Open Access Article. Published on 26 October 2022. Downloaded on 1/21/2026 6:23:52 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

REVIEW

#® ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online
View Journal | View Issue,

i ") Check for updates ‘

Cite this: RSC Adv., 2022, 12, 30466

Recent advances in the electrochemical reactions
of nitrogen-containing organic compounds
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The electrochemical reaction of amines, nitriles, amides, nitroaromatics, and imines has been proven to be

a valuable method for the synthesis of various nitrogen-containing organic compounds. Synthetic uses of

electrochemical methods for organic transformations of amines, nitriles, imines, and amides to heterocylic
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compounds and coupling products are discussed. This review aims to demonstrate the ongoing application

of electrosynthesis in the preparation of various classes of organic compounds. Furthermore, to address the
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1. Introduction

During the last two decades, there has been a great deal of
research to develop greener synthetic methods and chemical
processes.” Designing chemical reaction methods that elimi-
nate the use of catalysts (metal or organic catalysts) is an
important and interesting approach that is applicable to all
chemistry aspects. Among the novel methods for the synthesis
of various organic compounds, electrochemical reactions have
several advantages due to reduced environmental pollution and
prevention of side reactions, which sometimes lead to failed
reactions, and they also reduce the risks to human health.”° In
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recent collective articles, this review also describes and summarizes manuscripts on the electrochemical
reactions of amines, nitriles, amides, and imines from 2015 until today.

electrochemical reactions, the main role of the surface of an
electrode is in electron transfer, which leads to common reac-
tive intermediates (carbocations, carbanions, radicals, and
radical ions) via diffusion of the substrates from the reaction
mixture to the electrode.” Due to the higher reactivity of the
intermediates and their higher concentration on the surface of
the electrode, the electrosynthesis of organic compounds is
highly selective as compared to the usual chemical reaction
where intermediates are uniformly spread over the reaction
medium.™

The use of electrochemistry continues to this day and
produces millions of tons of valuable chemicals. Furthermore,
the electrochemical reactions are ‘green’ processes due to the
use of electric current in place of stoichiometric oxidants or
reductants. However, despite the aforementioned advantages,
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this technology is not used widely by organic chemists due to
the complex reaction setup (potentiostat, divided/undivided
cell, electrode composition, and electrolyte experiment type)
and the misconception that product separation is difficult
because only aqueous solvents may be employed. Additionally,
there is no standard instrument for the electrosynthesis of
organic compounds, and in many of the recent reports, home-
built equipment was used. Thus, reports on the synthesis of
organic compounds using electricity are few. The aim of this
review article is to address the aforementioned difficulties by
presenting the reported research works on the use of electricity
in organic synthesis.

Organic transformations using electricity can be classified
based on the nature of the electron transfer process. Although
the catalytic processes at the surface of electrodes can provide
useful properties in terms of selectivity and reactivity, a direct
transformation at inert electrodes is very applicable, cost-
effective, and environmentally benign. It is challenging to
optimize reaction parameters, and the appropriate cell design is
required for the electrosynthesis of organic compounds. Elec-
trosynthesis is usually carried out via galvanostatic potentio-
static reactions. While the system setup is simple in
galvanostatic reactions, a higher selectivity is achieved in
potentiostatic electrolysis processes.

Nitrogen is the most important element in nature, and
nitrogen-containing organic compounds are of considerable
synthetic interest due to their unique bioactivities. They are also
the main building blocks of living organisms with important
roles in nature. Nitrogen atoms can form part of simple func-
tional groups such as amines, imines, nitriles, amides, and
carbamates or complex heterocyclic systems due to varying
degrees of substitution and the oxidation of nitrogen. Further-
more, from a medicinal chemistry point of view, the nitrogen
atom is a very common element in a large class of active phar-
maceutical components existing in heterocyclic or acyclic
molecules. Electrochemical reactions of functional groups
containing amines, imines, and nitriles are highly powerful
strategies for the synthesis of valuable organic compounds. This
review aims to demonstrate the ongoing application of elec-
trosynthesis in the preparation of various classes of nitrogen-
containing organic compounds. Furthermore, to address the
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recent collective articles, this review describes and summarizes
manuscripts on the electrochemical reactions of amines,
nitriles, imines, and amides from 2015 until today.

2. Electrochemical reactions of
amines

In 1834, Faraday reported the application of the electrical
current in organic synthesis.”® The key species in electro-
chemical reactions are radical and cation intermediates. The
efficiency and selectivity of electrosynthesis of organic
compounds is controlled by the reaction conditions, including
the current density, the temperature, the concentration, the pH
value, the solvent, the electrolyte, and the electrodes.

The electrochemical reactions of amines (primary,
secondary, and tertiary) have been widely investigated. Various
important organic materials are prepared by the electro-
chemical reactions of amines. This part of the review describes
the electrochemical studies of primary, secondary, and tertiary
amines in organic transformation since 2015. The presented
reactions are selected examples involving typical and inter-
esting substrates, with particular attention to representative
reaction mechanisms.

2.1 Primary amines

There is relatively less interest in the preparation of benzimid-
azoles from a-keto acids. Only a photocatalyzed de-
carboxylation of a-keto acids with amines to form amides and
benzazoles has been reported by Lei et al. under visible light
irradiation."** However, in 2016, Huang et al. reported the
electrochemical synthesis of benzimidazoles from the decar-
boxylative C-N coupling of o-keto acids with ortho-phenyl-
enediamines. The reaction proceeded via anodic oxidation
similar to a Kolbe-type reaction.*”” The reaction was carried out
in an undivided cell, and various conditions were examined to
increase the reaction efficiency. The most optimal conditions
were obtained with platinum electrodes as the anode and
cathode in dimethyl sulfoxide (DMSO)/H,O (1:3, v/v) at
constant current and at room temperature (Scheme 1).

