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g and dynamics based approach
for the identification of kinase inhibitors targeting
PI3Ka against non-small cell lung cancer:
a computational study†

Debojyoti Halder,‡ Subham Das, ‡ Aiswarya R. and Jeyaprakash R. S. *

Non-small cell lung cancer (NSCLC) is an obscure disease whose incidence is increasing worldwide day by

day, and PI3Ka is one of the major targets for cell proliferation due to the mutation. Since PI3K is a class of

kinase enzyme, and no in silico research has been performed on the inhibition of PI3Ka mutation by small

molecules, we have selected the protein kinase inhibitor database and performed the energy minimization

process by ligand preparation. The key objective of this research is to identify the potential hits from the

protein kinase inhibitor library and further to perform lead optimization by a molecular docking and

dynamics approach. And so, the protein was selected (PDB ID: 4JPS), having a unique inhibitor and

a specific binding pocket with amino acid residue for the inhibition of kinase activity. After the docking

protocol validation, structure-based virtual screening by molecular docking and MMGBSA binding affinity

calculations were performed and a total of ten hits were reported. Detailed analysis of the best scoring

molecules was performed with ADMET analysis, induced fit docking (IFD) and molecular dynamics (MD)

simulation. Two molecules – 6943 and 34100 – were considered lead molecules and showed better

results than the PI3K inhibitor Copanlisib in the docking assessment, ADMET analysis, and molecular

dynamics simulation. Furthermore, the synthetic accessibility of the two compounds – 6943 and 34100

– was investigated using SwissADME, and the two lead molecules are easier to synthesize than the PI3K

inhibitor Copanlisib. Computational drug discovery tools were used for identification of kinase inhibitors

as anti-cancer agents for NSCLC in the present research.
1 Introduction

The discovery of lead molecules by computerized searching of
databases by targeting a specic protein is the trending method
of drug discovery with the development of AI (articial intelli-
gence) and ML (machine learning).1 And, the preliminary study
of drug discovery begins with the selection of the disease.
Recent developments in pharmacology have led the way for
a better understanding of the molecular basis of diseases at the
cellular level.2 Hence, most pharmaceutical companies and
university research initiatives start with appropriate target
identication in the body by going through a detailed study of
the signaling pathways, and the development of medication to
interact with the target. The study of the structural and func-
tional properties of the target along with the mechanism by
, Manipal College of Pharmaceutical
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tion (ESI) available. See DOI:
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which it interacts with drug molecules is important for this
approach.3

Cancer is the appearance of aberrant cells which grow
abnormally and also infect the neighboring cells of the body at
any age and in both men and women.4 There are more than 200
types of cancer and the disease process begins at different
locations and the causes are diverse.4 Among these, squamous
cell carcinoma in non-small cell lung cancer (NSCLC) is caused
by abnormalities in the PI3K/Akt pathway of cell proliferation.5

The primary symptoms begin with a persistent cough, coughing
up blood, and breathing problems. Several treatments with
chemotherapy and radiation therapy have been employed but
due to the growth of resistance and intolerance of the adverse
effects of chemotherapy and radiation therapy, there is a need
for identication of enzyme inhibitors.4,5 Most cancers share
a common signaling pathway of PI3K-Akt, EGFR, STAT, MAPK,
etc. for the growth factor receptor.6

Hence, to inhibit squamous cell carcinoma in NSCLC,
novel molecules are needed because mutation on the bio-
logical target results in the growth of drug resistance. Among
various targets of the disease, phosphoinositide 3-kinases
(PI3Ks), also known as phosphatidylinositol 3-kinases, are
© 2022 The Author(s). Published by the Royal Society of Chemistry
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a family of enzymes involved in cellular functions such as cell
growth, proliferation, and differentiation.7 There are four
types of PI3K: class I, class II, class III, and class IV. They’re
divided into groups depending on their primary sequence,
management, and lipid substrate selectivity in in vitro
studies.8,9 In multicellular creatures, PI3K signaling has
remained constant over time. The PDGF receptor (PDGFR)
and epidermal growth factor receptor (EGFR),10 both of which
promote proliferation and invasion, the insulin-like growth
factor receptor (IGFR), which fosters survival and reproduc-
tion, and the insulin receptor (INSR), which modulates
metabolic homeostasis, all activate PI3K signaling in
mammals.8 Any unwanted mutation in this biomarker can
cause excessive proliferation of cells and leads to the activa-
tion of oncogenes. The oncogenes PIK3CA, PIK3CB, and
PIK3CD, and the tumor suppressor gene PTEN are also
involved. As most p110a mutations constitutively activate its
kinase activity, PI3Ka appears to be an ideal target for drug
development. Modication of the kinase enzyme begins with
phosphorylation, which results in the functional dysregula-
tion of the target protein PI3Ks, and changes enzyme
activity.8,9

