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onant background on the
extraction of Raman signals from CARS spectra
using deep neural networks†

Rajendhar Junjuri, * Ali Saghi, Lasse Lensu and Erik M. Vartiainen

We report the retrieval of the Raman signal from coherent anti-Stokes Raman scattering (CARS) spectra

using a convolutional neural network (CNN) model. Three different types of non-resonant backgrounds

(NRBs) were explored to simulate the CARS spectra viz (1) product of two sigmoids following the original

SpecNet model, (2) Single Sigmoid, and (3) fourth-order polynomial function. Later, 50 000 CARS

spectra were separately synthesized using each NRB type to train the CNN model and, after training, we

tested its performance on 300 simulated test spectra. The results have shown that imaginary part

extraction capability is superior for the model trained with Polynomial NRB, and the extracted line shapes

are in good agreement with the ground truth. Moreover, correlation analysis was carried out to compare

the retrieved Raman signals to real ones, and a higher correlation coefficient was obtained for the model

trained with the Polynomial NRB (on average, �0.95 for 300 test spectra), whereas it was �0.89 for the

other NRBs. Finally, the predictive capability is evaluated on three complex experimental CARS spectra

(DMPC, ADP, and yeast), where the Polynomial NRB model performance is found to stand out from the

rest. This approach has a strong potential to simplify the analysis of complex CARS spectroscopy and can

be helpful in real-time microscopy imaging applications.
1. Introduction

Coherent anti-Stokes Raman scattering (CARS) is a nonlinear
optical technique that provides the non-destructive, label-free
ngerprint information of the molecule at high speeds.1,2 It is
a four-wave mixing process where Stokes (1st) and pump (2nd)
beams coherently excite the molecular vibrations, and a probe
(3rd) beam scatters off the coherently excited vibrations. Finally,
an anti-Stokes beam (4th) coherently generates with a frequency
equal to the excited molecular vibration frequency plus the
probe beam's frequency. In imaging application, it creates
imaging structures by visualizing the vibrational contrast of the
molecules, which require only fractions of a second for gener-
ating the micrograph of a specic vibrational mode. In contrast,
it takes a few minutes to complete a hyperspectral image. These
characteristics enabled it as a useful micro-imaging spectro-
scopic tool in various applications such as breast cancer tissue
mapping,3 in vivo imaging of biological cells,4 and under-
standing lipid biology,5 etc.

Despite these advantages, CARS spectroscopy has one
inherent major drawback, i.e., the presence of a strong non-
resonant background (NRB) component in the measured
niversity, Lappeenranta 53851, Finland.

har.junjuri@lut.

mation (ESI) available. See

the Royal Society of Chemistry
CARS signal. It is observed due to the interactions involving
highly detuned electronic energy levels and is considered as the
origin of CARS spectral5–7 as well as spatial distortion (in
imaging).8 The spectral/image contrast reduces further when
the analyte concentration is relatively low as the NRB will be
more dominant than the resonant CARS signal. Numerous
optical-based approaches such as polarization CARS,9 frequency
modulation CARS,10 single-Frequency CARS,11 pulse shaping
CARS,12 and interferometric CARS13 have been demonstrated to
reduce the NRB contribution to the CARS measurements.
Among all polarization CARS, frequency modulation CARS are
the most commonly used techniques where the rst one
inherently exploits different polarizations of the resonant and
non-resonant contributions.9 In the second case, either the
Stokes or pump beams are frequency-modulated such that their
difference is modulated on and off the vibrational resonance.10

All these approaches have decreased the NRB contribution,
albeit increased the complexity of experimental setup and cost.
Also, each method has its own limitations. In conventional
Raman measurements, the uorescence acts as an additive
background, but NRB co-generates with the resonant Raman
components in the CARS technique. Hence, these alternative
approaches not only reduced the NRB contribution but also
minimized the Raman intensities in the measured CARS
signal.14 Thus, NRB amplies the CARS signal above the noise
level, and without that, CARS does not show any benet over
conventional Raman spectroscopy.15 Meanwhile, this coherent
RSC Adv., 2022, 12, 28755–28766 | 28755
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contribution also introduces the distortions in the Raman line
shapes that cannot be removed directly.

Nevertheless, the xed “phase relationship” between the
Raman and NRB components has been utilized to extract the
Raman signal from the complex CARS spectra using computa-
tional methods such as the maximum entropy method (MEM)16

and the Kramers–Kronig (KK) relation.17 These studies were
either performed by using the NRB of an appropriate surrogate
material as a reference, such as coverslip-glass, water, and salt
or assumed it as a known a priori.18 Albeit, these surrogate
materials have also introduced errors in measured amplitude
and phase, which were corrected using “scale-error correction”
and “phase-error correction” methods.19 Further, other
approaches were also reported in the literature to correct the
experimental artefacts and line-shape distortions in CARS
spectra, such as “factorized Kramers–Kronig and error correc-
tion”,20 and “wavelet prism decomposition analysis”.21

All the above mentioned approaches either require a “refer-
ence surrogate material” or the parameters need to be adjusted
by the user to get optimum results. However, these complica-
tions can be circumvented by utilizing deep learning (DL)
methods which have shown impact in various research elds.22