The reaction proceeded in the presence of a mixture of tri-
fluoroacetic acid (TFA, 1 equiv.) and N,N-diisopropylethylamine
(DIPEA, 2 equiv.). There is a critical and important role played
by DIPEA in this reaction. According to the proposed mecha-
nism (Scheme 2), an acyl radical forms in the anode via a similar
Kolbe-type reaction, from a-keto acid anion that then undergoes

Pt i_“] Pt

(0] NH Undivided cell N
R)H(OH LYY —mA . [T YR
I SN, 02MNH,CIO, XZ N

2 DMSO/H,0
TFA/DIPEA 1
15 h, rt 24 samples
up to 95%yield

Scheme 1 Electrochemical synthesis of benzimidazoles.
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Scheme 2 Proposed mechanism of electrochemical synthesis of
benzimidazoles.

a coupling with protonated diamine. In this reaction, DIPEA
follows a hydrogen atom transfer rule to afford the coupling
product. In the final step, dehydrogenation proceeds in the
presence of O, (Scheme 2).

A one-pot procedure for the synthesis of sulfonamides via
direct use of commodity chemicals such as thiols and amines is
important for transformation. However, a suitable trans-
formation would require two steps, including an S-N bond
formation and a subsequent oxidation of the sulfur atom. The
development of novel techniques for this transformation would
be particularly useful, given the broad availability and the low
cost of these starting materials. In 2019, the electrochemical
synthesis of sulfonamides from the simple reaction of amines
with thiols was reported by Noél et al.*® The reaction proceeded
through the oxidative coupling between two readily available
and inexpensive chemicals with a broad substrate scope and
functional group compatibility. The synthesis of sulfonamides
was carried out using this method in the absence of any oxidant
or catalysts. In this reaction, hydrogen gas is formed only as
a byproduct in the cathode (Scheme 3). Mechanistic studies
showed that the thiol substrate is completely converted to the
corresponding disulfide via anodic oxidation followed by
coupling with amine to yield the corresponding sulfonamide via
two oxidation steps in the anode.

Reductive amination is considered to be one of the most
versatile and efficient methods for the synthesis of amines. For
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Scheme 3 Electrochemical synthesis of sulfonamides.
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efficient and highly selective reductive amination, there have
been great efforts to find a suitable method. High-pressure
molecular hydrogen in the presence of a transition metal has
been widely utilized as a reductant instead of using stoichio-
metric amounts of NaBH, and NaBH;CN as strong reductants.
In 2020, Huang et al. reported the synthesis of secondary
amines via an electrochemical reduction reaction of aldehyde
with amine.'® The experimental results showed that the reaction
proceeds very well in an undivided cell at a constant current of
10 mA using nBu,NHSO, as the electrolyte in DMSO. Mecha-
nistic studies showed that DMSO has a reductant role. In
a control experiment, a deuterium-labelled secondary amine
was obtained in the presence of DMSO-d, through the forma-
tion of a C-D bond (Scheme 4).

An electrochemical transition metal and peroxide-free
oxidative multicomponent cascade dehydrogenative [2 + 2 + 1]
annulations of ketones and amines for the synthesis of imid-
azoles were reported by He et al.”” The reaction proceeded via
the formation of a-iodo ketone from the reaction of aryl methyl
ketone with iodine, followed by nucleophilic attack of the amine
to the C-I bond to form a-amino ketone. Finally, condensation
of the o-amino ketone with benzylamine, cyclization, and
aromatization via an oxidative dehydrogenation reaction gave
product 4 (Scheme 5).

Lei and co-workers reported the gram-scale synthesis of poly-
substituted pyrroles via an electrochemical oxidative annula-
tion from amines with carbonyl compounds in an undivided
cell.®® By this method, various p-substituted and tetra-
substituted pyrroles were obtained via the reaction of amines
with aryl acetaldehydes and alkyl ketones, respectively (Scheme
6). The reaction proceeded by the formation and homo coupling
of radicals at the anode via single-electron-transfer (SET)
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Scheme 4 Electrochemical synthesis of secondary amines.
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Scheme 5 Electrochemical synthesis of imidazoles.

oxidation of imine, followed by intramolecular nucleophilic
attack and cyclization to form the desired product.

Wang et al. reported the electrochemical synthesis of qui-
nazolines via a C(sp®)-H amination/C-N cleavage by anodic
oxidation under aqueous conditions (Scheme 7).** Studies
showed that iminium ion was formed via the loss of two elec-
trons and one proton of tetramethyl ethylene diamine (TMEDA)
at the anode, with ammonia generated from the electrolyte at
the cathode (Scheme 7).

In 2019, Huang et al. reported the electrochemical synthesis
of 3-bromoimidazo[1,2-a]pyridines from 2-aminopyridines and
a-bromo ketones in a simple undivided cell without any
external oxidant through a domino condensation/bromination
sequence.”® The reaction proceeded by a simple condensation
of 2-aminopyridines with a-bromoketones, followed by bromi-
nation, which resulted in anode oxidation of the bromide anion
to yield the target molecule 9 (Scheme 8).

