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In the ecotoxicological risk assessment, acute toxicity is one of the most significant criteria. Green alga
Pseudokirchneriella subcapitata has been used for ecotoxicological studies to assess the toxicity of
different toxic chemicals in freshwater. Quantitative Structure Activity Relationships (QSAR) are
mathematical models to relate chemical structure and activity/physicochemical properties of chemicals
quantitatively. Herein, Quantitative Structure Toxicity Relationship (QSTR) modeling is applied to assess
the toxicity of a data set of 334 different chemicals on Pseudokirchneriella subcapitata, in terms of ECyo
and ECsg values. The QSTR models are established using CORAL software by utilizing the target function
(TF,) with the index of ideality of correlation (lIC). A hybrid optimal descriptor computed from SMILES
and molecular hydrogen-suppressed graphs (HSG) is employed to construct QSTR models. The results
of various statistical parameters of the QSTR model developed for pEC; and pECsq range from excellent
to good and are in line with the standard parameters. The models prepared with IIC for Split 3 are
chosen as the best model for both endpoints (pECi;o and pECsg). The numerical value of the
determination coefficient of the validation set of split 3 for the endpoint pECyq is 0.7849 and for the
endpoint pECsq, it is 0.8150. The structural fractions accountable for the toxicity of chemicals are also
extracted. The hydrophilic attributes like 1...n...(... and S...(...=... exert positive contributions to
controlling the aquatic toxicity and reducing algal toxicity, whereas attributes such as c...c...c...,
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1. Introduction

The organic chemicals released into the environment by facto-
ries can be potentially toxic pollutants of the environment.
Contamination of aquatic ecosystems with organic chemicals is
a serious concern because these can affect multiple levels of
biological organization, from the molecular to the ecosystem
level. The goal of all global communities is to achieve the
management of chemicals and hazardous wastes that mini-
mizes notable harmful effects on human health and the envi-
ronment. The eco-toxicities of chemicals at different endpoints
are measured according to the test guidelines of the OECD
(Organization for Economic Co-operation and Development)
and are utilized for regulative purposes.' Pseudokirchneriella
subcapitata (P. subcapitata) is a microalga and it is frequently
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C...C...C... enhance lipophilicity of the molecules and consequently enhance algal toxicity.

employed as a bioindicator species in freshwater habitats to
measure nutrient or hazardous chemical levels. The OECD and
US-EPA (United States Environmental Protection Agency)
recommend P. subcapitata for ecotoxicological bioassays since
this microalga exhibit faster growth rates and better suscepti-
bility to diverse toxins than other algae.”™ In the ecological risk
assessment, the most commonly used measurement to
summarize ecotoxicological effects is the ECx (effective
concentration) where x can be 5-100.%°

However, the toxicological in vivo studies of all potential
chemicals are practically impossible because these bioassays
are expensive and time-consuming. Therefore, replacement
approaches based on computational techniques are needed to
mitigate these difficulties. In this regard, the Quantitative
structure-activity/toxicity relationship (QSAR/QSTR), a signifi-
cant computational technique, has been suggested to estimate
the statistical relationship between the toxicity of a group of
compounds with their molecular structure.”™® A set of mathe-
matical equations that equate the chemical structure to bio-
logical activity are designated as QSTR/QSAR models.

CORAL (CORrelation And Logic) software has been recom-
mended for the construction of QSAR/QSTR models for various
endpoints employing the inbuilt Monte Carlo algorithm."** In
the CORAL software, SMILES (Simplified Molecular Input Line
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Entry System) notations of the compound structures are
employed as input to determine the descriptor of correlation
weight (DCW). The DCW depends on the compound structure
and the property under analysis but does not depend on the 3D
geometry of the molecule. However, the QSAR/QSTR models of
the CORAL software can be developed from three types of
descriptors: SMILES-based, graph-based, and hybrid descrip-
tors (a combination of SMILES and graphs). The models con-
structed based on the hybrid descriptors are statistically better
than the models constructed by individually SMILES or graph
descriptors.***

The index of ideality of correlation (IIC) has been imple-
mented by the theoretical chemist to validate and improve the
predictive potential constructed QSAR/QSTR models.'?*** The
IIC is a parameter for assessing the predictive capability of
QSPR/QSAR models that takes into account not only the coef-
ficient of correlation, but also the organization of the group of
dots images relative to the diagonal, in “observed-calculated”
endpoint coordinates.**>*

The aim of the present work is to develop reliable QSTR
models with the use of IIC to compute pEC;, and pECs, of
organic pollutants against P. subcapitata. A hybrid optimal
descriptor is employed to design QSTR models for 334 diverse
organic chemicals including pharmaceuticals, agrochemicals
and personal care products using the Monte Carlo approach.
Four random splits are implemented to assess the reliability
and accuracy of the designed QSTR models.