Deep neural networks (DNNs) have been employed in numerous
applications such as natural language processing,23 weather
forecasting,24 and computer vision,25 etc. They have also been
explored in various spectroscopic applications such as hyper-
spectral image analysis,26,27 vibrational spectroscopy,28 molec-
ular excitation spectroscopy,29 and laser-induced breakdown
spectroscopy.30–32

In recent times, these DL algorithms have also been
deployed to solve the issue of NRB in CARS measurements.33–36

Houhou et al. have utilized the Long Short-Term Memory
(LSTM) model to extract the Raman signal and compared their
results with the KK & MEM computational techniques.33

Valensise et al. employed a convolutional neural network (CNN)
model for retrieving the imaginary part of CARS spectra.34 They
have named it as SpecNet. Wang et al. explored Very Deep
Convolutional Autoencoders (VECTOR) for the NRB removal,
and the performance is compared with SpecNet.35 In our recent
work, we have also demonstrated that the training with semi-
synthetic data in addition to the synthetic data improves the
DL model performance.36 The SpecNet model performance was
found to be poor when compared with our previous work36 and
VECTOR model,35 where it could not able to extract the spectral
lines with minimal intensities. More importantly, they have not
evaluated the model accuracy quantitatively. It is also worth
considering that no other paper reported to date has presented
MSE error throughout the spectral range which inherently
displays the efficacy of the trained model.

As aforesaid, the NRB plays a crucial role in CARS
measurements. However, all the recent works on NRB removal
using DL algorithms have assumed it as either constant or
a product of two sigmoids to synthesize the CARS data. Thus, all
investigations reported to date have trained their DLmodel only
by considering the same type of NRB irrespective of their DL
model architecture, and no other type is explored.34–36 Even the
recent VECTOR model has shown that robust performance is
28756 | RSC Adv., 2022, 12, 28755–28766
merely achieved for the simulated datasets, whereas it is found
to be sensitive when dealing with the actual experimental data.
It is attributed to the fact that NRB used in that study is simply
modelled as a product of the countervailing sigmoids and
hinted that further improvements on NRB are required to
handle complex CARS data. Also, we have visually noticed that
the “Product of two Sigmoid NRB” output is mostly (7 out of 10
times) demonstrated as a Gaussian/bell-like shape, as shown in
ESI Fig. 3(a)†. Hence, in this work, we have comprehensively
studied three different types of NRBs to see their effect on the
extraction of Raman signal. (1) Product of two sigmoids (it is
SpecNet's NRB), (2) Single Sigmoid, and (3) Polynomial
function.

For this investigation, we have considered all the spectral
simulation parameters to be the same except for NRB to
generate the CARS data. We have also adapted the same Spec-
Net model architecture and separately trained it with the CARS
data generated from two different NRBs. Now onwards, these
models are referred to as “One Sigmoid NRB/Sigmoid model”
and “Polynomial NRB/Polynomial model” in the manuscript. In
the case of “Product of two sigmoid NRB”, we have considered
the original SpecNet model, which was already trained with the
CARS data generated by using the product of two sigmoids as
NRB. The SpecNet model weights are directly considered from
the literature34 and compared their results with models trained
with the other two NRB types. This comparative study has been
done for the rst time to the best of our knowledge and provides
a giant leap towards the improvements in rapid extraction of
Raman signal from CARS measurements.
2. Experimental details

The rst part of this section provides an overview of the theo-
retical CARS spectral simulation procedure, and the second part
presents the details of the CARS experimental setup.
2.1 Synthetic spectra generation

A CARS spectrum S(u) can be synthesized as follows:

SðuÞ ¼ 3ðuÞ
���cð3Þ

NR þ c
ð3Þ
R ðuÞ

���
2

þ hðuÞ (1)

It is the combination of the non-resonant, resonant, and
noise contributions. Here, c(3)NR, c

(3)
R corresponds to the non-

resonant and resonant third-order susceptibilities, respec-
tively. 3(u) is a line-shape distortion error that arises from the
experimental artefacts, and h(u) represents the noise contri-
bution. u represents the frequency over a normalized scale [0,
1].

Further, c(3)R can be dened as

c
ð3Þ
R ¼

X1

0

Ak

Uk �
�
up � us

�� iGk

(2)

where, Uk us and up represent the resonance frequency of
vibrational mode, Stokes and pump laser beam frequencies,
© 2022 The Author(s). Published by the Royal Society of Chemistry
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respectively. Whereas Ak and Gk correspond to the spectral line's
amplitude and width, respectively.

Fieen spectral lines are considered as a maximum limit
while simulating each synthetic spectra, and the minimum is
set to be one line. The peak amplitudes are varied between 0.01
to 1, and the resonant frequencies are generated on a normal-
ized scale, i.e., [0, 1]. The experimental CARS data can be
acquired in the spectral range of �200–3200 cm−1. Thus, the
spectral linewidth considered for simulating CARS data on the
normalized scale [0.001, 0.008] corresponds to [2, 25.6 cm−1] in
the wavenumber scale. Further, three different NRBs were
simulated, as given in the following sections. All the synthetic
spectra simulated with three different NRB types are generated
in Python (TensorFlow 2.7.0) and the code is freely available37.
The parameter ranges to generate synthetic NRB's were chosen
to emulate the experimental NRB's as realistically as possible.