An electrochemical aziridination of internal alkenes with
primary amines via an oxidative coupling between alkenes and
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Scheme 6 Electrochemical synthesis of polysubstituted pyrroles.
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Scheme 7 Electrochemical synthesis of quinazolines.
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Scheme 8 Electrochemical synthesis of imidazopyridines.

primary alkyl amines in an electrochemical flow reactor was
reported by Noél et al** Further investigations and density
functional theory (DFT) calculations showed that the alkene was
oxidized in the anode and subsequently reacted with the amine
to yield the corresponding aziridine (Scheme 9). In another
attempt, hydrogen generated at the cathode was used in
a second reactor to reduce the aziridine to the corresponding
hydroaminated product.
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Scheme 9 Electrochemical synthesis of azirdines.
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2.2 Secondary amines

In 2018, Mei et al reported the copper-catalyzed electro-
chemical C-H amination of arenes with secondary amines at
room temperature using undivided electrochemical cells.?” The
n-butyl ammonium iodide played a crucial role as a redox
mediator for this transformation. Mechanistic studies
including kinetic profiles, isotope effects, cyclic voltammetry
analysis, and radical inhibition experiments showed that the
reaction proceeded via a single-electron-transfer (SET) with
a high valent Cu(u) species. In this process, the Cu(u) complex
was oxidized by iodine radicals (generated at the anode) to form
Cu(m) species (Scheme 10).

Metal-free electrosynthesis of phosphinic amides via oxida-
tive cross-coupling of secondary amines with diarylphospine
oxides has been reported by Wang et al. in 2017.>* Mechanistic
studies showed that the reaction proceeded via iodide ion
oxidation into an iodine radical at the anode surface, which
reacted with diarylphospine oxide to generate a P-I interme-
diate (Scheme 11). The amine nucleophile was easily reacted
with the P-T intermediate, yielding the final product 12. At the
cathode, the ethoxide anion and hydrogen molecule are
produced through the reduction of ethanol.

In 2018, Huang et al. reported an electrochemical N-for-
mylation of amines with glyoxylic acid via a decarboxylative
process in the presence of copper acetate as an active oxidant.”*

Ptr{] Pt Ho [

Cu(OTf), (10 mol%) @[N SN
n-BugNI (0.5 equiv) nC
KOPiv, MeCN R R?
rt, 3mA

=
H \I R!
CLr
o) R
H

1"

60 samples
up to 93% yield

Rz OPlv
| /— | anode
B
X
in_| Cjﬁj N L
\N/Cu N’ 1'N\R2CU_N =
OPlv OP'V

Scheme 10 Electrochemical copper-catalyzed amination of arenes
with secondary amines.
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Scheme 11 Electrochemical synthesis of phosphinic amides.
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The mechanistic studies showed that the high valent copper
was generated by anodic oxidation (see the detailed mechanism
in Scheme 12). Glyoxylic acid was first converted into carbox-
ylate ion by cesium carbonate, followed by condensation with
the aniline to form an imine intermediate (NiCl, was proposed
to act as a Lewis acid to promote the imine condensation). The
intermediate was oxidized by cupric acetate, followed by
decarboxylation to generate the N-formylation product.

Zeng et al. reported an electrochemical dehydrogenative
transition metal-free cross-coupling of quinoxalin-2(1H)-ones
with secondary amines for the synthesis of 3-amino-
quinoxalinones.* It was assumed that the reaction proceeded
through nucleophilic addition of the substrate amine to
protonated quinoxaline-2(1H)-one (Scheme 13), followed by
further anodic oxidation and deprotonation, yielding the
desired products 14. Molecular hydrogen was produced at the
cathode surface.

In 2019, Ding et al. reported synthesis of amino phospho-
nates by an electrochemical C-H phosphonylation of unpro-
tected secondary amines through metal-free and exogenous
oxidant-free conditions.”* Mechanistic investigations revealed
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oMy oy undvidedeel X 4 co,
R NaClO,(2 equiv) R
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Scheme 12 Electrochemical N-formylation of amines.
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Scheme 13 Electrochemical synthesis of 3-aminoquinoxalinones.
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Scheme 14 Electrochemical synthesis of 1-aminophosphonates.

that an amine compound was oxidized at the anode electrode,
giving an imine intermediate, which was attacked by phosphite
catalyzed by sodium acetate, yielding the final product, ami-
nophosphonate 15. Hydrogen evolution occurred at the
cathode, and an acetate anion was regenerated (Scheme 14).

2.3 Tertiary amines

Electrochemical coupling of arylsulfonyl hydrazides with
tertiary amines for the synthesis of amidovinyl sulfones under
mild electrochemical conditions has been reported by Kim and
Lee.” The reaction was carried out using an acid, in a solution
of n-BuyNBF, in DMSO in undivided cells with graphite-plat-
inum electrodes under a constant current. Based on the exper-
iments, it was assumed that the tertiary amine was activated
and converted to a radical cation, and then, a C-H bond at the
alpha position of the tertiary amine was oxidized to yield an
iminium ion intermediate. However, arylsulfonyl hydrazide was
oxidized and transformed into an arylsulfonyl radical at the
anode. Finally, the arylsulfonyl radical reacted with the
enamine (from the reaction of imine intermediate and acetate
anion) to give the amidovinyl sulfone. Air or an oxygen atmo-
sphere was required as an oxidant for this process (Scheme 15).

Luo et al. reported the catalytic asymmetric electrochemical
C-H functionalization of  simple ketones  with
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Scheme 15 Electrochemical synthesis of amidovinyl sulfone.
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tetrahydroisoquinolines in the presence of chiral primary
amine catalysts for the synthesis of Ci1-alkylated tetrahy-
droisoquinolines in high yields and with excellent enantiose-
lectivities.”® The reaction proceeded via an electrochemical
oxidation of tetrahydroisoquinolines to the corresponding
iminium ion intermediate form, followed by reaction with the
enamine intermediate to yield C1-alkylated tetrahy-
droisoquinolines (Scheme 16).