2. Method

2.1. Data

In the present QSTR model development study, the prediction
of effective concentration for 10% inhibition (EC,,) and half-
maximal effective concentration (ECs,) was described for 334
diverse organic chemicals. Only those numerical values of EC;,
and ECs, were taken into account for model development,
which was calculated at the uniform exposure interval of 24
hours (EC;(-24 h and ECs,-24 h). The experimental acute toxicity
of organic pollutants against P. subcapitata was taken from the
article published by K. Khan & K. Roy.*® The functional group
amines, esters, halohydrocarbons, aldehydes, isothiocyanates,
organic acids, alcohols (or phenols), ketones, etc. were present
in the dataset. The pECy, (mol L") and pECs, (mol L™") of
organic compounds against P. subcapitata were utilized as two
separate endpoints. The range of pEC,, was from 0.54 to 9.3 mol
L~ whereas the range of pECs, was from 0.3 to 9.1 mol L™ "%

The BIOVIA Draw 2019 tool was used to sketch the molecular
structures of all 334 organic chemicals and the SMILES nota-
tions. Three splits were made for the above-mentioned organic
chemicals (n = 334) and each split was unselectively split into
the training (=35%), invisible training (=25%), calibration
(=16%), and validation (=25%) set.

The responsibility of each set was fixed and these were: (i) the
active training set provided the information on which the model
was built (correlation weights are calculated); (ii) the passive
training set gave the information to check how well the corre-
lation weights fitted for the molecular structures of the active
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set which were suitable for the structures not present in the
active training set (“model quality inspector”); (iii) the calibra-
tion set should catch the moment when, despite the increase in
the statistical quality of the model for the active and passive
sets, the statistical quality for the calibration set begins to fall.
In fact, this is the moment of the start of overtraining. (iv) The
validation set was applied for the final assessment of the
statistical quality of the model.

Table S17 represents the list of compounds IDs and SMILES
code, as well as the corresponding experimental and estimated
PECso and pEC,, values of chemicals.

2.2. Hybrid optimal descriptor

Herein, for designing the QSTR model of pEC,, and pECs, the
hybrid optimal descriptor was implemented and it was
computed by the combination of molecular features extracted
from SMILES and hydrogen suppressed molecular graph (HSG).
In terms of statistical quality, the literature survey revealed that
better models were generated by hybrid descriptors than the
descriptors based only on SMILES or molecular graphs.** The
inbuilt Monte Carlo algorithm CORAL tool was employed to
calculate the hybrid descriptors of correlation weights (DCW).

According to the OECD second principle, the algorithm used
at each start performs the same sequence of actions. However,
since the algorithm performs a stochastic process of processing
the presented (input) information, the numerical values of the
model quality criteria used are not identical. But, in the case of
comparing the results of several such processes (for example,
with different partitions into training and testing sets), repro-
ducible means and variances will be obtained for the statistical
characteristics (correlation coefficient and RMSE).

The QSTR model to predict pEC;, and pECs, of organic
chemicals is computed using the following mathematical
relationship:

pEC, or pECsy = Cy + C; x WPDCW(T*, N*) (1)

Co, C;, and DCW (descriptor of correlation weights) are the
regression coefficients, the slope, and the optimal hybrid
descriptor, respectively. The T* denotes the threshold value and
N* denotes the number of epochs for the Monte Carlo
optimization.

Hybrichw(T*’ N*) — SMILESDCW(T, N*)
+ GPPDCW(T*, N*)  (2)

SMILEShCW(T*, N*) = S.CW(SSSx) + CW(BOND)
+ CW(NOSP) + CW(PAIR) + CW(HARD) (3)

GraphDCW(T*, N*) = ZCW(elk) + ZCW(pt4k)
+ S CW(nny) + SIW(CS) + 33(C6)  (4)

In eqn (3) the code SSSk is the local SMILES attributes
described as a combination of three SMILES-atoms; NOSP is
global SMILES features and it denotes the absence or presence
of N (nitrogen), O (oxygen), S (sulfur), and P (phosphorus);
BOND displays the presence or absence of double (‘=), triple

RSC Adv, 2022, 12, 24988-24997 | 24989
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(“4') and stereochemical (‘@’ or ‘@@)’ bonds; PAIR illustrates
the combination of BOND and NOSP; HARD imply the existence
or absence of NOSP, HALO (halogens), and BOND in the
molecular structure.