2.1.1 Product of two Sigmoid NRB. We have directly
adapted this NRB and its parameters (s1, s2, c1, & c2) from the
SpecNet paper published by Valensise et al.34 It was dened as
a product of two sigmoid functions as follows:

NRBSpecNet ¼ s1*s2 si ¼ 1

1þ e�ðu�ciÞsi (3)

where s1 and s2 are two sigmoid functions, and the required
parameters are randomly selected from of the following value
ranges:

s1 & s2 ¼ [10, 5]; c1 ¼ [0.2, 0.3]; c2 ¼ [0.7, 0.3]

2.1.2 One Sigmoid NRB. Here, only one Sigmoid function
but with different simulation parameters is considered for the
generation:

NRBone sigmoid ¼ 1

1þ e�ðw�cÞs (4)

The parameters s and c are randomly selected from a range of
values [−5, 5] and [−2, 2], respectively. A broad range of values
(i.e., one order higher compared to SpecNet's range) were
selected for s and c to simulate various NRBs.

2.1.3 Polynomial NRB. A Polynomial function is empiri-
cally considered to simulate NRB. In the case of “Product of two
Sigmoid NRB”, four parameters are required to generate NRB
(see eqn (3)). Hence, we have considered the fourth-order
polynomial, which needs only one extra parameter (total ve
parameters [a–e] as given in eqn (5)) compared to SpecNet. A
higher-order polynomial can also be explored; however, it
requires more parameters and thus complicates the model
training. Thus, we restricted to only to a 4th order polynomial
function dened as follows:

NRBPolynomial ¼ au4 + bu3 + cu2 + du + e (5)

The Polynomial coefficients a, b, and d are randomly selected
from the range of values [−10, 10], whereas it is [−1, 1] for c and
e coefficients. The NRB is normalized between 0 and 1 and then
added to c(3)R data. Finally, uniformly distributed noise h(u) is
© 2022 The Author(s). Published by the Royal Society of Chemistry
added to it for simulating the CARS spectra. In three models, all
the spectral simulation parameters are the same except for NRB.
2.2 Details of the experimental CARS data

Multiplex CARS experimental details and its optical layout can
be found here.38 A 10 ps laser pulse is utilized as a pump/probe
beamwhich has a bandwidth of�1.5 cm−1 at 710 nm. An�80 fs
laser pulse is considered as a Stokes beam, where the spectral
range can be varied between �750 to 950 nm. This spectral
range corresponds to 750–3500 cm−1 in the vibrational
frequency scale. The Stokes pulse power is adjusted to 105 mW,
whereas the pump/probe pulse is operated at 75 mW power. An
achromatic lens (focal length � 5 cm) has been deployed to
focus these laser beams into a tandem cuvette. The Stokes and
pump/probe beams exploited long pass and interference lters
to block amplied spontaneous emission from lasers, respec-
tively. The ltered CARS signal from the analyte is guided onto
a spectrometer which has a resolution of �5 cm−1. All the CARS
spectra were recorded with an acquisition time of �800 ms.
Finally, The CARS spectrum is measured from three samples,
namely ADP, DMPC, and Yeast. The rst sample is an equimolar
mixture of AMP, ADP, and ATP in water with a total concen-
tration of 500 mM. DMPC is small unilamellar vesicles (SUV)
suspension with a concentration of 75 mM. The third sample is
a living budding yeast cell (a zygote of Saccharomyces cerevisiae)
measured from the mitochondria of the yeast cell.39
3. Deep learning model

Articial neural networks (ANNs) learn from the data by a non-
linear mapping between the model input and output.40 The
trained model can be utilized to perform inference, that is,
make predictions about the output based on unseen input data.
The learning is typically implemented in a supervised manner
by using training data consisting of data samples and the
desired output for each sample. It is achieved by the back-
propagation algorithm where the error signal from the output
passed towards the input by adjusting the model parameters,
that is, the weights of computational units called neurons. In
the case of complex modelling tasks, deep architectures con-
taining a large number of interconnected layers of neurons are
applied. Learning a huge number of parameters implies that an
extensive training set is required. However, not all applications
are such that a deep architecture is needed. Among the different
ANN architectures, convolutional neural networks (CNN) have
become an efficient solution for various machine learning-
related problems such as time-series classication,41 image
processing,42 and object detection.43

The CNN architecture consists mainly of convolutional and
fully-connected layers together with pooling and attening
layers. The rst part of a CNN includes a stack of convolution
layers responsible for extracting the relevant features from the
data and producing new data representations called “feature
maps”. The main advantage of convolutional layers is that they
function as lter banks where the parameters are learned, and
the level of abstraction related to the data representation
RSC Adv., 2022, 12, 28755–28766 | 28757
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increases layer-by-layer. Another benet is moderate invariance
to spatial or spectral translation enabled by the fact that each
neuron in the convolution layer is connected to a limited
neighbourhood of neurons of the preceding layer and the
weights are shared by the neurons. This is of particular interest
for Raman spectroscopy applications where the spectral lines/
peaks can be shied within the spectrum. In the second part
of the CNN architecture, fully-connected layers have no limita-
tions concerning the connections from the preceding layer and
their respective weights. They are used to learn the mapping
from the feature representation to the desired output of
a specic type and dimensionality.