Anovel electrochemical strategy for the asymmetric oxidative
cross-coupling of tetrahydroisoquinolines with alkynes was re-
ported by Mei et al. in the presence of copper catalysis and
2,2,4,4-tetramethylpiperidine N-oxide (TEMPO).” TEMPO is
used as a co-catalyst to decrease the oxidation potential of the
reaction. The reaction proceeded via the electrochemical
oxidation of tetrahydroisoquinolines to the corresponding
iminium ion intermediate form, followed by reaction with
a copper acetylide intermediate (including chiral bisoxazoline
ligand) to yield highly C1-alkynylated tetrahydroisoquinolines
with up to 97% enantiomeric excess (ee) (Scheme 17).

In 2019, Li et al. reported the electrochemical synthesis of
polycyclic N-heterocycles under oxidant-free conditions via
oxidation/[3 + 2] cycloaddition/aromatization cascade.*® The
reaction proceeded via the anodic oxidation of NHPI to form
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Scheme 16 Electrochemical C—H functionalization of simple ketones
with tetrahydroisoquinolines.
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Scheme 17 Electrochemical synthesis of amidovinyl sulfone.
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phthalimide N-oxyl (PINO) and the cathodic reduction of MeOH
to H, and methoxide. The azomethine ylide was formed with
hydrogen abstraction of tetrahydroisoquinoline acetate with the
assistance of PINO, followed by reaction with N-methyl-
maleimide as the dipolarophile to yield product 19 via a [3 + 2]
cycloaddition (Scheme 18).

3. Electrochemical reactions of
nitriles

In 2021, Findlater et al. reported the electrochemical arylation
of aldehydes, ketones, and alcohols with 1,4-dicyanobenzene or
para-substituted electron-withdrawing cyanobenzene.** The
mechanistic investigations revealed that benzylic alcohol
undergoes an oxidation process at the anode surface, which
results in the corresponding benzaldehyde. The nucleophilic
addition between benzaldehyde and anion radical arising from
1,4-dicyanobenzene at the cathode surface is the key step
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Scheme 19 Electrochemical arylation of aldehydes and alcohols.
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toward arylation product 20 (Scheme 19). In this reaction, the
cyanide leaving group was trapped by valeraldehyde.

Singh et al. reported the electrochemical synthesis of 3,5-
disubstituted triazoles from nitriles and hydrazides.*® The
conversion proceeded via the reaction of an amide radical
cation (formed in the anode by an anodic oxidation of an amide)
with hydrazide. The intermediate then converted to the final
product 21 by cyclization and cathodic reduction, which
subsequently underwent a proton shift dehydration to afford
the desired product (Scheme 20).

In 2019 Ye et al reported an electrochemical TEMPO-
catalyzed direct arylation of tertiary amines with benzonitrile
derivatives via o-amino C(sp®)-H bond formation.?® The reac-
tion proceeded via the anodic conversion of TEMPO to TEMPO",
which reversibly oxidized the tertiary arylamine to TEMPO and
amino radical in the presence of 2,6-lutidine. In the next step,
a coupling of amino radical with anodic formed anion radical,
which underwent subsequent elimination of cyanide anion and
aromatization to give the final product 22 (Scheme 21).

In 2019 Wang, Yuan, and Li et al reported an electro-
chemical oxidative C sp*~H/S-H cross-coupling of acetonitrile
with thiols for the synthesis of tetrasubstituted olefins.**
Mechanistic investigations revealed that the reaction proceeded
via one hydrogen atom abstraction of acetonitrile to yield the
corresponding radical form by iodine radical in the anode.
Sequential radical addition to another acetonitrile molecule was

o Pt i_“] Pt
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. + o2 undivided cell N/
RI-ON + RENHNH, — T E S R/QN)\R
MeCN/H,O H 21
i, 10 h 14 examples
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Scheme 20 Electrochemical synthesis of 3,5-disubstituted triazoles.
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Scheme 21 Electrochemical arylation of tertiary amines.
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followed by hydrogen atom transfer from RSH to yield product
23 (Scheme 22).

4. Electrochemical reactions of
imines

In 2020, Lehnherr, Rovis, and co-workers reported the synthesis
of hindered primary and secondary amine 24 via an electro-
chemical reaction of bench top-stable iminium salts with cya-
noheteroarenes.** According to the reported method, a wide
variety of substituted heterocycles (pyridine, pyrimidine, pyr-
azine, purine, azaindole) has been utilized in the cross-coupling
reaction, including those substituted with a halide, tri-
fluoromethyl, ester, amide, or ether group, a heterocycle, or an
unprotected alcohol or alkyne. The mechanistic studies based
on DFT data, as well as cyclic voltammetry and NMR spectros-
copy, showed that the reaction proceeded via a bi-radical cross-
coupling of a-amino radicals and radicals derived from cyano-
heteroarenes (Scheme 23).

The electrochemical synthesis of 1,2,4-triazole-fused
heterocycles 25 via an intramolecular dehydrogenative C-N
cross coupling reaction was developed by Zhang et al. in 2018.%¢
By this method, valuable 1,2,4-triazolo[4,3-a]pyridines and
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Scheme 23 Electrochemical synthesis hindered the primary and
secondary amine.
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related heterocyclic compounds were efficiently synthesized
from commercially available aliphatic or (hetero)aromatic
aldehydes and 2-hydrazinopyridine. The reaction proceeded via
the condensation of 2-hydrazinopyridine and aldehyde and
gave the hydrazone, which subsequently underwent deproto-
nation by hydroxide generated from the cathodic reduction of
water to produce a nitrogen ion intermediate. The final product
was obtained by a single-electron transfer (SET) oxidation fol-
lowed by intramolecular radical addition, anodic oxidation, and
deprotonation (Scheme 24).