In eqn (4), el, ptds, and nny are local graph attributes. The
el; is Morgan extended connectivity of first order; pt4, is the
number of paths of length 4 beginning from a given vertex in
HSG; nny is the nearest neighbours code; C5 and Cé6 display the
role of five- and six-member rings, respectively.

In CORAL software, two kinds of target functions (TF; and
TF,) can be applied to build the QSTR model with the Monte
Carlo optimization. The balance of the correlation method was
used to compute TF1 whereas the IIC was added to the TF; to
attain the modified target function TF,.*

TF| = Rrrn + Ritrn — [RtrN — Ritrn| X 0.1 (5)
TF2 = TF] + IICCAL x C (6)

Here, Rrrn and Ryrry are the correlation coefficients for the
training and invisible training sets, respectively. The C is an
empirical coefficient or weight of IIC, here C = 0.2.

The IIC¢,, for the calibration (CAL) set is computed utilizing
the following equation:

min("MAEcaL, "MAEcaL)
max( MAEcaL, "MAEcaL)

1IC = RCAL X (7)

Rcar is the correlation coefficient between observed values
and calculated values of pEC,, or pECs, for the calibration set.
The negative and positive mean absolute errors are indicated
with "MAE and "MAE, which are computed by the subsequent
equations:

1 &
"MAEcaL = N Z |A]
y=1

(8)
Ay < 0, "N is the number of Ay, < 0
1 N+
"MAEcaL =+ > |A«]
N 2 ©)
A, < 0, "N is the number of A, = 0
Aj = Observed, — Calculated, (10)

The ‘¥’ is the index (1, 2, ... N) and the
calculated, are related to the endpoint.

observed; and

2.3. Applicability domain

According to the third principle of the OECD,**** a QSAR model
should have a well-defined applicability domain (AD).

The domain of applicability for the model obtained as
a result of stochastic Monte Carlo optimization varies depend-
ing on the split into training and validation sets. The applica-
bility domain is determined according to the prevalence of
molecular features extracted from SMILES (e.g. nitrogen ‘N’,
oxygen ‘O’, double bonds ‘="', etc.) in the active training set.

24990 | RSC Adv, 2022, 12, 24988-24997
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Thus, for several splits into training and validation sets, the
domain of applicability may change, but not significantly. The
corresponding calculations give only a qualitative picture in
terms such as “this compound is suspicious, because its
constituent molecular features are poorly represented in the
active training set.” In CORAL software, AD is defined using the
following relationship®®

|Prrn(Ak) — Pear (k)|
Defect,, =
A Ntrn(Ak) + Near(4k)

If A4g> 0 (11)

DefeCtAK =1 IfAK: 0

Prrn(Ax) and Prear(Ax) are the probability of an attribute ‘Ag’
in the training and the calibration sets; and are the number of
times or frequency of ‘Az’ in the training and calibration sets,
respectively.

The statistical defect can be defined as the sum of statistical
defects of all attributes present in the SMILES notation.

NA
Defectyolecule = z Defect 4, (12)
k=1

NA is the number of active SMILES attributes for the given
compounds.

In CORAL, a substance is an outlier if inequality 13 is
fulfilled:

Defectmorecute = 2 X Defectrry

(13)

Defectrry is an average of statistical defects for the dataset of
the training set.

3. Results and discussion

3.1. QSAR modeling for pEC,, and pECs,

In order to build up the trustworthy QSAR model(s), the T*
(optimal threshold) and the N* (number of epochs) for the
calibration set was calculated by analyzing the best statistical
characteristics. The optimum value of T* for models of pEC;,
and pECs, was 1 and N* was 10 for all splits. All QSTR
models for pEC;, and pECs, of organic compounds against
P. subcapitata were constructed using the target function TF,
(Wi = 0.2).

