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Delignified wood aerogels as scaffolds coated with
an oriented chitosan—cyclodextrin co-polymer for
removal of microcystin-LR
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Nano-porous aerogels are an advantageous approach to produce low-density materials with high surface
area, particularly when using biobased materials. Frequently, most biobased aerogels are synthesized
through a bottom-up approach, which requires high energy inputs to break and rebuild the raw
materials, and for elimination of water. To curb this, this work focused on generating aerogels by a top-
down approach through the delignification of a wood substrate while eliminating water by solvent
exchange. To diversify the surface chemistry for use in water treatment, the delignified wood-
nanowood-was coated with a chitosan—cyclodextrin co-polymer and tested in the capture of
microcystin-LR. The generated nanowood structure had 75% porosity after coating, with up to 339%
water swelling and an adsorption capacity of 0.12 mg g~ of the microcystin. This top-down technique
enables the generation of low-cost aerogels by reducing steps, using a biobased self-assembled coating

rsc.li/rsc-advances

1. Introduction

Wood is one of the most used materials, as it has been used
since pre-history times for fuel, constructions (first wood house
made 10 000 years ago), and as a material for tools and
weapons." Even in more modern times, its application has made
incursions into furniture and paper, which makes it an
important day-to-day resource. Furthermore, it is estimated that
up to 1.6 billion people depend on this industry, as well as it
derivatives in products and services, for their sustenance, as it
translates in the market to about $450 billion USD.” It is esti-
mated that there were 530.5 billion cubic meters of stock in
2015, but regions like Europe, East Asia, and North America
have consistently reported an increase in their forest
coverage.®™

As wood is a biosynthesis product, its chemical composition
varies depending on the selected tree, species, geographical
location, available soil nutrients, and age, among other.®’
However, the three main components are cellulose, hemi-
cellulose, and lignin, with the polysaccharide components-
cellulose and hemicellulose-accounting for 65 to 70% of the
dry weight.® Traditional processing for wood such as
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with hydrophobic active sites, and avoiding costly energetic input.

commodities and high-end products is based on breaking of the
inherent structure, homogenization, and separation of the
components.’ Thereafter, product development takes a bottom-
up route, rebuilding the components into new structures such
as paper and films,'®" or into more complex structures such as
aerogels and hydrogels.”*** Even though isolation is an
important process for the generation of products and materials,
a great side effect is the hornification of the cellulose nano-
fibrils that were present in the cellular wall."> To obtain again
nanofibrils from the pulp or other cellulosic biomass, processes
as high pressure homogenizer and grinding by a super mass
colloider have been developed; nevertheless, these processes
require a high energetic input.***

As some of the more novel applications, such as water
treatment, it is desired to maintain the high surface area of the
cellulose nanofibrils and a low density such as the obtained
with aerogels and hydrogels from nanocellulose. A recently
develop alternative to form aerogels has been the separation of
the lignin and hemicellulose from the wood natural structure by
softer chemical processes derived from the more tradition
pulping methods.’*'** However, most of these processes still
use a high energy drying step, freeze-drying.

These wood-based aerogels (also called nanowood), have
been mostly used for radiation cooling, solar cells and windows,
or for energy storage after carbonization but not much work has
been reported on the utilization of nanowood in water reme-
diation, despite their high surface area and renewability.>
Furthermore, for this type of applications, extra processing is
still needed as the surface chemistry is limited to the inherent
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cellulose side groups, and consequent partial negative charge
that comes with some side reactions on the delignification
process.® Therefore, some extra modification is needed, which
ideally will be done with little to no energy input and green
materials. This could be achieved like in traditional bottom-up
aerogels and other porous materials, with active nanoscale
coatings, such as adsorption of nanoparticles,>” or other
active polymers.”*°

A good strategy to add functionality to polysaccharides is to
adsorb other B-linked polysaccharides that has the desired
functional group, such as chitosan or alginates.*** Further-
more, when chitosan is used, the amino groups that are added
serve both as functionality by their positive charge that can
interact with negative charged pollutants,*** as well as a new
surface group that can be easily modified with other active
molecules with different molecular interactions like B-cyclo-
dextrin or with enzymes by green chemistry such as EDC/NHS
chemistry.>*’

Thus, this work is based on the following hypotheses: (i)
nanowood can be generated without the use of freeze-drying. (ii)
Nanowood can be modified with biopolymeric derivatives by
entropically-driven methodologies-such as impregnation and
adsorption - and (iii) modified nanowood can remove pollut-
ants from water.

In order to corroborate the first hypothesis, solvent exchange
adapted from Toivonen et al. was done,*® where the final solvent
is octane allowing to be air dried, avoiding the high energy
input. The second hypothesis was addressed with a pre-
modified chitosan with TEMPO oxidized B-cyclodextrin; the
coating was done by sole immersion of the aerogels in a buffer
solution with an ionic strength of 50 mM, which promotes the
adsorption of chitosan and cellulose by hydrogen bonding.
Finally, to assess the third hypothesis and the activity of the
coating material, adsorption on the increasingly concerning
cyanotoxin-microcystin-LR-was done, as it has a known to form
inclusion complexes with B-cyclodextrin.***°