In 2016, Xu et al. reported the electrochemical formation of
amidinyl radical (through the anodic cleavage of N-H bonds)
for functionalization of the aromatic C-H bond. The resulting
nitrogen radicals underwent cyclizations with arenes, followed
by re-aromatization, to yield functionalized tetracyclic benz-
imidazoles 26 (Scheme 25).*”

5. Electrochemical reactions of
amides

Lie and co-workers in 2019 reported electrochemical dehydro-
genative aryl C-H/N-H cross-coupling of aromatic C-H

T 0w
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Scheme 24 Electrochemical 1,2,4-triazole-fused

heterocycles.
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Scheme 25 Electrochemical synthesis hindered the primary and
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compounds with N-H of sulfonimides.*® The reaction pro-
ceeded via an electrochemical oxidation-induced intermolec-
ular cross-coupling with high regioselectivity through the N-
radical addition pathway under external-oxidant-free and
catalyst-free conditions. The cyclic voltammetry mechanistic
study indicated that N-centered imidyl radicals are initially
generated, and subsequently, radical addition to the aromatic
C-H compound furnished a new C-N bond. The radical species
underwent further oxidation to furnish a carbon cation inter-
mediate, which finally was aromatized to provide the aryl
C(sp®)-H imidation product 27 (Scheme 26).

In 2018, Ahmed et al. reported the efficient electrosynthesis
of thiazolidin-2-imines via oxysulfurization of thiourea-tethered
terminal alkenes.*” The reported method was the first electro-
chemical cyclisation to access thiazolidin-2-imines. The reac-
tion was carried out via electrolysis of N-allylic thioureas to
generate radical intermediates of nitrogen and sulfur that
subsequently cyclised via oxysulfurisation of terminal alkenes
to give thiazolidin-2-imines 28 with satisfactory to high yields
(Scheme 27). Later, they also studied the above process in the
presence of TEMPO, and the results showed that product 29 was
obtained in satisfactory to high yield.*

Waldvogel et al in 2019 reported the electrochemical
synthesis of 2-oxazolines 30 via the fluorocyclization of allyl-
carboxamides by a hypervalent iodine mediator.** The process

7w

PhO,S SO,Ph
H
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Scheme 26 Electrochemical dehydrogenative aryl C-H/N—H cross-
coupling reactions.
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Scheme 27 Electrosynthesis of thiazolidin-2-imines 28 and trapped
product 29 in the presence of TEMPO.
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Scheme 28 Electrosynthesis of 2-oxazolines 30 by in situ generation
of ArlF,.

proceeded via anodic oxidation of the iodoarene to the activated
hypervalent iodine. ArIF, was attacked by the nucleophilic
double bond in the amide compound to form the iodonium
species. Subsequently, the three-membered heterocycle was
opened by the carbonyl, and finally, the intermediate was con-
verted into product after an SN>-type substitution reaction
(Scheme 28). In another report, this group studied the electro-
chemical fluorocyclization of N-propargylamides for the
synthesis of oxazoles.*” This reaction also proceeded via
hypervalent ArIF, generation by direct electrochemical oxida-
tion of iodoarene Arl in Et;N-5HF, and it mediated the fluo-
rocyclization of N-propargylamides to 5-fluoromethyl-2-oxazoles
31 (Scheme 29).

In 2018, Xu et al. reported the electrochemical synthesis of 7-
membered carbocycles through cascade 5-exo-trig/7-endo-trig
radical cyclization of carbamate containing a disubstituted cis-
alkene and a monosubstituted alkene in the presence of Cp,Fe
(Scheme 30).** A 5-membered ring was initially formed with
trans-disposition of the radical centre, and finally, the 6-hep-
tenyl radical underwent regioselective 7-endo cyclization. The
reaction proceeded via transfer of one electron from Cp,Fe to
the anode to afford Cp,Fe’. The methoxide base anion gener-
ated at the cathode deprotonated the substrate to give its

P

o] J| Undivided cell
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N\ /l e
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Scheme 29 Electrosynthesis of 5-fluoromethyl-2-oxazoles 31 by in
situ generation of ArlF,.
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Scheme 30 Electrochemical synthesis of 7-membered carbocycles.

conjugate base. A formed radical via oxidation of conjugated
base by Cp,Fe" through single-electron transfer (SET) under-
went stereoselective 5-exo-trig cyclization to give carbon-centred
radical species. Finally, the formed radical underwent 7-endo-
trig cyclization with the remaining terminal alkene to give the
bicyclic radical intermediate, and the reduction of radical via H-
atom transfer afforded the final 7-membered ring product 32
(Scheme 30).

In 2019, Ackermann et al reported an electrochemical
position-, regio-, and chemo-selective ruthenium-catalyzed
alkyne annulation by C-H/N-H activation of aryl carbamates.**
The mechanistic studies showed that the reaction proceeded via
a plausible catalytic cycle to commence by a facile organome-
tallic C-H activation (Scheme 31). A generated seven-membered
ruthena(u) cycle from the insertion and migration of alkyne
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Scheme 31 Electrochemical selective ruthenium-catalyzed alkyne
annulations by C—H/N—H activation of aryl carbamates.
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rapidly underwent reductive elimination to product 33. The
ruthenium(0) sandwich reoxidized in the anode.