The QSTR models obtained by the Monte Carlo optimization
for both endpoints are the represented by the following
relationship:

PEC;o model

Split 1 pECyo = 1.6154476 (£0.0136475)
+0.1917901 (£0.0006197) x DCW(1,10) (14)

Split 2 pEC, = 2.0134704 (£0.0124620)
+0.1346531 (£0.0005317) x DCW(1,10) (15)

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra03936b

Open Access Article. Published on 01 September 2022. Downloaded on 11/28/2025 4:59:13 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Split 3 pEC;o = 0.3932798 (£0.0145016)
+0.2487573 (£0.0007835) x DCW(1,10) (16)

PECso model

Split 1 pECsy = 1.2841679 (£0.0150488)
+0.1617599 (£0.0007597) x DCW(1,10)  (17)
Split 2 pECso = 1.2939204 (£0.0113965)
+0.1531264 (£0.0005331) x DCW(1,10) (18)

Split 3 pECsy = 1.1720502 (£0.0122202)
+ 0.1507783 (£0.0005351) x DCW(1,10) (19)

3.4. Model validation

Validation of the developed models is important in evaluating
the reliability and robustness of the QSTR models. Validation of
the model can be examined using the: (i) cross-validation (Q*) or
internal validation (R®). The predictive ability of the QSTR
model is acceptable if the numerical value of Q> and R” is
greater than 0.7;** (ii) external validation, CCC (concordance
correlation coefficient), Q,F;, Q.F,, Q,F3, s (standard error of
estimation), RMSE (root-mean-square error), MAE (mean
absolute error), F (Fischer ratio), and metrics (R>m and MAE
based metric). In terms of external validation, the model has
good predictability if CCC is greater than 0.85.%° Also, if *m
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values >0.5 and Ar’*m < 0.2, the model can be interpreted as
a reliable model; (iii) Y-scrambling or data randomization.

Herein all these methods had been used for model valida-
tion. The IIC criterion was applied as a final statistical param-
eter to validate the developed QSTR models. The statistical
characteristics calculated with eqn (14)-(19) are provided in
Table 1. The mathematical equations of the applied statistical
criteria are very well explained in the literature.>»*” All designed
QSAR models were statistically reliable and the numerical
values of statistical quantities were found in acceptable ranges
as reported in the literature.**>*

In QSTR modelling of pEC;, the numerical values of
R’validation and Q%validation Were in the range of 0.7246-0.7849
and 0.7149-0.7776, respectively. Whereas, in the QSAR model-
ling of pECs,, the numerical values of R*vaidation and Q®validation
were in the range of 0.7366-0.8150 and 0.7231-0.8065, respec-
tively. The most reliable model was presented by Split 3 for
PEC;, as the statistical result of the determination coefficient
was the highest. The numerical values of various parameters for
the validation set of split 3 were R* = 0.7849, Q*> = 0.7776, CCC
= 0.8648, ’m = 0.7612 and Ar’m = 0.1010 (Table 1). Similarly,
for endpoint pECs,, the model developed for split 3 was
assigned as a prominent model. The statistical results for
benchmarks for the validation set were R*> = 0.8150; Q* =
0.8065; CCC = 0.9020; r*m = 0.7743 and Ar*m = 0.0683. Thus,
these statistical results confirmed that the models constructed
were acceptable in terms of statistics. Fig. 1 shows the plots of

Table 1 The summary of statistical characteristics and criteria of predictability of the QSTR models obtained for pEC;q and pECsq of organic

compounds for three random splits

Split Set n R CccCc IIC Q* Qx> Q8 Qn®  Ru CR, T’ Arn> S MAE F

PECi0

1 Training 118 0.8550 0.9218 0.8072 0.8504 0.8522 0.651 0.496 684
Invisible training 79 0.8609 0.8856 0.5277 0.8535 0.8556 0.742 0.576 476
Calibration 54 0.7186 0.8349 0.8389 0.6883 0.7282 0.7045 0.8212 0.7154 0.7111 0.6049 0.1210 0.725 0.592 133
validation 83 0.7246 0.8435 0.6846 0.7149 0.7246 0.6174 0.143 0.8339 6291

2 Training 115 0.8855 0.9393 0.8932 0.8804 0.8793 0.533 0.408 874
Invisible training 73 0.8868 0.9022 0.4317 0.8802 0.8823 0.706 0.553 553
Calibration 63 0.8487 0.9146 0.9210 0.8391 0.8466 0.8460 0.8362 0.8160 0.8388 0.7468 0.1385 0.657 0.513 342
validation 83 0.7643 0.8716 0.7643 0.7731 0.7575 0.6965 0.1219 0.8779 0.7052