2. Experimental

2.1. Materials

Pine wood was obtain from the School of Forestry and Wildlife
Science at Auburn University; B-cyclodextrin (CD, >95% purity)
and N-hydroxysuccinimide (NHS, 98.0% purity) were purchased
from Tokyo Chemical Industry (Portland, OR, USA); chitosan
(DSacetylation Of 0.15, MRU 167.3 g mol ') and octane (98+%)
were purchased from Alfa Aesar (Haverhill, MA, USA);
microcystin-LR (MC, >95%) was purchase from Cayman
Chemicals (Ann Arbor, MI, USA); sodium hydroxide (50% w/w)
was obtained from J. T. Baker (Phillipsburg, NJ, USA); sodium
chlorite (80% purity) was purchased from BeanTown Chemical
(Hudson, NH, USA); sodium hypochlorite (12.5% w/w, 2 M in
water), peroxide (35% w/w) and isopropanol were obtained from
VWR chemicals (Radnor, PA, USA); sodium sulfate (Na,SO3) was
bought from Fisher Scientific company (Walthman, MA, USA);
sulfuric acid (72% w/w) was obtained from Ricca Chemical
company (Arlington, TX, USA); 2,2,6,6-tetramethylpiperidinooxy
(TEMPO, 98% purity) was bought from Acros Organics (Geel,
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Belgium); 3-(3-dimethylaminopropil)-1-ethyl-carbodiimide
hydrochloride (EDC, 99.9% purity) was obtained from Chem-
Impex International (Wood Dale, IL, USA); ethanol (200 proof
pure) purchased from Decon Labs, Inc. (King of Prussia, PA,
USA); the water used was deionized and purified with a Thermo
Scientific Barnstead Nanopure (18.2 MQ cm). Unless specified,
all the weights in this paper are expressed in oven dry basis.

2.2. Synthesis of TEMPO oxidized B-cyclodextrin (TOCD)

B-Cyclodextrin was carboxylated by neutral TEMPO-NaClO-
NaClO, oxidation in aqueous media.**** For this, 5 g of B-
cyclodextrin were dissolved in 450 mL of sodium phosphate
buffer (0.05 M, pH 6.8). Then 0.08 g of TEMPO (0.1 mmol g~ )
and 5.65 g sodium chlorite (80%, 10 mmol) were added to the
cyclodextrin solution. Simultaneously, the 2 M sodium hypo-
chlorite stock solution was diluted to a 0.1 M in the same buffer
and 23 mL of this dilution were added in one step to the reactive
solution to obtain a final concentration of 5 mmol (1.0 mmol
NaClO per g of CD). The reaction was conducted in a closed
flask for 19.5 h under ambient condition and a constant stirring
of 500 rpm. After modification, TEMPO-oxidize B-cyclodextrin
(TOCD) was purified by dialysis against ultrapure water (18.2 Q)
in a 100-500 Da dialysis membrane tube, then freeze-dried.

2.3. Synthesis of chitosan-cyclodextrin polymers (Ch-
TOCD)

The synthesis of Ch-TOCD was performed considering a 2 : 1 molar
ratio of the functional groups COOH : NH (TOCD : Ch) in a total of
50 mL volume with the same steps sequence. First, the TOCD was
dissolved in 1% acetic acid (125 mg) to obtain a final concentration
of 0.05%, then pre-dissolved EDC was added to obtain a final
concentration of 0.05 M EDC and let stir before adding a pre-
dissolved NHS to obtain a final concentration of 0.2 M NHS.
From a stock solution of chitosan (1% in 1% acetic acid, w/w), the
corresponding milliliters were added to obtain a 0.05% solution.
The reaction was left for 24 h before stopping it by adding ethanol-
amide (61 pL) to obtain a final concentration of 0.1 M. Purification
and concentration was done by five washings in 50 kDa Pall-
membrane centrifugation tubes (Macrosep Advance Centrifugal
Device, Pall Corporation) at 3000 rpm for 45 min each time.

2.4. Delignified wood aerogels (nanowood) production

Wood pieces cut perpendicularly to the growth axis (10 x 10 x 3
mm) were immersed in 100 mL of 2.5 M NaOH, 0.4 M Na,SO;
and left boil for 8 h. Thereafter, the samples were rinsed with
hot water and placed in another 100 mL of 2.5 M H,0, and
boiled for 1 h. The samples were then rinsed with cold DI water
and placed in ethanol overnight to eliminate water excess.
Solvent was then exchanged 3-4 times with fresh isopropanol
and left overnight; the same was done with octane which was
left to air dry after overnight exchange (ca. 72 h).

2.5. Coating of wood aerogels

Treated dry wood pieces were immersed in 10 mL of 50 mM
acetate buffer pH 5 (ionic strength was adjusted to the same
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molarity with NaCl) containing 0.5 mg mL " of the Ch-CD
polymer. The nanowood was left in the solution for 24 h, then
they were rinsed with ultrapure water until no changes in
conductivity were measured.

2.6. Inverse gas chromatography (IGC)

For all experiments, approximately 100 mg of each sample were
packed into individual silanized glass columns (300 mm long by
4 mm inner diameter). Each column was conditioned for
a period of 1 hour at 40 °C and 0% RH with nitrogen gas prior to
any measurements. All experiments were conducted at 40 °C
with 5 mL min " total flow rate of nitrogen gas, using methane
for dead volume corrections. Samples were run at a series of
surface coverages with n-alkanes (nonane, octane, heptane, and
hexane; Aldrich, HPLC grade) and polar probe molecules
(acetone, ethanol, acetonitrile, ethyl acetate, and dichloro-
methane; Aldrich, HPLC grade) to determine the dispersive
surface energy as well as the specific free energies of adsorption,
respectively. The complete IGC experiment over all surface
coverages measured took approximately 24 h for one sample.
Repeat experiments were completed in succession on the same
column to investigate if the elapsed time or exposure to vapors
caused any measurable surface changes. Dispersive surface
energy values were repeatable within +1.0 mJ m~> and acid-
base surface energy values were repeatable within + 0.5 mJ m 2.
For specific surface area determination, an appropriate
isotherm with toluene was collected (type II behavior with
several points between 0.05 and 0.35P/P,) at 40 °C. The tradi-
tional BET equation was used to calculate surface area.*” BET
surface areas are commonly measured using nitrogen sorption
at cryogenic conditions. However, the use of IGC for BET surface
area determination at atmospheric conditions has shown to be
more suitable for organic, polymeric and natural materials that
could be altered by exposing them to vacuum and cryogenic
conditions.” The BET equation was applied and optimized for
linear fit for all data points between 0.05 and 0.35P/P,. All
surface energy and surface area analyses were carried out using
iGC Surface Energy Analyzer (SMS, Alperton, UK) and the data
were analyzed using both standard and advanced SEA Analysis
Software.