Hu and Yi reported a formal aza-wacker cyclization via
oxidative amination of crotyl N-arylcarbamates in the presence
of a Cu catalyst for the synthesis of a wide range of 5-membered
N-heterocycles including oxazolidinone, imidazolidinone,
thiazolidinone, pyrrolidinone, and isoindolinone.*® The trans-
formation of secondary and primary alkyl radical intermediates
into alkenes was carried out in the presence of Cu catalyst. The
mechanistic studies showed that the crotyl N-arylcarbamate
associates with the base to give a product, which is oxidized at
the anode to give an amidyl radical. The radical underwent 5-
exo-trig cyclization to afford the alkyl a radical, which was
captured by Cu(u) to generate a formal Cu(u) alkyl intermediate,
and subsequently, product 34 was formed via a reductive
elimination process (Scheme 32).

In the other study,” Ackermann et al reported
cobaltaelectro-catalyzed C-H/N-H activation with carbon
monoxide or isocyanides (Scheme 33). The reaction proceeded
via a plausible catalytic cycle of initiation of the cobalt(u) pre-
catalyst by anodic oxidation to form the catalytically compe-
tent cobalt(m). In the next step, carboxylate-assisted C-H acti-
vation and subsequent migratory insertion gave rise to the six-
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Scheme 32 Electrochemical aza-wacker cyclization of crotyl N-
arylcarbamates.
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Scheme 33 Electrochemical cobaltaelectro-catalyzed C-H/N-H
activation with carbon monoxide or isocyanides.

RSC Adv, 2022, 12, 30466-30479 | 30475


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra04087e

Open Access Article. Published on 26 October 2022. Downloaded on 1/21/2026 6:23:52 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Pt ﬂ_w Pt

O OH
undivided cell
0 NH,CI [0.25 M] N
RN 0 DMSO
| 10mA, 50 °C, 3h 37 29 samples
up to 84 % yield

o § -
8|3 g
E= =1 I
S| B +e, +H* 2
o g ) 5

cathode 5

O

Scheme 34 Electrochemical reductive radical smiles rearrangement.

I
GCI_| ] CuSn;Pbqs

€]
& H. .R
O\N’R undivided cell N

|

Het or Ar)\H NBu,BF,4[0.02M] Het or Ar” “H
Additive 16 sample
‘ CH4CN, 15 mA, rt up to 64%
+1e™ +2H*
2 R cathode
) cween, §° o R
reduction
Hetor Ar”™ © )| 7 )
Het or Ar +1e-  HetorAr
cathode

Scheme 35 Electrochemical reduction of aromatic and hetero-
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membered cobalta(ui) cycle, from which products 35 and 35’
formed via reductive elimination (the catalytically active cobal-
t(ir) carboxylate complex is regenerated by anodic oxidation).
An electrochemical reductive radical Smiles rearrangement
for C-N bond formation of compound 36 was reported by Guo
et al. in 2019.* The process proceeded via amidyl radical
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Scheme 36 Electrochemical C—H functionalization of biaryl ketox-
imes for the synthesis of polycyclic N-heteroaromatic compounds.
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Scheme 37 Electrochemical synthesis of 2,1-benzisoxazoles and
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generation from the cleavage of the N-O bond of compound 36
under reductive electrolytic conditions, which played a crucial
role in this transformation. The mechanistic studies showed
that a single-electron transfer reduction in the cathode gener-
ated the radical amidyl intermediate, which subsequently
underwent a radical Smiles rearrangement to form an O-centred
radical intermediate, from which product 37 formed by
cathodic reduction and protonation (Scheme 34).
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6. Electrochemical reactions of other
organic nitrogen sources
Waldvogel and Rodrigo in 2019 reported an electrochemical

reduction of aromatic and heteroaromatic nitrones to amines.*®
The reduction reaction needs four electrons, whereby two

View Article Online
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electrons yield the imine, and the other two electrons are used
for the reduction of the imine double bond to the correspond-
ing amine (Scheme 35).

Xu et al. reported the electrochemical C-H functionalization
of biaryl ketoximes for the synthesis of polycyclic N-hetero-
aromatic compounds and their corresponding N-oxides in the

Table 1 Comparison of some electrochemical reactions with the traditional approach

Entry Electrosynthesis Ref. Traditional approach Ref.
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presence of TEMPO and Pt as a cathode.*” The electrosynthesis
proceeded via the anodic oxidation of TEMPO into TEMPO',
which then reacted with oxime to afford an iminoxyl radical. N-
Cyclization of the iminoxyl radical onto the phenyl ring, fol-
lowed by re-aromatization, yields N-oxide product 38 (Scheme
36).

In 2018, the Waldvogel research team reported a novel electro-
synthesis method for the synthesis of 2,1-benzisoxazoles and
quinoline N-oxides from nitro aromatic compounds.® The reaction
proceeded via a cathodic reduction of the nitro moiety, and
subsequent intramolecular cyclization afforded different
substituted 2,1-benzisoxazoles and quinoline N-oxides (Scheme 37).

In another report, Waldvogel and Hartmer reported the
electrosynthesis of nitriles from oximes.** The reaction pro-
ceeded via anodic oxidation of the nitrile to nitrile oxide, and
subsequent cathodic reduction of nitrile oxide afforded the
nitrile compound (Scheme 38).

7. Summary and outlook

Electrosynthesis is an efficient and applicable method in
organic transformation. The application of this method in
organic synthesis is interesting and attractive. In this review, the
electrochemical reaction of amines, nitriles, amides, and
imines for the synthesis of various heterocyclic compounds and
coupling products have been summarized and discussed. The
developments in the application of electrosynthesis as an effi-
cient method for organic transformations are impressive, and
hopefully can initiate further evolution in this area.