3 Training 113 0.8866 0.9399 0.7473 0.8826 0.8796 0.545 0.426 867
Invisible training 79 0.8775 0.9194 0.5672 0.8722 0.8742 0.691 0.517 551
Calibration 59 0.8106 0.8985 0.8632 0.7970 0.8002 0.7987 0.8465 0.7260 0.8049 0.7336 0.0152 0.679 0.537 244
validation 83 0.7892 0.8648 0.8831 0.7776 0.7612 0.6061 0.1010 0.6765 0.5691

PECso

1 Training 114 0.8401 0.9131 0.7161 0.8331 0.8335 0.683 0.537 588
Invisible training 82 0.8395 0.9006 0.7660 0.8311 0.8278 0.733 0.587 418
Calibration 52 0.7915 0.8717 0.8839 0.7771 0.7853 0.7851 0.8433 0.7479 0.7792 0.6529 0.1900 0.681 0.533 190
validation 85 0.7924 0.8297 0.7490 0.7774 0.6276 0.5802 0.0949 0.7716 0.6247

2 Training 116 0.8341 0.9096 0.9133 0.8289 0.8297 0.655 0.517 573
Invisible training 76 0.8704 0.9186 0.8496 0.8626 0.8634 0.671 0.529 497
Calibration 59 0.7802 0.8795 0.8808 0.7623 0.7622 0.7435 0.7914 0.6309 0.7679 0.6918 0.1218 0.774 0.596 202
validation 83 0.7366 0.8517 0.8494 0.7231 0.5993 0.6371 0.0756 0.7696 0.6055

3 Training 116 0.8665 0.9285 0.7831 0.8617 0.8568 0.617 0.461 740
Invisible training 79 0.9130 0.9350 0.9123 0.9088 0.9065 0.512 0.409 808
Calibration 56 0.7270 0.8484 0.8525 0.7031 0.6898 0.6860 0.7888 0.5823 0.7205 0.6237 0.0829 0.756 0.606 144
validation 83 0.8150 0.9020 0.8320 0.8065 0.7743 0.7402 0.0683 0.7245 0.6110

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Graphical display of QSTR models for pEC10 and pEC50 of organic compounds obtained for three splits.

experimental pEC,,/pECs, versus predicted pEC,,/pECs, for all
splits and it displays that the predicted pEC,,/pECs, have
a good correlation with its experimental data. Also, Fig. 1
indicates the uniform data distribution of pEC;/pECs, for
training, invisible training, calibration and validation sets
across all runs. The plots of residual pEC,0/pECs, versus pre-
dicted pEC;¢/pECs, for all QSTR models are represented in
Fig. 2. Residual scattering of pEC;, and pECs, was found near
the horizontal line centred around zero, implying that all con-
structed QSTR models were well fitted. The Kolmogorov-Smir-
nov test for normality (at the 95% confidence level) was done by
SPSS version 26. It confirmed a normal distribution of residuals
for all proposed models for pIC;, and pICs, (Table S27).

3.5. Mechanistic interpretation

“Mechanistic interpretation if possible” is the 5™ principle of
OECD. The objective of mechanistic interpretation is to explore
a mechanistic relationship between the descriptors employed in
a model and the endpoint being predicted.

Monte Carlo optimization may be used numerous times to
get a mechanistic explanation for CORAL models. If a molecular
characteristic has acquired a positive correlation weight in all
runs, its existence is likely to promote an increase in endpoint
magnitude. If a molecular characteristic has a negative corre-
lation weight in all of the preceding runs, its existence is more
likely to decrease the intensity of the endpoint. The relevance of
the molecular characteristic is unclear if the weights alternate
(some positive, some negative). It is also necessary to consider
the frequencies of molecular characteristics in the training and
control sets.

24992 | RSC Adv, 2022, 12, 24988-24997

In the present research, the structural attributes (SAk)
extracted from SMILES and HSG attributes were employed to
explore a relationship between the DCW and pEC;, or pECs.

The SAk extracted from at last three or more independent
runs of the Monte Carlo optimization were chosen for mecha-
nistic interpretation. The SAk having the positive or negative
CW values in all runs were kept in the category of a promoter of
increase or decrease endpoint (pEC,, or pECs,). Table 2 illus-
trates the list of structural attributes of pEC,, and pECs, with
their CWs for three independent runs.