The CNN architecture used here is directly adapted from the
SpecNet model34 and used as-it-is without modifying its struc-
ture. Then the model is trained with CARS data generated with
two different NRBS. i.e., ‘One Sigmoid NRB’ and ‘Polynomial
NRB’. In the case of ‘Two sigmoid NRB’, the original SpecNet
weights are used, and the results are compared. The architec-
ture consists of ve 1D convolution layers with 128, 64, 16, 16,
and 16 neurons of dimensionality 32, 16, 8, 8, and 8, respec-
tively. The schematic of the CNNmodel architecture is shown in
ESI Fig. 2†. The convolutional part is followed by three fully
connected layers of 32, 16, and 640 neurons. Rectied Linear
Unit (ReLU) is used as the activation function, and mean
squared error (MSE) is the loss function. Adam optimizer44 was
used with a batch size of 256 samples. The code can be accessed
from Git-Hub repository37.
4. Results and discussion

The following sections present the results of the three models.
All the parameters used for creating the test set are the same as
the train set. One hundred test spectra are generated for each
NRB type which cumulatively accounts for 300 spectra for all the
three NRB types. First, 100 spectra correspond to ‘Product of
two Sigmoid NRB’, spectra 101–200 account for ‘One sigmoid
NRB’, and spectra 201–300 correspond to ‘Polynomial NRB’.
Finally, the Raman signal extraction efficiency of the models is
tested on the 300 test spectra. These 300 test spectra can be
found in ref. 37.
Fig. 1 Comparison of the results obtained from the three models. (a)
SpecNet (2 Sigmoid NRB), (b) One Sigmoid NRB, and (C) Polynomial
NRB. True & Pred represent the true and predicted imaginary parts.
4.1 Retrieval of the imaginary part

Aer training the three models, their predictive capability can
be readily estimated by retrieving the imaginary part from
unknown test spectra. As aforesaid, 300 standalone spectra were
simulated for evaluation which were not used while training the
models. Fig. 1(a–c) represents the results obtained from the
SpecNet, Sigmoid, and Polynomial models, respectively. The
frequency scale on the x-axis is normalized between 0 and 1.
Thus the Raman shi can be considered as relative. Each plot in
the gure has three subplots that visualize the CARS spectrum
(top), true & predicted imaginary part (middle), and their
squared difference (bottom), respectively. The squared error
(SE) plot can provide quantitative information on a prediction
error throughout the spectral range. This interpretation has
28758 | RSC Adv., 2022, 12, 28755–28766
paramount importance while comparing results obtained from
the different models.

Thus, this critical information can be utilized for validating
the performance of each model. Fig. 1(a) presents the result of
the 7th test spectra obtained from the SpecNet model (two
Sigmoid NRB). We have arbitrarily chosen this spectrum from
the total dataset to visually represent the efficacy of the trained
models. The results of the other spectra are also discussed in
the next section with the support of correlation analysis. As
mentioned earlier, 1–100 test spectra were trained with two
Sigmoid NRB. Hence the SpecNet predicted all the spectral
lines, albeit their intensity has deviated from the actual one. On
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a–c) Represent the mean square error estimated for SpecNet,
Sigmoid, and Polynomial NRB models, respectively. The black dots
represent the mean value, whereas the red line corresponds to the
standard deviation measured from the 300 test spectra.
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the other hand, some peaks with low intensity were also
observed in the spectral region 0.6–1 cm−1 which were not
present in the actual Raman signal.

Fig. 1(b) visualizes the Raman signal extracted from the
Sigmoid model. It predicted all the spectral lines with correct
intensities. However, some spurious spectral features with
higher intestines were also observed at both ends of the spectra
and mid of the spectral region. These spurious lines degraded
performance compared with the SpecNet and Polynomial
models. Fig. 1(c) illustrates the Raman signal retrieved from the
© 2022 The Author(s). Published by the Royal Society of Chemistry
Polynomial model on the same test spectra. Here, the extracted
imaginary spectrum closely resembles the true spectrum, and it
has not predicted any other spurious lines throughout the
spectral range compared to the other models. Further, a quali-
tative assessment of each model can be made by considering
the SE of a prominent spectral line. For this investigation,
a spectral line at 0.14 cm−1 is considered which has a higher
intensity among all the spectral features. Finally, it is noticed
that the measured SE for SpecNet is 40 times higher compared
to the Sigmoid & Polynomial models. It is also true for other
spectral lines at 0.36 and 0.41 cm−1, where the deviance is
higher by 70 and 40 times, respectively. However, the Sigmoid
model has shown spurious lines at 0.02, 0.5, and 0.98 cm−1

which account for SE of 105, 103 and 102 times higher, respec-
tively, compared to the other two models. Overall, the Poly-
nomial model has well predicted the imaginary part than the
other two models.

This SE plot visualization effectively presents the differences
between the actual and measured Raman signals throughout
the spectral range for a single spectrum. However, the illustra-
tion of the total 300 test spectra will be cumbersome. Hence
their average or mean is estimated for each model and referred
to as mean square error (MSE), as shown in Fig. 2(a–c). The
black dot represents the mean value obtained from all the test
spectra, and the red line corresponds to their standard devia-
tion. Fig. 2(a–c) visually conveys the performance of the trained
models. For easy understanding, the entire spectral range is
divided as three parts 0–0.1, 0.1–0.9, and 0.9–1 cm−1. The mid-
region (0.1–0.9 cm−1) itself accounts for 80% of total data
points, and the remaining 20% falls in the rst and last regions.