This review is an introduction to an area that will inspire
others to try electrochemical reactions for new organic trans-
formations. The examples outlined in this review represent
some of the organic transformations of nitrogen-containing
compounds that assist scientists in trying to solve various
problems in organic transformations by electrochemistry (Table
1). Electrosynthesis methods assist us in performing organic
reactions in a simple manner, and there should be no reason to
use stoichiometric amount of reagents to accomplish simple
conversions, such as the conversion of alcohols to aldehydes,
when the reaction can be efficiently carried out using electro-
chemistry. There is great potential in the chemoselectivity of the
electrosynthesis method for various organic transformations,
and especially their applications in the total synthesis of natural
products. Although it is interesting that the reactions can be run
using simple homemade equipment, we believe that the use of
simple and standard instruments requires the development of
electrosynthesis methods in organic transformations by scien-
tists. We also believe that the development of electrosynthesis
of organic compounds depends on mechanistic insights into
electro-organic reactions. Our research group has recently
entered this research field,*>* and we hope that electrochem-
istry will soon become a routine technique in modern organic
chemistry laboratories.

Conflicts of interest

There are no conflicts to declare.

30478 | RSC Adv, 2022, 12, 30466-30479

View Article Online

Review

Acknowledgements

The authors gratefully acknowledge support by the Institute for
Advanced Studies in Basic Sciences (IASBS).

References

1 P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301-
312.

2 M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev., 2017, 117,
13230-13319.

3 Y. Jiang, K. Xu and C. Zeng, Chem. Rev., 2018, 118, 4485-
4540.

4 S. Tang, Y. Liu and A. Lei, Chem, 2018, 4, 27-45.

5 N. Sauermann, R. Mei and L. Ackermann, Angew. Chem., Int.
Ed., 2018, 57, 5090-5094.

6 H. Lund, J. Electrochem. Soc., 2002, 149, S21-S33.

7 A. Jutand, Chem. Rev., 2008, 108, 2300-2347.

8 A. Wiebe, T. Gieshoff, S. Mohle, E. Rodrigo, M. Zibes and
S. R. Waldvogel, Angew. Chem., Int. Ed., 2018, 57, 5594-5619.

9 Y. Yuan and A. Lie, Nat. Commun., 2020, 11, 802.

10 T. Wirtanen, E. Rodrigo and S. R. Waldvogel, Adv. Synth.
Catal., 2020, 362, 2088-2101.

11 R. Francke and R. D. Little, Chem. Soc. Rev., 2014, 43, 2492—
2521.

12 J. L. Rockl, D. Pollok, R. Franke and S. R. Waldvogel, Acc.
Chem. Res., 2020, 53, 45-61.

13 M. Faraday, Ann. Phys. Chem., 1834, 109, 433-451.

14 (a)J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi and Y. A.-W. Lei,
Angew. Chem., Int. Ed., 2014, 53, 502-506; (b) H. B. Wang and
J. M. Huang, Adv. Synth. Catal., 2016, 358, 1975-2198.

15 G. Laudadio, E. Barmpoutsis, C. Schotten, L. Struik,
S. Govaerts, D. L. Browne and T. Noél, J. Am. Chem. Soc.,
2019, 141, 5664-5668.

16 H. Hong, Z. Zou, G. Liang, S. Pu, J. Hu, L. Chen, Z. Zhu, Y. Li
and Y. Huang, Org. Biomol. Chem., 2020, 18, 5832.

17 L. Zeng, J. Li, J. Gao, X. Huang, W. Wang, X. Zheng, L. Gu,
G. Li, S. Zhang and Y. He, Green Chem., 2020, 22, 3416.

18 X. Gao, P. Wang, Q. Wang, J. Chen and A. Lei, Green Chem.,
2019, 21, 4941.

19 Z. Zhou, K. Hu, J. Wang, Z. Li, Y. Zhang, Z. Zha and Z. Wang,
ACS Omega, 2020, 5, 31963-31973.

20 W. Q. Jian, H. B. Wang, K. S. Du, W. Q. Zhong and
J. M. Huang, ChemElectroChem, 2019, 6, 2733.

21 M. Oseka, G. Laudadio, N. P. van Leest, M. Dyga,
A. D. A. Bartolomeu, L. J. Goofden, B. de Bruin, K. T. de
Oliveira and T. Noél, Chem, 2021, 7, 255-266.

22 Q. -L. Yang, X.-Y. Wang, J.-Y. Lu, L.-P. Zhang, P. Fang and
T.-S. Mei, J. Am. Chem. Soc., 2018, 140, 11487-11494.

23 Y. Wang, P. Qian, J.-H. Su, Y. Li, M. Bi, Z. Zha and Z. Wang,
Green Chem., 2017, 19, 4769-4773.

24 D.-Z. Lin and ].-M. Huang, Org. Lett., 2018, 20, 2112-2115.

25 K.-J. Li, K. Xu, Y.-G. Liu, C.-C. Zeng and B.-G. Sun, Adv. Synth.
Catal., 2019, 361, 1033-1041.

26 M. Huang, J. Dai, X. Cheng and M. Ding, Org. Lett., 2019, 21,
7759-7762.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra04087e

Open Access Article. Published on 26 October 2022. Downloaded on 1/21/2026 6:23:52 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

27 H.-S. Kim and S. Lee, Eur. J. Org. Chem., 2019, 2019, 6951-
6955.

28 N. Fu, L. Li, Q. Yang and S. Luo, Org. Lett., 2017, 19, 2122—
2125.

29 P.-S. Gao, X.-J. Wang, Z. -H. Wang, C. Zhang, B. Sun, Z. -
H. Chen, S.-L. You and T.-S. Mei, Angew. Chem., Int. Ed.,
2020, 59, 15254-15259.