Based on the results summarized in Table 2, the promoters
of pEC,, increase were: C5...0..., c...C...C..., cC...(...C...,
C...C...C...,,N...(...C...,, C...(...C... and the promoters of pECs,
increase were: C5...0..., C...(...C..., c...c...c..., C6...A...1...,
C...C...C.... On the other hand, the promoters of pEC;,
decrease c...n...C..., S...(...C..., ++++S---B2==,
S...(...=..., and ++++Cl---S===; whereas promoters of pECs,
decrease were: 1...n...(..., S...(...=..., [...-...CL..., and++++O---
S===. The results of mechanistic interpretation are illus-
trated in Fig. 3. Hence, The hydrophilic attributes like
exert positive contributions to
controlling the aquatic toxicity and reducing algal toxicity,
whereas attributes such as c...c...c..., C...C...C... enhance lip-
ophilicity of the molecules and consequently enhance algal
toxicity (see Fig. 3). The hydrophilic attributes like 1...7n...(...
. attributes and lipophilic attributes such as
c...c...c..., C...C...C... influences the bioavailability of organic
compounds and regulates their passage across biological
membranes. A chemical with a greater lipophilicity may be
more hazardous.

were:

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A graphical presentation of residual pEC10 versus predicted pEC10 (A) and residual pECsq versus predicted pECsq (B) for all constructed

QSTR models.

3.6. Comparison with the previously reported models

Previously several QSARQSTR Models to predict pECx of organic
chemicals against P. subcapitata have been reported and some
statistical characteristics of the reported QSTR models are
summarized in Table 3.

Lee and Chen*® reported two QSAR models for the prediction
of the pECs, of 20 benzoic acids to P. subcapitata. The R® of the
models were 0.921 and 0.965. Aruoja et al***° predicted the
toxicity in terms of pECs, of 58 polar narcotic chemicals (R* =
0.6) and 50 non-polar narcotic chemicals (R* = 0.9469) in two
independent QSTR studies. They also built a combined model
for 108 polar and nonpolar narcotic compounds based on three
descriptors including log Ko, molecular weight (MW) and AH¢/
Hatoms (R> of 0.9149).

Khan and Roy***“** reported several QSTR models for the
toxicity pECso of 30 cosmetics, 69 pharmaceuticals and 334
organic compounds (pEC;, and pECs,) against P. subcapitata in
three independent studies. The dataset for the developed model
of cosmetics was divided into 20 compounds of the training set
and 10 compounds of the test set with R* of 0.885 and 0.712,
respectively. For QSTR modelling of 69 pharmaceutical
compounds, the total data set was partitioned into sets of
training (53 compounds) and test (16 compounds). The

© 2022 The Author(s). Published by the Royal Society of Chemistry

suggested models for pharmaceuticals, respectively, have R* of
0.69 and 0.71 for the training and test sets. In the next study,
they constructed several six descriptors-based QSTR models for
PECso (24 h) and eight descriptors-based QSTR models for
PEC;, using 334 organic chemicals against P. subcapitata. The
dataset was divided into the training set (251 compounds, R* =
0.72) and the test set (83 compounds, R> = 0.70).

Later, Yu* developed six descriptors QSTR models for 334
chemicals against P. subcapitata, by employing SVM (Support
Vector Machine) and genetic algorithm. The dataset for the
endpoint pEC,, was divided into training (n = 167 compounds,
R?>=0.76 and MAE = 0.60) and test sets (n = 167 compounds, R’
= 0.75 and MAE = 0.61) in the ratio of 1 : 1 (training set and 167
compounds test set). Also, the QSTR models were developed for
endpoint pECs, with 167 compounds for training (R*> = 0.75 and
MAE = 0.60) and 167 compounds for test sets (R* = 0.74 and
MAE = 0.61).