2.7. Adsorption of microcystin-LR (MC)

High Performance Liquid Chromatography (HPLC). For the
analysis of the adsorption of the untreated wood, nanowood
and coated nanowood of the microcystin, the materials were
placed in 28 mL of solutions containing 5.4 pg mL~" at room
temperature and constant stirring. 150 pL aliquots were taken
at the corresponding time and analysed in a Waters Alliance
HPLC (Model No. e2695, Waters Corp., Milford, MA, USA)
system equipped with a solvent management system 2695 and
detected by a photodiode array detector (PDA, 2998). The system
also counts with a thermostatically controlled column
compartment and an autosampler. The method used was
adapted from the one described by Meriluoto & Spoof.** Briefly,
a C-18 column (55 x 4 mm) was used as stationary phase, and
0.05% trifluoroacetic acid (TFA) aqueous solution/0.05% TFA
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acetonitrile with linear gradient at a flow rate of 1 mL min %,
and 10 pL injections using the autosampler in cycles of 9 min.
The retention time was 4.2 min and correlation of the samples
to the standard curve was of 0.9997. All experiments were done
by triplicates and averaged. The analysis of the data was per-
formed using Empower® 3 software (Waters Corp., Milford, MA,
USA).

The data was then the fitting of the data to calculate rate
constants (k; and k,) and adsorbed amounts in equilibrium (g.)
was done for a pseudo-second order models when possible
following the equations.*

o (1)

where i = kq.%, with k, being the pseudo-second order rate
constant of sorption, respectively. g. is the amount of analyte
adsorbed at equilibrium (mg g '), and ¢, is the amount of
analyte adsorbed at any time (mg g~ ').

2.8. Characterization

2.8.1 TEMPO oxidized B-cyclodextrin (TOCD) titration.
Degree of oxidation (DO) was determined by pH and conduc-
tivity titration methods, based on the calculations reported by
da Silva Perez.** For this, TOCD suspension was previously
brought to pH 3 with 10 mM HCI, this to assure the protonation
of all present acid moieties. After freeze drying, 30-40 mg of
TOCD in acidic form were dissolved in 15 mL of 10 mM HCl and
titrated with 10 mM NaOH by adding 1 mL every 5 min,
measurements of pH and conductivity were done with a VWR
symphony B30PCI multiprobe conductometer. The degree of
oxidation was then calculated by the following equation:

DO = 162(V2 — VI)C/[W — 36(V2 — V])C] (2)

where V; and V, are the amount in L of NaOH used to reach the
end points 1 and 2, respectively; ¢ is the concentration of the
base in mol L™, and w is the dry weight of the sample. V; and V,
were determined by the second derivative of pH curve, using the
volumes where the graph crossed the origin.

2.8.2 Elemental analysis (EA). Freeze-dried samples were
processed in an ECS 4010 Elemental Combustion System CHNS-
O from Costech Analytical technologies, Inc (Firenze, Italy) and
data analyzed with the ECS60 software. Carbon and nitrogen
content were collected and fitted into standard curves with
correlations of 0.99996 and 0.9999799 for N and C respectively.

2.8.3 Fourier-transform infrared spectroscopy with atten-
uated total reflectance (FTIR-ATR). Dried samples were
analyzed for characterization of the surface modification on
a PerkinElmer Spotlight 400 FT-IR Imaging System (Massa-
chusetts, US) with an ATR accessory with diamond/ZnSe crystal
and a resolution of 4 cm ™. First, a background spectrum with
the clean sensor was measured; this was carried-out before each
set of measurements with the same number of scans. To archive
a high resolution at the spectrum bands, 128 scans per spec-
trum were performed. Data was processed with Spectrum 6
Spectroscopy Software (PerkinElmer, Massachusetts, US).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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2.8.4 Thermogravimetric analysis (TGA). Air-dried samples
were tested on aluminum pans in a TGA-50 from Shimadzu
(Kyoto, Japan). Samples were heated from room temperature to
600 °C at a rate of 10 °C min " under a nitrogen atmosphere and
data was processed with ta60 software version 2.11 from
Shimadzu.

2.8.5 Scanning electron microscopy (SEM). Dried aerogels
were placed on aluminium studs and sputtered with gold for
45 s in a Q150R ES sputter coating device acquired form Elec-
tron Microscopy Sciences (Hatfield, PA, USA). Images were
recorded using 20 kW, working distance between 6 and 8 mm in
a Zeiss Evo 50VP scanning electron microscope (SEM).

2.8.6 Water uptake and swelling. To calculate water uptake,
the dried aerogels were immersed in 25 mL of ultrapure water,
from which they were removed at regular time intervals up to
240 min and weighted. The averaged results for water uptake
were calculated by the following equation (eqn (3)).

Water uptake (%) = W Wa x 100 (3)
Wa

where W, is the weighted mass, and W is the dry weight of the

aerogels. Meanwhile, for the swelling, the aerogels were left for

24 h in 20 mL of ultrapure water before weighting. The average

results were then calculated with the next equation (eqn (4)).