As seen in Fig. 2, the MSE is higher in the rst region (0–0.1
cm−1) compared to other regions irrespective of the trained
model. Specically, the deviation/error is maximum (�0.075)
for SpecNet and minimum (�0.056) for the Polynomial model.
Moreover, 50% of data points in this region have MSE > 0.04 for
the SpecNet, but a signicant difference is observed for the
other two models, where only �5% of data points have MSE >
0.04. Also, a close inspection of the Sigmoid and Polynomial
MSE plot revealed that the variation is slightly higher for most
of the data points in the former case.

In the last region (0.9–1 cm−1), a maximum error (�0.042) is
noticed for the Sigmoid model, whereas it is a minimum
(�0.034) for the Polynomial model. However, it is also worth
considering that the mean (black dots) is close to zero for the
Polynomial model in these two regions. The mean is slightly
higher in the other two models, reecting the poor prediction at
both ends of the spectrum. The measured MSE in the mid-
region (0.1–0.9 cm−1) is similar for the Sigmoid and Poly-
nomial models, where the error is less than 0.01 for all the data
points. In the case of SpecNet, the error is almost twice that of
other models for most of the data points. Also, the error is
relatively higher (>0.03) for a few points compared to the other
two models. In conclusion, the MSE plot visually demonstrated
that the Polynomial model performance is optimum among the
three models. The reason can be explained as follows. As
mentioned earlier, the NRB generated from “Product of two
Sigmoids” has mostly (7 out of 10 times) given a Gaussian like
RSC Adv., 2022, 12, 28755–28766 | 28759
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shape, as shown in ESI Fig. 3(a)†. This visualization suggests
that the generated NRB is biased toward producing Gaussian
like distribution instead of creating different NRB shapes for
the generalization. However, in the case of the 4th order poly-
nomial function, it generated various NRB line shape outputs,
including Gaussian/bell-like structure. As seen from ESI Fig.
3(b),† only 2 out of 10 times it simulated Gaussian-like distri-
bution. It is also noticed that the generated NRBs have different
shapes, which are drastically different from each other and
close to the NRB observed in the experimental CARS measure-
ments. Thus, it serves as a better alternative to the Product of
two Sigmoid NRB and can enhance the predictive ability of the
deep learning models.

Further, correlation analysis is performed in the next
section. It provides a unique quantity for each measurement/
spectrum, i.e., a correlation coefficient is estimated for each test
spectra for all three models. Therefore, it can be utilized as
a performance metric while comparing the results of different
models on a large number of spectra.
Fig. 3 Pearson correlation coefficient (PCC) obtained for the 300 test
spectra for (a) Pearson correlation coefficient (PCC), (b) Euclidean
distance (ED), and (c) Cosine distance (CD). The data points represent
the test spectrum number and its PCC.
4.2 Correlation analysis

Correlation analysis is a statistical approach that measures the
strength of the linear relationship between two different vari-
ables.45 Here, it computes the correlation between the true and
predicted imaginary part of the CARS signal and numerically
provides a percentage of their similarity. For this investigation,
three different correlation methods (spectral matching algo-
rithms)45 are employed, viz., (a) Pearson correlation coefficient
(PCC), (b) Euclidean distance (ED), and (c) Cosine distance
(CD). The rst one is a correlation measurement, and the
remaining two are distancemetrics. The numerical value of PCC
lies between [−1 & 1], where 1 represents the positive linear
correlation, and −1 corresponds to the negative linear correla-
tion.46 Further, zero represents no linear dependency between
the two variables considered for the analysis. ED is the length of
a line segment between the two variables/data points. CD
measures the cosine angle between the true and predicted
imaginary part of the CARS signal projected in a multi-
dimensional space. In conclusion, for all the three methods
(PCC, ED, & CD), 1 represents the best correlation, i.e., true and
predicted spectrum are identical, whereas 0 corresponds to no
similarity between these two measurements. The correlation
analysis is performed on the 300 test spectra for the three
models, and the results are presented in the following sections.

Fig. 3(a–c) illustrate the PCCs obtained from the 300 test
spectra for SpecNet, Sigmoid, and Polynomial NRB models,
respectively. The data points in parathesis represent the test
spectrum number and their corresponding PCC value. It is
evident from Fig. 3(c) that the PCC estimated for the Polynomial
model has given higher coefficients for the 90% test spectra
compared to the other models.

Only four spectra have given PCC less than 0.80, which
corresponds to merely �1.3% of the total test data. The SpecNet
and Sigmoid model's performances were found to be similar
when comparing the PCC values. i.e., their PCCs difference is
<0.05 for 151 spectra and it is <0.1 for 210 spectra (see Fig. 1 in
28760 | RSC Adv., 2022, 12, 28755–28766
ESI†). It is also noticed that the maximum PCC obtained is
�0.99 for all the models. However, the minimum values have
shown a signicant difference when compared with the Poly-
nomial model. The minimum value of PCC is �0.67 for the
Polynomial model, whereas it is �0.19 and �0.11 for the
Sigmoid and SpecNet models. For easy visualization, the test
spectrum with a minimum PCC value in each model is marked
with a red asterisk (*). For example, it is 127th spectra in
SpecNet and 84 and 108th spectra in Sigmoid and Polynomial
models, respectively. The Raman line shapes extracted from
these three spectra using three models are presented in Fig. 4,
which inherently visualizes their limitations in predicting the
imaginary part. It also explores the route cause for achieving the
lowest PCC value for each model.