30 Q. Wang, T. Yuan, Q. Liu, Y. Xu, G. Xie, X. Lv, S. Ding,
X. Wang and C. Li, Chem. Commun., 2019, 55, 8398-8401.

31 S. Zhang, L. Lj, J. Li, J. Shi, K. Xu, W. Gao, L. Zong, G. Li and
M. Findlater, Angew. Chem., Int. Ed., 2021, 60, 7275-7282.

32 M. Singh, L. K. Sharma, R. Dubey, M. K. Patel, V. Prakash
and R. K. P. Singh, ChemistrySelect, 2020, 5, 3847-3849.

33 Y. Ma, X. Yao, L. Zhang, P. Ni, R. Cheng and ]. Ye, Angew.
Chem., Int. Ed., 2019, 58, 16548-16553.

34 F. Lu, Z. Yang, T. Wang, T. Wang, Y. Zhang, Y. Yuan and
A. Lei, Chin. J. Chem., 2019, 37, 547-551.

35 D. Lehnherr, Y.-H. Lam, M. C. Nicastri, J. Liu, J. A. Newman,
E. L. Regalado, D. A. DiRocco and T. Rovis, J. Am. Chem. Soc.,
2020, 142, 468-478.

36 Z. Ye, M. Ding, Y. Wu, Y. Li, W. Hua and F. Zhang, Green
Chem., 2018, 20, 1732.

37 H.-B. Zhao, Z.-W. Hou, Z.-]. Liu, Z.-F. Zhou, ]. Song and
H.-C. Xu, Angew. Chem., Int. Ed., 2017, 56, 587-592.

38 X. Huy, G. Zhang, L. Nie, T. Kong and A. Lie, Nat. Commun.,
2019, 10, 5467-5476.

39 M. Islam, B. M. Kariuki, Z. Shafiq, T. Wirth and N. Ahmed,
Eur. J. Org. Chem., 2019, 2019, 1371-1376.

40 N. Ahmed and A. Vgenopouloua, SynOpen, 2019, 3, 46-48.

41 J. D. Haupt, M. Berger and S. R. Waldvogel, Org. Lett., 2019,
21, 242-245.

42 J. D. Herszman, M. Berger and S. R. Waldvogel, Org. Lett.,
2019, 21, 7893-7896.

43 H. Long, J. Song and H.-C. Xu, Org. Chem. Front., 2018, 5,
3129-3132.

44 R. Mei, J. Koeller and L. Ackermann, Chem. Commun., 2018,
54, 12879-12882.

45 X.Yi and X. Hu, Angew. Chem., Int. Ed., 2019, 58, 4700-4704.

46 S. C. Sau, R. Mei, J. Struwe and L. Ackermann,
ChemSusChem, 2019, 12, 3023-3027.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

47 X. Chang, Q. Zhang and C. Guo, Org. Lett., 2019, 21, 10-13.

48 E. Rodrigo and S. R. Waldvogel, Chem. Sci., 2019, 10, 2044-
2047.

49 H.-B. Zhao, P. Xu, J. Song and H.-C. Xu, Angew. Chem., Int.
Ed., 2018, 57, 15153.

50 E. Rodrigo, H. Baunis, E. Suna and S. R. Waldvogel, Chem.
Commun., 2019, 55, 12255-12258.

51 M. F. Hartmer and S. R. Waldvogel, Chem. Commun., 2015,
51, 16346.

52 B. Kaboudin, L. Behrouzi, F. Kazemi, M. M. Najafpour and
H. Aoyama, ACS Omega, 2020, 5, 17947-17954.

53 L. Behrouzi, R. Bagheri, M. R. Mohammadi, Z. Song,
P. Chernev, H. Dau, M. M. Najafpour and B. Kaboudin, Sci.
Rep., 2020, 10, 19378.

54 L. Behrouzi, R. Bagheri, Z. Song, F. Kazemi, B. Kaboudin and
M. M. Najafpour, Mater. Res. Express, 2019, 6, 125607.

55 J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan and A. Lei,
Angew. Chem., Int. Ed., 2014, 53, 502-506.

56 B. Du, Y. Wang, W. Sha, P. Qian, H. Mei, J. Han and Y. Pa,
Asian J. Org. Chem., 2017, 6, 153-156.

57 A. Lator, Q. G. Gaillard, D. S. Mérel, ]. F. Lohier, S. Gaillard,
A. Poater and J. L. Renaud, J. Org. Chem., 2019, 84, 6813—
6829.

58 Ueno, Y. Ikeda and E. Shirakawa, Eur. J. Org. Chem., 2017, 28,
4188-4193.

59 Y. Liu, L. Lu, H. Zhou, F. Xu, C. Ma, Z. Huang and J. X. S. Xu,
RSC Adv., 2019, 9, 34671-34676.

60 S. K. Y. Leung, W. M. Tsui, ]J. S. Huang, C. M. Che and
J. L. L. N. Zhu, J. Am. Chem. Soc., 2005, 127, 16629-21664.
61 H.Jiang, X. An, K. Tong, T. Zheng, Y. Zhang and S. Yu, Angew.

Chem., Int. Ed., 2015, 54, 4055-4059.

62 N. I. Ivanova, P. A. Volkov, L. I. Larina, N. K. Gusarovaand
and B. A. Trofimov, Chem. Heterocycl. Compd., 2012, 47,
1384-1389.

63 A. Gupta, M. S. Eshmukhand and N. Jain, . Org. Chem., 2017,
82, 4784-4792.

64 B. Lin, S. Shi, R. Lin, Y. Cui, M. Fang, G. Tangand and
Y. Zhao, J. Org. Chem., 2018, 83, 6754-6761.

RSC Adv, 2022, 12, 30466-30479 | 30479


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra04087e

	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds

	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds
	Recent advances in the electrochemical reactions of nitrogen-containing organic compounds