Swelling (%) = W, x 100 (4)
Wa
where W is the weight obtain after swelling.

2.8.7 Density and porosity. Dimensional measurement of
the wood, nanowood and coated nanowood were done using
a digital caliper and used to calculate volume and density (p,), at
least two distinct samples were measured. The porosity was
then obtained by equation (eqn (5)), where the density of the
cellulose (p.) was assumed to be 1460 kg m™>, as reported in
literature.*”

Pa % 100 (5)

Pe

Porosity (%) =1 —

3. Results and discussion

3.1. TEMPO oxidation of B-cyclodextrin and grafting to
chitosan

One of the first indications of the success of the reaction was the
red tint that the product acquired when frozen after the dialysis.
When the titration was done to investigate the degree of
oxidation (DO), the inflexion points were visualized by doing
a second derivative to the pH curve. In Fig. 1 it can be observed
that the 13 and 18 mL, which after applying the eqn (1) gave
a DO of 0.27, which considering that only the hydroxyl groups
from C6 can be modified* equals that 2 of every 7 glucose units
are modified, or 2 on each B-cyclodextrin.

After determination of the DO on the TO-CD, the reaction
with chitosan was calculated to be done into a 2 : 1 molar ratio
between the amino and carboxyl groups. One of the main
differences was the solubility in water of the modified Ch-CD,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 pH titration of TEMPO oxidized B-cyclodextrin (TOCD) and 2nd
derivative to identify inflexion groups for DO determination.

that did not need an acid pH to solubilized like the pure chi-
tosan did. As a first test, C% and N% were calculated by
elemental analysis testing, showing a C : N ratio of 6.41 £ 0.01
for chitosan and 8.95 £ 0.4 for the grafted co-polymer. When
the molecular weight was used as reference to calculate the
degree of substitution for the chitosan, the DS was found of 0.57
from a possible maximum of 0.85 considering the degree of
deacetylation.

The FTIR-ATR spectra of the samples were also compared
(Fig. 2). In there, it can be observed that the stretching C-H
(2950-2800 cm™') and the O-H bending (1600-1590 cm™ ')
from the grafted material fits in between the signals from the
unmodified materials, suggesting the contribution of both
species to the signal. The band corresponding to the
carboxyl added (1750 ecm™') to CD during the TEMPO
mediated oxidation disappeared once it was used to graft
them onto the chitosan. This also came with the appearance
of the stretching band of the C-N (1490 cm™ '), confirming

t

T T
v(N-H) 8 (€0

h
Shisn Amide Il 3

Ch-CD 3(0-H)

%T [a.u.]

v (C-N) T
v(c=0) 3(EH)
3(0-H)

8 (C-C]

ring

3 (C-0)

1 1 1 1 1 L ring 1

4000 3600 3200 2800 2400 2000 1600 1200 800

v := stretching
5:=bending

Wavenumber [cm"]

Fig. 2 FTIR-ATR spectra of the TEMPO oxidized B-cyclodextrin
(TOCD), chitosan and the grafter material of both (Ch—CD). There the
formation of the C—N bond is visible ca. 1490 cm™ as well as the
reduction of the carboxyl bond at 1750 cm ™! added to TOCD, con-
firming the reaction.
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(@) FTIR-ATR spectra of the wood, nanowood and coated nanowood and (b) shows the thermogravimetrical analysis of the three

components with an insert table presenting the onset and max degradation temperatures of each one.

the EDC/NHS reaction. Finally, the bending of the ring of
chitosan is kept but a slight shift to the blue is perceptible as
a more pronounce shoulder, closer to the signal of the TOCD
is seen.

3.2. Characterization of 3D structures

For the chemical characterization, FTIR-ATR and TGA were
done after each mayor step to compare the wood with the
delignified nanowood and with the nanowood after coating. In
the FTIR-ATR spectra showed in Fig. 3a, the most noticeable
difference is between the wood and the other two material, as
the wood has present the bands related to the aromatic rings of
lignin, its side chains, and the side C-O and C-H groups of the
hemicelluloses.” After extraction of most of the lignin, the
spectrum is closer to the one of pure cellulose, with the bands
related to bending of the polysaccharide rings having the
highest intensity. As the coating material is meant to be only at
the surface, the intensity of its signal is lower than the ones
from the cellulose nanofibrils of the nanowood. However, some
changes after coating are clear; first there is a reduction on the
C-H stretching close to 2900 cm ™", this as the side groups have
a more restricted movement and only the glucose side C-H on
sps configuration can better absorb. Similarly, there is the
apparition of a shoulder close to 1590 cm™ ', where the N-H
amide stretching should appear, suggesting the presence of
chitosan.

This modification was also confirmed by the elemental
analysis results shown in Table 1. In there, it can be observed
that the untreated wood had an average carbon content of 56.02
+ 4.1% and a nitrogen content of 0.055 + 0.007%, close to
values found in other wood-species.’*** However, for the
nanowood, the nitrogen content was removed, confirming the
delignification and removal of other nitrogen carrying compo-
nents besides of the cellulose and hemicelluloses, there the
carbon content was of 52.09 £+ 2.3%. Then, the after coating,
nitrogen was again found in the material with a 0.015 £ 0.007%
confirming the addition of the amino groups of the chitosan,

20334 | RSC Adv, 2022, 12, 20330-20339

Table 1 Results from the elemental analysis of the wood, nanowood
and coated nanowood

Sample N (%) C (%) C/N ratio
Wood 0.055 £+ 0.007 56.02 + 4.1 1018.6
Nanowood 0 52.09 + 2.3 N/A
Coated nanowood 0.015 £+ 0.007 47.54 £ 0.2 3169.3

the increase was also joined by a decrease on the C% to 47.54 +
0.2% which is likely a result of the oxygens added with the
polysaccharides from the coating.

