 39% yield, 94% ee
(S,9)-30: 51% vyield, 94% ee

H\

Et0,C

3¢:97% yleld
(R,R)-3c: 44% yield, 90% ee
(S,R)-3c: 53% yield, 87% ee

Il

EtO,C

Ph
(o]
Br N

\
3f: 95% yield
(R.R)-3f: 45% yield, 91% ee
(S,R)-3f: 50% yield, 92% ee

3k: 90% yield
(R,R)-3k: 40% yield, 82% ee
(S.R)-3k: 50% yield, 74% ee

3p: 75% yield
(R,S)-3p: 33% vyield, 71% ee
(S,9)-3p: 42% yield, 58% ee

Scheme 1 Substrate scope.? Unless noted, reactions were performed
with 1 (0.20 mmol), 2 (0.3 mmol), Cul (0.02 mmol), L6 (0.022 mmol)
and iProNEt (0.44 mmol) in anhydrous MeOH (3 mL) at

—15°Cfor 20 h.

Isolated yields based on 1, and ee values were determined by chiral
HPLC analysis.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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the corresponding products in moderate to excellent yields and
enantioselectivities, but with low diastereoselectivities (Scheme
1: 3a-3h, up to 95% yield, 95% ee and 1 : 1.6 dr). As shown in
Scheme 1, the reaction has a broad substrate scope and high
functional group tolerance. Substituted groups at the 5-position
of oxindole such as 5-Br, 5-Cl, 5-Me and 5-MeO reacted
smoothly achieving the desired chiral products in high yields
and enantioselectivities (3a-3e). The results revealed that the
electron-withdrawing substituents performed better than the
electron-donating substituents. At the same time, the substit-
uent at the 6-position resulted in the same reactivity (3f). To
further verify the compatibility of this transformation, the
protecting group of oxindole was investigated. Ethyl- and allyl-
protected 2-oxindole-3-carboxylate esters also proved to be
suitable for this reaction (3g-3h), but one of the isomers of
ethyl-protected chiral product showed lower enantioselectivity
((R,R)-3g: 67% ee). Next, the substrate scope with respect to
terminal propargylic acetates 2 were investigated (Scheme 1: 3i-
3p, up to 99% yield, 98% ee and 1: 1.4 dr). The substituted
groups on the phenyl ring of terminal propargylic acetates were
evaluated affording the desired corresponding chiral C3-
tetrasubstituted oxindoles in moderate to good yields and
enantioselectivities (3i-3k). In addition, naphthyl and 2-bromo
piperonyl also performed well with good results (31-3m). When
adjusting the protecting group of terminal propargylic esters,
aliphatic substrates were compatible with the reaction, giving
the corresponding chiral products in good to excellent yields
and enantioselectivities (3n-30). However, the cyclohexyl
substituted substrate only gave moderate results, suggesting
a sensitive effect of steric hindrance for this transformation
(3p)- Finally, the absolute configuration of the two isomers can
be determined by X-ray structure analysis of (S,R)-3i (CCDC
2181912) and (R,S)-3m (CCDC 2181911).F

To further demonstrated the utility of this transformation,
synthetic transformations were carried out (Fig. 2). Under the
standard reaction conditions, using L6 and its enantiomer ent-

Cul (10 mol%)
L6 (12 mol%)
iPr,NEt (2.2 eq)
Il MeOH
EtO,C -15°C,20h -15°C,20h
Ph

J‘[.;o 7)f?kr [
Br N o) o) o Z
\ TN T N
(S,R)-3f N N\) </N
Le ‘< $

(R,9)-3f
50% yield, 96% ee

I

(RR)-3F
45% yield, 91% ee

iProNEt (2.2 eq)
MeOH

\
(S,9)-3f

50% yield, 92% ee

2) Click reaction:

I Ao
Et0,C
2 Ph
o}
Br N Sodium ascorbate (50 mol%) "
\ L N/

(S,R)-3f. 92% ee tBUOH:H,0 (1:1)

Et0,C
rt,20h €3
Ve fsass
O N
et Br N
: o

N3 Zidovudine

CuSO; (50 mol%) N-N

Fig. 2 Synthetic transformations.
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Fig. 3 The linear effect.

L6 as chiral ligands and 1f and 2a as substrates, we were able to
obtain all four stereoisomers of chiral product 3f in moderate
yields and excellent enantioselectivities (Fig. 2a). This offered
an efficient method for the stereoselective synthesis of chiral
C3-tetrasubstituted oxindoles bearing contiguous tertiary and
quaternary carbon stereocenters. The click reaction of (S,R)-3f
with anti-HIV drug Zidovudine resulted in chiral triazole
product 4 in 90% yield and excellent diastereoselectivity
(Fig. 2b).

EtO,C :
R Cul*
R! O + iP,NEt 2 + jP,NEt
N
\ +
3 Protolysis iProNHEt
R +
\=e=e=CuL*
Asymmetric int-A
Copper catalysis
R
\—=——cuL*
int-A'
B0, /p,NEt
- 1
R’ ¢}
NN
e PrNE
\\ Br,
Sifaceof fa'  E1O2G ‘;S) o
[
attack ©\(R) o o)
path a N (RS)-3m
ccDC 2181911
Re face of 1a’ EtO,C =
attack ~R O Br
SN=0
path b )
N (S,R)-3i
ccDC 2181912

Two Stereocontrol models

Fig. 4 The proposed mechanism and stereocontrol models.
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In order to get the insight of this reaction, we performed a set
of experiments with ee-varied ligand L6 under the model reac-
tion. As depicted in Fig. 3, a linear relationship between ee of
ligand L6 and product 3a was observed, which indicated
a mono-copper catalytic process.'® On the basis of prior stud-
ies®**’*? and our observations, the proposed mechanism and
stereocontrol models are depicted in Fig. 4. Firstly, the in situ
formed chiral copper complex CuL* by Cul and L6 reacted with
terminal propargylic acetate 2 with the assistance of iPr,NEt to
generate copper allenylidene intermediate A or its resonance
intermediate A'. In the presence of base, substrate 1 is trans-
formed to its enolate 1/, followed by nucleophilic attack on the
cationic intermediate A or A’ giving the intermediate B. Finally,
the protolysis of intermediate B generates the desired chiral 3a
and release the chiral copper complex. Based on the absolute
configurations of the two isomers, rationalized stereocontrol
models are proposed in Fig. 4. Owing to the steric hindrance of
chiral ligand L6, the enolate 1’ favors nucleophilic attack from
the top of the face of copper allenylidene intermediate, thus
leading to good enantioselectivities. However, the two sides of
the enolate 1’ (Si face and Re face) can attack on the face of
copper allenylidene intermediate A, respectively, resulting in
poor diastereoselectivities (Fig. 4, path a and b).

Conclusions

In conclusion, we have reported an efficient copper catalyzed
asymmetric propargylation substitution of 2-oxindole-3-
carboxylate esters with terminal propargylic acetates. This
protocol provides a concise and facile synthetic approach to
construct a broad range of chiral C3-tetrasubstituted oxindoles
bearing contiguous tertiary and quaternary carbon stereo-
centers. Furthermore, both isomers can be separated by silica
gel chromatography. So, this method provides a valuable access
for the stereoselective synthesis of four possible C3-
tetrasubstituted oxindole stereoisomers. We hope this trans-
formation would inspire the development of new asymmetric
and highly practical synthetic methods for the synthesis of
chiral C3-tetrasubstituted oxindole derivatives.
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