Fig. 4(a–c) represent the results obtained from the 127th test
spectrum using SpecNet, Sigmoid, and Polynomial models,
respectively. The input CARS spectrum has only one spectral
feature in the entire spectral range. However, it is located near
the right extrema, and SpecNet could not able to retrieve the
Raman signal. A similar observation was noticed in our previous
work.36 Further, this inefficient extraction of the Raman spec-
trum has given an SE of �0.29 at the peak centre and led to the
lowest PCC in the entire test set, i.e., �0.11. The other two
models have predicted the Raman line, albeit the extracted
intensity is low compared to the actual one. Also, the estimated
SE for the Sigmoid model is �2 times that of the Polynomial
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Comparison of the results obtained from the three models. (a–c) Raman signal extracted from the 127th test spectra using SpecNet,
Sigmoid and Polynomial models respectively, (d–f) results of 84th spectra, (g–i) results of the 108th spectra. Pred is the predicted Raman signal,
and True represents the actual Raman signal. Squared error corresponds to their difference.
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model. Fig. 4(d–f) illustrate the results of the 84th test spectrum
obtained from the SpecNet, Sigmoid, and Polynomial models,
respectively. The input CARS spectrum has one very broad peak
in the region of 0.11–0.64 with centre at 0.37 cm−1 and one
sharp line at 0.97 cm−1. It also consists of two faint spectral
signatures at 0.09 and 0.67 cm−1. The SpecNet has predicted all
the lines except for one line at 0.97 cm−1. Also, two fake lines
with low intensities have appeared in the extracted Raman
spectrum at 0.77 & 0.85 cm−1.

In the case of Sigmoid, all the lines were retrieved except for
the spectral line at 0.77 cm−1. In addition, a large spurious
signal is observed in the 0.4–0.6 cm−1 region. These limitations
are reected in PCC estimation, where its value is minimum
(�0.19) in the total test set for the Sigmoid model. Further, the
Polynomial model has computed all the spectra lines. Never-
theless, the intensities of the two lines at 0.67 & 0.97 cm−1 do
not agree with the true ones. Moreover, a spectral line shape
with negligible intensity has appeared in the 0.4–0.6 cm−1

range. These observations also affected the PCCmeasurements,
where the second-lowest coefficient (�0.69) was achieved for
this test spectrum for the Polynomial model.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Fig. 4(g–i) present the results of the 108th test spectrum
obtained from the SpecNet, Sigmoid, and Polynomial models,
respectively. The input CASRS spectrum has multiple spectral
lines with different peak intensities. However, the rst spectral
line on the le extreme (at �0.006 cm−1) has only half part, i.e.,
the spectral line has started only with the trailing part instead of
the rising part, as shown in Fig. 4(g–i). It happened due to
considering a limited number of data points in the spectrum
(640); otherwise, the total spectral line shape could be expected.
It may also occur on the right side of the spectrum, as reported
in our previous study.36 The three trained models have retrieved
all the Raman lines except for the rst line, which is attributed
to considering merely half part of the spectral line. Similar
observations were noticed in the previous studies where the DL
model performance deteriorated when it encountered the
spectral lines, with only having a rising or trailing part.36 This
inherent limitation has led to a high SE of �0.15 and impacted
the PCCmeasurements, where its value is minimum (�0.67) for
the Polynomial model. This could be a reason for the high MSE
observed on either side of the extrema, as shown in Fig. 2(a–c).
RSC Adv., 2022, 12, 28755–28766 | 28761
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Fig. 5 (a) Histogram plot of the PCC values of the three models. (b)
Comparison of the different correlation metrics obtained from the
three models. The symbol represents the mean value of the 300 test
spectra, and the error bar corresponds to their standard deviation.
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In conclusion, Fig. 3 and 4 have visually demonstrated the
imaginary part prediction capability of three models where the
performance of the Polynomial model was found to be best.
Numerically, it performed well on more than 90% of the total
test data (i.e., it has a higher PCC value than the other models).
It also revealed that its efficiency decreases (i.e., its correlation
coefficient value) when it encounters the CARS spectrum with
a very broad peak or spectral line located close to the edges or
line shape with only having rising/trailing part.

Further, a histogram plot of the PCCs obtained for the 300
test spectra for the three models is shown in Fig. 5(a). It is an
accurate method that graphically visualizes the numerical
distribution of the PCC data. Here the frequency count repre-
sents the number of spectra that have PCC in a specied range.
For example, six spectra have PCC between 0.65–0.7 for the
SpecNet. The PCC values of the 97% test spectra lie in the region
of 0.65–1 for all three models. Hence, the x-axis in Fig. 4(a) is
started from 0.65 instead of zero. It ascertains a better visuali-
zation of the PCCs distribution. Also, it shows that �2/3 of total
test data (199 test spectra) have more than a 0.95 correlation
coefficient for the Polynomial model. It conrms that the pre-
dicted Raman signal from the CARS data is in better agreement
with the true one. In contrast, only 121 and 100 spectra have
PCC > 0.95 for the Specnet and Sigmoid models, respectively.
Cumulatively 264, 165, and 187 spectra have PCCs of more than
0.9 for the Polynomial, Sigmoid, and SpecNet models,
respectively.
28762 | RSC Adv., 2022, 12, 28755–28766
It is also noticed that the frequency count in most of the
regions/bins is almost the same for the Sigmoid and SpecNet
models. Moreover, it is observed that 29 & 27 spectra have PCC
less than 0.8 for the SpecNet and Sigmoid models, respectively.
Nevertheless, a signicant difference is noticed for the Poly-
nomial model, where only four spectra have PCC < 0.8. These
ndings demonstrate that the performance of the Polynomial
model is superior in predicting the imaginary parts compared
to the other models.