The difference between the coated and uncoated nanowoods
is clearer in the thermogravimetrical analysis (Fig. 3b). Between
the wood and the nanowood there is little differences, with only
10 °C higher degradation of the nanowood and higher ash
content after. The higher max temperature can be related to
a faster degradation on the untreated wood due to the lignin,
that when removed allows for a slower degradation as the lignin
is not promoting it.>* A contrary effect is observed after the
coating, as the Ch-CD on the surface prone to a faster degra-
dation and a stiffer slope than the other two materials, lowering
the maximum degradation to 375 °C. The addition of these
polysaccharides also lowered the residual content to a similar
value than wood.

Morphologically wise, the first perceptible change between
the samples is the loss of the color after delignification. The
nanowood and the coated nanowood have higher dispersion of
light, appearing white instead of the natural wood color of the
pine wood pieces. Similarly, the density of the samples
decreased to almost half after treatment. Furthermore, when
the porosity and SEM images (Table 2) are compared between
the different stages, the porosity increased about 10% after each
step from 55.6 £ 3.28% to 75.1 £ 4.53% after delignification
and coating with the Ch-CD. However, the more visible change
is perceptible with the SEM images, where the structure
changes from plate-like surface to more cell-like structures,
where the fibers are now noticeable after the delignification

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Porosity and SEM image comparison between pinewood before and after treatment

View Article Online

RSC Advances

System Porosity [%]

SEM image

Wood

6 Py / 55.6 + 3.28

AUBURN

UNIVERSITY

Nanowood

u 65.8 + 2.74

AUBURN

UNIVERSITY

Coated nanowood

75.1 £ 4.53

AUBURN

UNIVERSITY

Table 3 Summary of the BET results of the wood, nanowood and coated nanowood by iGC with toluene

Sample Sorption constant Monolayer capacity BET S.A. [m* g '] R

Wood 2.60 0.0076 0.98 0.94
Nanowood 4.87 0.0101 2.81 0.99
Coated nanowood 1.97 0.0087 2.71 0.91
process. The difference is not visible in the SEM images with the A clearer result showing the impact of delignification and

molecular coating, but as mentioned above this change can be coating on the wood scaffold are the values from the BET
measured with the changes in porosity, which increased again, surface area obtained by the IGC.** IGC allowed to utilize
probably due to the new cavities introduced by the different sorption gasses and avoid under freezing conditions

cyclodextrins. which could affect and collapse the cellulose-based porosity in
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Fig. 4 Comparison of (a) total and (b) dispersive surface energies obtained by IGC from wood, nanowood and coated nanowood samples.
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the materials.* There, the wood presented a SA of 0.98 m* g™/,
which increased to 2.81 m® g~ ' after delignification, and had
a small decrease to 2.71 m* g~ " after coating. A summary of the
BET information can be seen in Table 3.

Most significantly, are the changes presented in the surface
energy profiles (Fig. 4). Likewise, IGC allows different porous
materials to be tested contrasted with the smooth surfaces
required for contact angle measurements, alleviating errors that
could arise with the absorption of the liquids necessary to
calculate surface energy.® In Fig. 4a, the total surface energy
profile is presented. There, it can be observed an increase in the
total surface energy after delignification. The delignification
treatment utilized to obtain the nanowood resulted in
a smoother surface, as suggested by the homogeneity in the
surface energy obtained from the nanowood independently of
the coverage,® and confirms what was noted with the SEM. After
coating, there is an increase of the total surface energy at the
lowest coverage, which then starts to fall as the coverage
increases. The high values obtained with lower number of
moles of the probe gas can be suggested as a result of the
presence of the cyclodextrin on the surface, where more non-
polar-non-polar interaction can occur leading to the trapping of
the alkaline gases in the active cavities. The decrease of totals
surface energy at higher coverages of the coated nanowood
compared to the nanowood is most likely related to the
adsorption of the coating. The chitosan-based copolymer is
interacting with the residual carboxyl and sulfate groups in the
surface, as well as interacting by hydrogen bonding, as less
a sharper decrease in observed in the total surface energy than
in the dispersive surface energy (Fig. 4b). Also, part of this
decrease of surface energy can be related to the change in
rugosity and heterogeneity of the surface.>

The difference between the interactions that each material
can allow is also perceptible in their interactions with water
when measurements of swelling and water uptake were done.
As a first observation, the untreated wood floated during most
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of the swelling time, even if the mass did not change after
sinking. Meanwhile, the nanowood coated and pristine, sank in
the first couple minutes.

When the water uptake and swelling values were compared
in Fig. 5, the nanowood before coating was the material that was
able to uptake the most water, with almost 300% increase in
equilibrium, while the untreated wood had only an increment
of 100%. After coating, the water uptake of the nanowood
decreased to 260%, which also indirectly suggest the surface
modification after the adsorption of the Ch—CD material as less
attachment points were able to interact correlating with the
surface energy calculated. Another interesting trend was that
the wood reached stability before the other two materials, in
less than 1 h, while the nanowood needed 2 h to reach similar
stability.