Numerous researchers already use computational
approaches to investigate PI3K inhibitors, particularly
from natural products, and for specic malignancies by tar-
geting PI3Ka in previous studies;11–14 however, there is no
research on the identication of kinase inhibitors against
PI3Ka by structure-based virtual screening approaches and
comparison with the PI3K pan-inhibitor Copanlisib. PI3Ka is
a kinase enzyme, and so kinase inhibitors are chosen because
they inhibit the auto-phosphorylation of the tyrosine residues
of the protein. Hence, we have found a research gap, in that
there has been no research performed by structure-based
approaches on the identication of kinase inhibitors against
Fig. 1 Schematic representation of the biological target PI3Ka and its
inhibition by the pan-inhibitor Copanlisib.

© 2022 The Author(s). Published by the Royal Society of Chemistry
PI3Ka by molecular docking and dynamics studies, compared
with the standard PI3K pan-inhibitor Copanlisib for the
treatment of NSCLC. A schematic representation of the bio-
logical target with its inhibition by the pan-inhibitor is shown
in Fig. 1.8

In this research work, a specic biological target PI3Ka,
which has a pan and a selective inhibitor, was selected and
a kinase inhibitor database of 36 324 molecules from Chem-
Div was chosen for the structure-based virtual screening to
obtain the top ten hits, for further MMGBSA free binding
energy analysis, ADMET predictions, IFD (induced t docking)
analysis and MD (molecular dynamics) simulations for the
optimization of the kinase inhibitors for pan and selective
inhibition of PI3Ka in the treatment of NSCLC squamous
carcinoma.
2 Materials and methodology

The computational study was executed using the Maestro
interface in the Schrodinger suite on an HP desktop system
integrated with Ubuntu OS, along with an Intel® CORE® i3-
Fig. 2 Schematic representation of the in silico methodology.
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5160 CPU and an integrated NVidia GPU. Fig. 2 depicts a sche-
matic illustration of the in silico methodology.

2.1. Protein preparation, receptor grid generation, and
validation of docking protocol

An X-ray crystal structure of PI3Ka with a pan and selective
isoform inhibitor has been selected having twomacromolecular
structures, phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit a which has single chain A of sequence length
1074 with two mutations in the PIK3CA gene (EC: 2.7.1.153,
2.7.11.1) and a regulatory subunit of phosphatidylinositol 3-
kinase having single chain B with a sequence length of 293
without any mutations, and was downloaded from the RCSB
PDB (Research Collaboratory for Structural Bioinformatics
Protein Data Bank) having PDB code 4JPS with a resolution of
2.20 Å and an observed R-value of 0.206 which is in an accept-
able range. A unique co-crystal ligand NVP-BYL719 is linked N +
H with the protein with amino acid residue Val851.9

The selection of a particular protein from Uniprot (https://
www.uniprot.org/uniprot/P42336) requires several lters, such
as a resolution of 2.20 Å, the presence of a small molecule
inhibitor (co-crystal ligand), the mutations in the PIK3CA
gene and the most important requirement – the organism of the
protein is Homo sapiens.

The process of energy minimization is a crucial step in the
protein preparation where the net inter-atomic force becomes
negligible. Hence, the minimization of the protein in molecular
modeling provides the best structural conformation of the
protein in the OPLS3e force eld15 in Maestro.16

The approach for energy minimization of the protein begins
aer importing the protein by the protein preparation wizard.17

The Prime module18 was used for lling the missing chains and
loops and the pH was 7.5� 0. Furthermore, with the deletion of
the regulatory subunit from the protein, the rening process
was implemented. And therefore, optimization of the protein
using PROPKA pH 7.5 (ref. 19) and removal of water beyond 3 Å
was implemented and minimization was performed using the
force eld. The minimized protein (PDB: 4JPS) was further
processed for grid generation in the receptor grid generation
panel, for representing the active binding pocket of the protein
to the ligand for Glide docking.20,21 The grid generation in the
receptor was executed by selecting the ligand from the prepared
protein, so that the ligand was excluded from the calculation of
grid generation, and also to exclude that ligand from ligand–
receptor docking. Finally, the receptor grid generation was
implemented with the default settings of the site, constraining
rotatable groups, and excluding volume, by scaling the van der
Waals radius, scaling factor 1.0, and cutting off partial charge.
Aer that, the docking protocol was validated using the co-
crystal ligand and protein complex, by calculating the RMSD
(root mean square deviation) of the docked co-crystal ligand
and energy minimized co-crystal ligand.