Further, Euclidean and Cosine distance methods have given
results similar to the PCC approach. Hence their statistics are
visualized in Fig. 5(b) instead of presenting individual metrics.
The symbol in each model represents the mean value, and the
error bar corresponds to the standard deviation measured from
the 300 test spectra. It is envisioned from Fig. 5(b) that the
correlation metrics have shown a similar trend irrespective of
the model type. i.e., The average mean value is greater than
�0.95 for the Polynomial model for all the metrics, whereas it is
�0.89 & �0.9 for the Sigmoid and SpecNet models, respectively.
It is also noticed that the error is minimum in the Polynomial
model. In order to evaluate the preciseness of the correlation
metric, its relative standard deviation (RSD) is calculated, which
is found to be �5.1 for the Polynomial model. Whereas it is
�12.4 & �12.8 for the SpecNet, and Sigmoid models,
respectively.

To summarise, these metrics presented the predictive ability
of the three models on the simulated test spectra. Results of the
experimental CARS spectra are discussed in detail in the next
section.
4.3 Prediction on experimental CARS spectra

This section critically evaluates the trained model's efficiency by
retrieving the vibrational spectrum from the experimentally
recorded broadband CARS spectra. This investigation provides
a complete overview of the model's performance when dealing
with complex CARS data with different spectral backgrounds
and vibrational features such as viz., ADP/AMP/ATP mixture,
DMPC, and yeast samples. The experimental details of these
samples are presented in Section 2.2. Fig. 6 illustrates the
results of these test samples obtained from the three models.
Further, each gure in Fig. 6 is a three-stacked plot where the
rst one is an input test CARS spectrum presented at the top
with green color (see Fig. 6(a) for reference). The second plot in
the middle visualizes the true and predicted imaginary parts
with black and red colors, respectively. Here, ‘True’ and ‘Pred’
in the plot represent the imaginary part retrieved by the
Maximum Entropy method and trained models, respectively.
Further, the last plot at the bottom represents the squared error
(blue line), i.e., the square of the difference between the true
and predicted imaginary parts. In each sample, the y-axis scale
is considered the same for all the models for better
visualization.

Fig. 6(a–c) represent the SpecNet, Sigmoid, and Polynomial
models' prediction on the CARS spectrum of the ATP mixture,
respectively. The adenine vibrations of the AMP/ADP/ATP
molecules are the most prominent features and form the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Results of the experimental CARS spectra. (a–c) The imaginary parts predicted by the SpecNet, Sigmoid and Polynomial models,
respectively for the ADP/AMP/ATP. (d–f) For the DMPC, and (g–i) for the yeast.

Fig. 7 The PCCs estimated for the three experimental CARS spectra
utilizing the three trained models.
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backbone of vibrations ranging from 1270 to 1400 cm−1. Among
all, the strongest one is observed at �1330 cm−1 as shown in
Fig. 6(a).47 All the models have extracted this vibrational mode,
but the predicted intensities are not consistent with the actual
intensities. The estimated SE is found to be minimum for the
Polynomial model, i.e., �0.001 whereas it is three times higher
in the case of the Sigmoid model and 50 times in SpecNet.
Further, the phosphate vibrations in the spectral range of 950–
1100 cm−1 can be utilized to identify different nucleotides.48

The symmetric stretching vibration of the triphosphate group of
ATP has shown a strong vibrational resonance at �1123 cm−1.
In this case also lowest SE is noticed for the Polynomial model,
i.e.,�10−5, and it is maximum for the Sigmoid�0.02. The SE for
SpecNet is �10−4. The diphosphate broadened resonance at
�1100 cm−1 is only found in Sigmoid and Polynomial models
and absent in the SpecNet. The monophosphate resonance of
AMP at 979 cm−1 was merely extracted by the Polynomial model
and not observed in others. It is also noticed that the error is
high on the right extreme for the Sigmoid model due to the
signicant deviation of the predicted intensity from the true
one. Here also, we have estimated PCC for all the three models,
© 2022 The Author(s). Published by the Royal Society of Chemistry
and the results are presented in Fig. 7. It is evident from the
correlation measurements that the performance of Polynomial
is the best among all as it has the highest coefficient �0.93,
followed by Sigmoid (�0.89) and SpecNet (�0.86).
RSC Adv., 2022, 12, 28755–28766 | 28763

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra03983d


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

1/
6/

20
25

 1
2:

47
:3

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Fig. 6(d–f) visualize the results of the DMPC sample obtained
from the SpecNet, Sigmoid, and Polynomial models, respec-
tively. It has a strong CH-stretch vibrational band between 2600
and 3000 cm−1. The vibrational band assignment of various
resonant frequencies in the ngerprint CH-stretch region is well
presented in the literature.49,50 It is also worth considering that
this CARS spectral line shape and background are signicantly
affected by the broad vibrational response of water at the wings.
The symmetric and antisymmetric stretching modes of methy-
lene groups are assigned to the spectral lines at 2856 and
2892 cm−1, respectively.50 Further, the vibrational mode at
2946 cm−1 is attributed to the overtone of the methylene scis-
soring mode. All three models have retrieved these ngerprint
lines. However, the extracted line strengths are not matching
with the true intensities and lead to a high error in Sigmoid and
SpecNet models. The measured SE at 2856 cm−1 is �0.51,
�0.16, and�0.06 for SpecNet, Sigmoid and polynomial models,
respectively. These errors are reected in Pearson correlation
measurements, where the PCCs of the three models are �0.76,
�0.85, and �0.89, respectively. Also, a similar deviation is
noticed for the three models for the spectral line at 2892 cm−1

as shown in Fig. 6(d–f). In the case of vibrational mode at
2946 cm−1, the performance of SpecNet and polynomial model
is found to be similar, and the Sigmoidmodel has given an error
by more than ve times. Further, the predictions of the yeast
sample using three models are presented in Fig. 6(g–i). The C–H
bend of the aliphatic chain and amide band is noticed at
1440 cm−1 and 1654 cm−1, respectively. The C]C bending
mode of phenylalanine is observed at �1590 cm−1. The three
models extracted all these spectral resonances nevertheless,
predicted intensities have deviated for the SpecNet model. Also,
a ringing structure has appeared in the 800–1200 cm−1 region,
which is not present in the actual imaginary part. The SpecNet
SE at 1440 cm−1 spectral line is more than 100 times compared
to other models. The error in other peaks is also more than an
order for the SpecNet. The estimated PCC also conveyed the
same information where predictive capability is superior for the
polynomial model than others.

Even though the polynomial NRB model performed well on
the simulated and experimental data, it has shown minor
shortcomings for a few synthetic spectra, such as low prediction
intensities or the inability to nd some peaks while extracting
near the edges of the CARS spectrum. Also, the performance
deteriorated when it encountered a partially simulated spectral
line at the starting or ending point of the spectra, i.e., which has
only a rising or trailing part instead of a complete line shape.

These limitations can be overcome by modifying spectral
simulation parameters such as peak location, width, etc. in
future work. It would also be interesting to explore various
simulated data sets with different parameters, like the number
of peaks, frequencies, amplitudes, noise, etc., to t specic
kinds of applications in different spectral regions.

Raman spectral line shapes are approximately known for
applications like pharmaceutical analysis (distinct sharp peaks
observed)51 and biomolecule cell mapping (broader peaks
noticed).52 Hence, in future studies, NRB could be better
approximated for these kinds of applications by considering the
28764 | RSC Adv., 2022, 12, 28755–28766
details of the excitation laser, such as spectral envelope and
phase delay.35 Further, the order of the polynomial and range of
the coefficients can be optimized in future work for better
results. Also, experimentally recorded NRB can be utilized in
synthesizing training data.

Moreover, the DLmodel hyper-parameters such as activation
function, number of neurons, and number of layers can be
modied to improve the performance.53 Also, ne-tuning or
transferring learning mechanisms can be explored to circum-
vent these limitations, which positively impacts model perfor-
mance. It is also interesting to explore Gaussian processes54 as
an alternative model to extract Raman data from the CARS
spectrum in future studies. In particular, it has successfully
modelled 1D time series and spectral data and learned kernels
having an extractable power spectral density.55 Further, non-
stationary kernels achieved via input warping44 can also be
useful for modelling the nonstationary behaviour of intensity as
a function of Raman shi.

5. Conclusions

We have presented a comprehensive study by exploring
different NRBs to efficiently extract Raman signals from the
CARS spectra using the CNN model. This approach has an
opportunity to retrieve the imaginary part without any user
intervention. The input CARS data was simulated with three
different non-resonant backgrounds (NRBs) types, i.e., (i)
Product of two sigmoids, (ii) Single Sigmoid, and (iii) fourth-
order polynomial function. All the spectral simulation param-
eters are considered the same except for the NRB. The CARS
datasets were separately synthesized for each NRB type and then
utilized to train the CNN model individually. Finally, the
prediction efficiency of these three models was tested on 300
unknown test spectra. These studies have demonstrated that
Polynomial NRB models' performance is superior to other
models where the extracted line shapes are in better agreement
with the true ones. Further, the correlation analysis has revealed
that a higher correlation coefficient is achieved for the 90% of
test data for the Polynomial NRB model. On average, it is found
to be �0.95 for 300 test spectra, whereas it is only �0.89 for the
other two models. Final measurements on three experimental
CARS spectra (DMPC, ADP, and yeast) also conrmed that the
predictive capability is best for the Polynomial NRB model
compared to the other two. This investigation has shown
potential improvement compared to the previous reports, where
only one type of NRB is used to train the DL model irrespective
of its architecture. Finally, the performance of the polynomial
NRB model sets the baseline for this kind of research, and any
future studies can be incrementally built on this work.
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