When the swelling capacity was plotted (Fig. 5b), and
therefore, the capacity of the material to allow water within its
structure was monitored, a similar behavior is maintained.
There also the nanowood presented the most swelling with 4 x
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Fig. 6 Adsorption kinetic of wood, nanowood and the coated nano-
wood on a 5.4 ng mL~* on a solution for 6 h.
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stability.
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Coated nanowood

Nanowood
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Wood

(a) Plot comparing the water uptake on wood, nanowood and coated nanowood and (b) swelling percentage of each material after
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increase in its mass, followed by the coated nanowood and the
untreated wood in last. This also confirms the trend seen in the
BET S.A. and the surface energy, where the nanowood has more
porosity and more active points available to interact with the
water, while the coated nanowood, despite of having a similar
surface area, has less energetic points to adsorb the water.

Reswelling test were also done of the materials. For this,
a new solvent exchange was done to the swollen aerogels to dry
them once more before letting them reswell on ultrapure water.
The redrying was successful with no significant change on the
initial mass in either of the three systems, assessing that the
coated material remained disregarding the different solvents.
Similarly, the masses after swelling were not different to the
ones obtained the first time, confirming the possibility of
reusing the structures after redrying, even when utilizing
solvents to recuperate the molecules captured with the
cyclodextrins.

3.3. Microcystin adsorption

To assess the capacity of the coating material to be utilized for
the capturing of molecules and the elimination of pollutants,
the aerogels were immersed in the solution containing micro-
cystin. In Fig. 6 it can be observed that the wood and nanowood
increased the concentration of the pollutant as only water was
absorbed into the dry materials, non-microcystin was removed
from the solution. This behavior is congruent with other liter-
ature where using cellulose-based structures with microcystin*®
had no adsorption on the unmodified materials. Furthermore,
the water absorption observed is consistent with the swelling
times that are presented in Fig. 5.

In contrast, the nanowood coated with the chitosan-cyclo-
dextrin copolymer presented a clear adsorption since the
beginning, with an adsorption peak at 40 min that is then
decrease to a more stable value close to the g. that was calcu-
lated with the pseudo-second-order kinetic fitting at 0.12 mg
g

As mentioned before, the data was fitted into a pseudo-
second kinetic model (Fig. 7); this model was selected as the
driving mechanism utilized is a chemisorption mechanisms
where adsorption times are longer than 30 min, which are
usually fitted to the pseudo-first order kinetic model.”” The
adsorption for wood and nanowood were then calculated as
—0.22 and —0.24 mg ¢~ ' and R® of 0.92 and 0.97, demonstrating
the concentration of the microcystin in the solution. However,
for the coated nanowood had a value of adsorption in equilib-
rium of 0.12 mg g~ " with a fitting of 0.98. Furthermore, the half-
time saturation was of only 0.84 min, indicating that the surface
area and porosity was enough to allow the toxin to be captured
easily without any energy input to force diffusion.

The value obtained in equilibrium under this condition (5.4
ug mL~") was higher that the values achieved in our previous
work with initial concentrations of 0.8 and 1.5 ug mL™*,*® but
lower than another work where an adsorption of 96 mg g~ was
achieved utilizing a 3.7 pg mL ™" initial concentration, and using
a chitosan, cellulose, and [BMIm + Cl] composite.* It is worth
pointing out that the grams by which the adsorption capacity

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.7 Pseudo-second order kinetic model and data of the adsorption
of microcystin-LR with wood, nanowood and the coated nanowood.

was calculated was the total mass of the coating and the
nanowood, and the active materials is only a small fraction of
the total weight. The lower value then, can also be attributed to
the probability that the scaffold surface was not saturation;
however, it can be observed that the coating was successful in
capturing the microcystin molecule driven by the hydrophobic
cavities added with the coating. Testing with only the coating
material were tried, but due to the low water stability of the film
formed from the pure coating material, no results could be
measured.

The versatility of the coating to adsorb onto cellulosic-based
scaffolds without decreasing the surface area, as shown by the
BET S.A. calculations, allows for the use of this coating material
with different substrates which could be improved to maximize
the adsorption of pollutants. Likewise, the method used for
drying the nanowood can break the interactions of the toxin and
the cyclodextrins without affecting the presence of the coating,
allowing for the regeneration of the material, the recovery of the
toxin, and the drying in preparation for the next cycles in the
same step.
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4. Conclusions

This work proves that nano-porous bio-based aerogels can be
generated by low-energy input procedures using a top-down
approach instead of the more common bottom-up. The
delignification of the wood to obtain the nanowood was ach-
ieved by a simple process that do not require extensive pres-
sures or hard chemicals. The removal of the lignin allows the
wood to increase its swelling 2-folds compared with the
untreated wood to up to 400%, and to increase 3-folds its
surface area. Furthermore, the solvent exchange process can be
done more than once, allowing the easy regeneration of the
material.

Beside the properties obtained after the delignification, the
aerogels were passively coated with the chitosan-cyclodextrin
material that increased the surface reactivity by adding
a hydrophobic cavity, the coated nanowood proved to be
capable of capturing molecules with hydrophobic moieties as
exemplified with the capturing of the microcystin toxin without
sacrificing much of the surface area or the swelling capacity of
the material. Likewise, the drying by solvent exchange allows for
the regeneration of the adsorbent while prepping it for reuse.
These results indicate that the hypotheses stated for this work
were fulfilled, demonstrating that sustainable bio-based
systems for water treatment can be obtained from top-down
approaches without high energy inputs.

Author contributions

Diego Gomez-Maldonado: conceptualization, methodology,
investigation, writing. Autumn M. Reynolds: methodology,
investigation, writing. Daniel J. Burnett: investigation, writing.
Ramapuram Jayachandra Babu: methodology, resources.
Matthew N. Waters: methodology, resources. Maria S. Peresin:
conceptualization, methodology, resources,
writing.

supervision,

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the National Science Foundation
CAREER [award 2119809] through the BMAT program in the
Division of Materials Research and the EPSCoR program.
Support was also provided by the USDA National Institute of
Food and Agriculture, Hatch program [ALA013-17003] and
Mclntire-Stennis program [1022526]. The support of the Bio-
energy Center of Auburn University for the access to their
thermogravimetric analyzer is appreciated. Special thanks to
Tawsif Rahman.