Recently, Masand et al.® developed a QSTR model to estimate
the EC50 for 72 h based assay for the microalga Pseudo-
kirchneriella subcapitata utilising a data collection of 271
compounds from various chemical classes. The Genetic Algo-
rithm Multi-linear regression (GA-MLR) was employed to
develop models. The dataset was divided into two sets, ie.
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Table 2 The structural attribute as promoters of endpoint increase/decrease, their correlation weights, the number of each attribute in each set

and instances of interpretation attributes

Endpoint SAk Split CWsrun1 CWsrun2 CWsrun3 N1 N2 N3 Defect Comments
Promoter of increase
pPEC10 C5...... 0... 1 0.0518 0.65382 0.39759 113 73 54 0.0003 Absence of five-member
2 0.65986 1.29285 0.5346 108 67 62 0.0003 rings
3 1.07757 1.25744 0.48657 107 78 56 0
c...C...C... 1 0.60173 0.70843 0.06133 57 23 24 0.0005 Presence of three
2 0.05675 0.25722 0.44496 50 27 30 0.0005 consecutive aromatic
3 0.12996 0.47028 0.75404 49 32 26 0.0001 carbons
c...(...c... 1 0.70809 0.0575 1.34021 56 22 25 0.0001 Presence of two aromatic
2 0.38614 0.33907 0.1424 42 29 26 0.0007 carbon with branching
3 0.11744 0.51584 1.00395 44 37 22 0.0002
C...C...C 1 0.5463 1.04019 0.43998 27 22 18 0.0023 Presence of three
2 1.06593 1.00475 0.65444 33 13 20 0.0006 consecutive aliphatic
3 0.6226 0.74328 0.93265 27 24 14 0 carbons
N...(...C 1 0.40394 0.48781 1.00039 23 19 13 0.0013 Presence of aliphatic
2 1.07368 0.89617 0.01453 22 11 15 0.0013 nitrogen and aliphatic
3 0.3214 0.5839 0.59097 21 23 12 0.0005 carbon with branching
C...(..C 1 0.44453 0.59506 1.29729 43 45 31 0.0028 Presence of two aliphatic
2 0.30408 0.72512 0.53272 55 36 29 0.0002 carbon with branching
3 0.07648 0.49085 0.56336 52 40 31 0.0008
Promoter of decrease
C...n...c... 1 —0.0287 —0.44782 —1.06545 3 5 2 0.0023 Presence of aromatic
2 —1.23621 —0.75303 —0.19895 4 3 2 0.0005 nitrogen between two
3 —1.56359 —1.69078 —0.99982 4 2 2 0.0002 aromatic carbon
S...(...C... 1 —0.49469 —2.01565 —0.11843 3 2 2 0.0023 Presence of sulphur with
branching with carbon
++++S---B2== 2 —0.56135 —0.0549 —0.38003 13 9 7 0.0001 Presence of sulphur with
a double bond
S...(c..=... 3 —1.33917 —1.08063 —1.01206 4 7 3 0.0022 Presence of sulphur with
branching and double
bond
++++Cl---S=== 1 —0.57654 —0.35935 —0.62229 3 1 1 0.0017 Presence of chlorine with
sulphur
Promoter of increase
PECso C5...... 0... 1 0.21385 0.49259 2.08764 111 77 46 0.0006 Absence of five-member
2 2.21049 0.704 1.70235 110 74 56 0 rings
3 1.43226 1.5737 2.15936 110 75 54 0.0001
C...(...C 1 0.25343 0.18014 0.42824 58 36 27 0.0001 Presence of two aliphatic
2 1.24886 0.47209 1.01774 60 35 28 0.0005 carbon with branching
3 1.25593 0.18762 1.24105 59 34 23 0.0012
C...C...C... 1 0.30441 0.73197 0.19607 47 38 17 0.0013 Presence of three
2 0.42912 0.29232 0.60473 46 31 27 0.0008 consecutive aromatic
3 1.09812 0.29491 0.08848 45 36 24 0.0006 carbons
C6...A...1... 1 1.2658 0.05442 0.26358 38 21 15 0.0008 Presence of one six-
2 0.40875 0.26677 0.20824 32 22 21 0.0015 member aromatic ring
3 0.89128 1.05867 0.39511 30 28 21 0.0023
C...C...C 1 0.91697 0.94405 0.63035 32 21 14 0.0002 Presence of three
2 1.21722 1.07992 1.33949 29 24 16 0.0005 consecutive aliphatic
3 1.08398 1.16517 0.89018 29 17 15 0.0004 carbons
Promoter of decrease
1..n...(... 1 —0.82145 —1.58394 —0.45675 7 6 3 0.0004 Presence of aromatic
2 —0.84679 —1.04423 —0.83943 6 3 4 0.0016 nitrogen on the first ring
3 —0.94912 —0.6517 —0.22174 6 5 1 0.0048 with branching
S...(..=... 2 —0.75816 —0.71358 —1.06783 8 3 2 0.0035 Presence of sulphur with
branching and double
bond
++++0- - S=== 3 —0.84696 —0.5927 —0.1503 14 2 5 0.0017 Presence of oxygen with
sulphur
[...-...CL.. 2 —0.95022 —0.29786 —0.57338 4 2 2 0.0001 Presence of chloride ion
3 —0.92707 —0.72223 —0.89901 5 3 0 1
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c1(C(=0)CCCCCCCCCCC)cccccl