References

1 S. Woods, A History of Wood from the Stone Age to the 21st
Century, Architect Magazine, accessed 5 May 2020, https://

20338 | RSC Adv,, 2022, 12, 20330-20339

View Article Online

Paper

www.architectmagazine.com/technology/products/a-history-
of-wood-from-the-stone-age-to-the-21st-century_o.

2 R. Munang, I. Thiaw, J. Thompson, D. Ganz, E. Girvetz and
M. Rivington, Sustaining Forests Sustaining forests:
Investing in our common future, 2011.

3 J. L. Howard, J. Am. Inst. Archit., 2016, 1965-2013.

4 M. Ko6hl, R. Lasco, M. Cifuentes, O. Jonsson, K. T. Korhonen,
P. Mundhenk, J. de Jesus Navar and G. Stinson, For. Ecol.
Manage., 2015, 352, 21-34.

5]. L. Howard and S. Liang, U.S. Timber production, trade,
consumption, and prices Sstatistics, 1965-2017, FPL-RP-
7012019 n.d., 2019, 96.

6 M. C. Iglesias, D. Gomez-Maldonado, B. K. Via, Z. Jiang and
M. S. Peresin, For. Prod. J., 2020, 70, 10-21.

7 R. C. Pettersen and R. M. Rowell, in The chemistry of solid
wood, ed. R. Rowell, American Chemical Society,
Washington, 1984, pp. 57-126.

8 R. Rowell, R. Pettersen and M. Tshabalala, in Handbook of
Wood Chemistry and Wood Composites, 2nd edn, 2012, pp.
33-72.

9 H. Sixta, Handbook of pulp, Wiley Online Library, 2006, vol. 1.

10 G. F. Dahl, Process of manufacturing cellulose from wood,
US Pat. 000296935, 1884.

11 S. Aila-Suarez, H. M. Palma-Rodriguez, A. 1. Rodriguez-
Hernandez, J. P. Hernandez-Uribe, L. A. Bello-Pérez and
A. Vargas-Torres, Carbohydr. Polym., 2013, 98, 102-107.

12 K. De France, Z. Zeng, T. Wu and G. Nystrom, Adv. Mater.,
2021, 33, 2000657, DOI: 10.1002/adma.202000657.

13 R. Ajdary, B. L. Tardy, B. D. Mattos, L. Bai and O. J. Rojas,
Adv. Mater.,, 2021, 33, 2001085, DOL 10.1002/
adma.202001085.

14 K. Pillai, F. Navarro Arzate, W. Zhang and S. Renneckar, J.
Visualized Exp., 2014, 1-14.

15 J. M. B. Fernandes Diniz, M. H. Gil and J. A. A. M. Castro,
Wood Sci. Technol., 2004, 37, 489-494.

16 Handbook of Green Materials, ed. K. Oksman, A. P. Mathew,
A. Bismarck, O. Rojas and M. Sain, World Scientific,
Singapore, 1st edn, 2014, vol. 5.

17 1. Solala, M. C. Iglesias and M. S. Peresin, Cellulose, 2020, 27,
1853-1877.

18 C. A. de Assis, M. C. Iglesias, M. Bilodeau, D. Johnson,
R. Phillips, M. S. Peresin, E. M. T. Bilek, O. J. Rojas,
R. Venditti and R. Gonzalez, Biofuels, Bioprod. Biorefin.,
2018, 12, 251-264.

19 Z. Chu, P. Zheng, Y. Yang, C. Wang and Z. Yang, Compos. Sci.
Technol., 2020, 198, 108320.

20 M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, ]J. Dai, Y. Yao,
W. Luo, D. Henderson and L. Hu, Adv. Mater., 2016, 28,
5181-5187.

21 M. B. Wu, S. Huang, C. Liu, J. Wu, S. Agarwal, A. Greiner and
Z. K. Xu, J. Mater. Chem. A, 2020, 8, 11354-11361.

22 Y. Li, Q. Fu, R. Rojas, M. Yan, M. Lawoko and L. Berglund,
ChemSusChem, 2017, 10, 3445-3451.

23 T. Saito, Y. Nishiyama, J. L. Putaux, M. Vignon and A. Isogai,
Biomacromolecules, 2006, 7, 1687-1691.

24 X. Chen, X. Zhu, S. He, L. Hu and Z. J. Ren, Adv. Mater., 2021,
33, 2001240.

© 2022 The Author(s). Published by the Royal Society of Chemistry


https://www.architectmagazine.com/technology/products/a-history-of-wood-from-the-stone-age-to-the-21st-century_o
https://www.architectmagazine.com/technology/products/a-history-of-wood-from-the-stone-age-to-the-21st-century_o
https://www.architectmagazine.com/technology/products/a-history-of-wood-from-the-stone-age-to-the-21st-century_o
https://doi.org/10.1002/adma.202000657
https://doi.org/10.1002/adma.202001085
https://doi.org/10.1002/adma.202001085
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra03556a

Open Access Article. Published on 13 July 2022. Downloaded on 1/20/2026 4:55:22 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

25 M. S. Toivonen, A. Kaskela, O. J. Rojas, E. I. Kauppinen and
0. Ikkala, Adv. Funct. Mater., 2015, 25, 6618-6626.

26 H. Dong, J. F. Snyder, D. T. Tran and J. L. Leadore,
Carbohydr. Polym., 2013, 95, 760-767.

27 R. K. Sullivan, M. Erickson and V. A. Oyanedel-Craver,
Environ. Sci.: Nano, 2017, 4, 2548-2555.

28 S. Lombardo and A. Villares, Molecules, 2020, 25, 4420.

29 H. Guo, P. Fuchs, E. Cabane, B. Michen, H. Hagendorfer,
Y. E. Romanyuk and I. Burgert, Holzforschung, 2016, 70,
699-708.