c...c...c... and C...C...C... Enhancing toxicity
pPECs=7.04 and pEC,=7.83

Compound 348

~

C(Ccceen)ceecece
C...C...C... and N...(...C... Enhancing toxicity
pEC50=6.87 and pEC10=7.36

Compound 185
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c...c...c..., C...C...C... and N...(...C... Enhancing
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pEC50=6.60 and pEC10=7.12

Compound 333

SN
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K\. |
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B2== Reducing toxicity
pECsoZZ.SO and pEC10:352

Compound 260

N

A

cl(ce(nc(nl)N)O)N
1...n...(... Reducing toxicity
pEC50:2.39 and pEC1o:265

Fig. 3 Some examples in organic chemicals responsible for enhancing and reducing algal toxicity based on model interpretation.

a training set and a prediction set with a ratio of 80 : 20 (217 : 54
compounds). The numerical values of R*, Qo> and MAE for
the suggested QSTR model were 0.72, 0.70 and 0.524, respec-
tively. Seven descriptors were employed to develop QSTR
models.

If the QSTR models were judged based on the results of the
MAE of the test or validation set, then the present QSTR
modelling was also preferred over the reported QSTR models.
The numerical value of MAE of the validation set for the pECs,
endpoint was 0.461 which was lower than the other reported
results except for the work reported by Khan et al.** and Masa-
nad et al.® But, only 69 chemicals were employed by Khan et al.
to build the QSTR model. Whereas, 271 organic compounds
were used by Masand et al. to develop the QSTR models.

© 2022 The Author(s). Published by the Royal Society of Chemistry

However, In the earlier published work, two sets were
applied to build up QSTR models (training and test set), but in
the present research, the QSTR models were developed using
four sets (training, invisible training, calibration and validation
set). All previously reported models used a single split, but in
the present research, 3 splits were used to generate three QSTR
models using the target function TF,. Various validation
parameters for the assessment of the model were employed in
the earlier reported works, but, the index of ideality correlation
(IIC) was never used and is employed in the present work. In the
present study only one descriptor, DCW, was used to generate
QSTR models, while previously reported methods were devel-
oped by utilizing more than one descriptor. The mechanistic
interpretation in terms of SMILES fragment was reported first

RSC Adv, 2022, 12, 24988-24997 | 24995
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time in the present research. By using the results of mechanistic
interpretation, one may predict the toxicity of unknown mole-
cules. Hence, the QSTR models developed herein are more
reliable and have better statistical quality and predictability.

4. Conclusion

Using a hybrid optimal descriptor, which was obtained by
a combination of SMILES and HSG attributes, QSTR models
were generated to predict the toxicity (EC;o and ECsg) of 334
different organic chemicals against P. subcapitata based on the
Monte Carlo optimization method. The balance of correlation
method with IIC was used to establish QSTR models. The IIC
was employed to construct the QSTR models which improve the
robustness and predictability of the generated models, partic-
ularly for the validation set. Also, the developed QSTR models
were monoparametric. To establish the reliability of QSTR
models, three random splits and four sets of a single split
(active training, invisible training, calibration, and validation
sets) were employed. The reliability and predictability of the
suggested QSTR models were evaluated using internal valida-
tion, external validation and data randomization including R?,
CCC, IIC, Q%, Q°F,, Q°F,, Q°F;, s, MAE, F, RMSE, R*m, AR*m,
CR?P, and Y test. The structural attributes responsible for the
toxicity were also identified. The hydrophilic attributes like
1..n..(... and S...(...=... exert positive contributions to
controlling the aquatic toxicity and reducing algal toxicity,
whereas attributes such as c...c...c..., C...C...C... enhance lip-
ophilicity of the molecules and consequently enhance algal
toxicity. However, all of the designed QSTR models were suit-
able to estimate the EC;, and ECs, of diverse chemicals.
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