30 F. Awaja, M. Gilbert, G. Kelly, B. Fox and P. ]J. Pigram, Prog.
Polym. Sci., 2009, 34, 948-968.

31 T. Mishima, M. Hisamatsu, W. S. York, K. Teranishi and
T. Yamada, Carbohydr. Res., 1998, 308, 389-395.

32 H. Orelma, I. Filpponen, L. S. Johansson, J. Laine and
O. ]. Rojas, Biomacromolecules, 2011, 12, 4311-4318.

33 D. Zeng, J. Wu and ]. F. Kennedy, Carbohydr. Polym., 2008,
71, 135-139.

34 J. Mao, S. Li, C. He, Y. Tang, Z. Chen, J. Huang and Y. Lai,
Cellulose, 2019, 26, 6785-6796.

35 M. Prabaharan and J. F. Mano, Macromol. Biosci., 2005, 5,
965-973.

36 H. Orelma, T. Virtanen, S. Spoljaric, . Lehmonen, ]J. Seppél,
O. ]. Rojas and A. Harlin, Biomacromolecules, 2018, 19, 652
661.

37 S. Smith, K. Goodge, M. Delaney, A. Struzyk, N. Tansey and
M. Frey, Nanomaterials, 2020, 10, 1-39.

38 M. S. Toivonen, S. Kurki-Suonio, F. H. Schacher, S. Hietala,
O. ]J. Rojas and O. Ikkala, Biomacromolecules, 2015, 16,
1062-1071.

39 A. S. Archimandritis, T. Papadimitriou, K. A. Kormas,
C. S. Laspidou, K. Yannakopoulou and Y. G. Lazarou,
Sustainable Chem. Pharm., 2016, 3, 25-32.

40 D. Gomez-Maldonado, I. B. Vega Erramuspe, 1. Filpponen,
L.-S. Johansson, S. Lombardo, J. Zhu, W. Thielemans and
M. S. Peresin, Polymers, 2019, 11, 2075.

41 T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi,
L. Heux and A. Isogai, Biomacromolecules, 2009, 10, 1992—
1996.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

42 S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc.,
1938, 60, 309-319.

43 A. Kondor, A. Santmarti, A. Mautner, D. Williams,
A. Bismarck and K.-Y. Lee, Front. Chem. Eng., 2021, 3, 1-12.

44 J. Meriluoto and G. A. Codd, Cyanobacterial Monitoring and
Cyanotoxin Analysis, 2005.

45 C. D. Tran, S. Duri, A. Delneri and M. Franko, J. Hazard.
Mater., 2013, 253, 355-366.

46 D. da Silva Perez, S. Montanari and M. R. Vignon,
Biomacromolecules, 2003, 4, 1417-1425.

47 H. Sehaqui, Q. Zhou and L. A. Berglund, Compos. Sci.
Technol., 2011, 71, 1593-1599

48 T. Saito, I. Shibata, A. Isogai, N. Suguri and N. Sumikawa,
Carbohydr. Polym., 2005, 61, 414-419.

49 V. Emmanuel, B. Odile and R. Céline, Spectrochim. Acta, Part
A, 2015, 136, 1255-1259.

50 C. Martius, Holz Roh- Werkst., 1992, 50, 300-303.

51 B. Waliszewska, @W. Pradzynski, M. Zborowska,
A. Stachowiak-Wencek, H. Waliszewska and A. Spak-
Dzwigala, Ann. Warsaw Univ. Life Sci.-SGGW, For. Wood
Technol., 2015, 91, 182-187.

52 M. S. Strickland, E. Osburn, C. Lauber, N. Fierer and
M. A. Bradford, Funct. Ecol., 2009, 23, 627-636.

53 M. C. Iglesias, F. Hamade, B. Aksoy, Z. Jiang, V. A. Davis and
M. S. Peresin, BioResources, 2021, 16, 4831-4845.

54 A. Kondor, A. Santmarti, A. Mautner, D. Williams,
A. Bismarck and K.-Y. Lee, Front. Chem. Eng., 2021, 3, 1-12.

55 J. Yu, X. Lu, C. Yang, B. Du, S. Wang and Z. Ye, IOP Conf. Ser.:
Mater. Sci. Eng., 2017, 242, 012001.

56 J. M. Martinez-Alejo, Y. Benavent-Gil, C. M. Rosell,
T. Carvajal and M. M. Martinez, Carbohydr. Polym., 2018,
200, 543-551.

57 Adsorption: Fundamental Processes and Applications, ed. M.
Ghaedi, Academic Press, London, UK, 1st edn, 2021.

58 D. Gomez-Maldonado, A. M. Reynolds, L.-S. Johansson,
D. J. Burnett, J. B. Ramapuram, M. N. Waters, 1. B. Vega
Erramuspe and M. S. Peresin, J. Porous Mater., 2021, 28,
1725-1736.

RSC Adv, 2022, 12, 20330-20339 | 20339


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra03556a

	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR

	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR

	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR
	Delignified wood aerogels as scaffolds coated with an oriented chitosantnqh_x2013cyclodextrin co-polymer for removal of microcystin-LR