2.2. Ligand preparation

The protein kinase inhibitor library of 36 324 compounds was
downloaded from the ChemDiv database (access date: 1 July
21454 | RSC Adv., 2022, 12, 21452–21467
2022) and imported into Maestro for energy optimization and
generation of accurate 3D structures using the LigPrep appli-
cation.22 The most important characteristic features of LigPrep
are the elimination of errors in ligands and the generation of
optimized structures which can be further processed for
Glide20,21 and phase screening as well as in molecular dynamics
simulation. Further, the generation of 3D coordinates and
energy minimization of 36 324 compounds of the kinase
inhibitor library were executed in LigPrep by keeping the ioni-
zation state pH at 7.5 � 0, dening desalt, single tautomer
generation, and also retaining specied chiralities, using the
Epik module.23 And nally, ligand preparation was executed
using the OPLS3e force eld.15

The standard drug Copanlisib, a PI3K pan-inhibitor, was
selected and imported from Pubchem (https://
pubchem.ncbi.nlm.nih.gov/compound/Copanlisib, access
date: 1 July, 2022) and ligand optimization in similar settings
to the kinase inhibitor library was implemented using the
OPLS3e force eld.15
2.3. Structure-based virtual screening by molecular docking

Glide (grid-based ligand docking with energetics)20,21 in the
Maestro interface16 of the Schrödinger suite is an extremely
effective method for identifying ligand hits and helps with lead
optimization in structure-based virtual screening by molecular
docking. Molecular docking is an approach where the receptor
remains rigid and analyzes the behavior of small molecules in
the binding pocket of the target protein and uncovers crucial
biological processes. For the initial screening of 36 324 mole-
cules, high throughput virtual screening (HTVS) at a rate of 2
seconds per compound was employed, and then the best 1000
molecules were selected for SP (standard precision) docking at
a rate of 10 seconds per compound on the basis of docking
score. Further, the best 30 molecules were executed for Glide XP
(extra precision) docking.20,21 And nally, the top 10 molecules
were selected for further analysis on the basis of docking score
and molecular interactions with the target protein.

On the other hand, Glide XP docking20,21 of the standard drug
Copanlisib was executed and compared with the results of the
top ten hits.
2.4. MMGBSA

The MMGBSA (molecular mechanics generalized Born surface
area) calculation method provided the relative binding free
energy (DG bind) of each ligand molecule for determining
ligand binding affinity with the receptor using the Prime
module.18 The free binding energy calculation of the 10 best
molecules (hits) was executed by keeping the solvation model
VSGB 2.0 (ref. 24) and OPLS3e force eld.15 For the calculation
of binding affinity, the equation is as follows:

DG (binding affinity) ¼ DG (solvation energy) + DE (minimized

energy) + DG (surface area energies)

DG (solvation energy) is the difference between the solvation
energy of the GBSA of the PI3Ka–inhibitor complex, and the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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sum of the solvation energies for unligated PI3Ka and the
respective inhibitor. DE (minimized energy) is the difference
between the energy of the PI3Ka–inhibitor complex and the
sum of the energies for unligated PI3Ka and the respective
inhibitor. DG (surface area energies) is the difference between
the surface area energy of the PI3Ka–inhibitor complex and the
sum of the energies for unligated PI3Ka and the respective
inhibitor.

The binding affinity and energies of optimized free recep-
tors, free ligand, and the ligand–protein complex were calcu-
lated by the MMGBSA Prime module.18 The calculation of the
strain energy of the ligand was executed by placing it in
a solution that was auto-generated by the VSGB24 suite and the
energy visualizer in Prime can present the energy
visualization.

Binding affinity is free energy, and so it includes both
entropy and enthalpy. There were specic limitations in the
above equation, such as conformational entropy on ligand
binding was neglected in the MM/GBSA calculations since they
use the generalized Born approximation, which is an approx-
imate and faster treatment of the Poisson–Boltzmann equa-
tion. Generalized Born (GB) is an approximate solution to the
PB equation that is faster to compute than the original PB
solution while maintaining a respectable level of accuracy
compared to the original PB solution. The methodologies of
MM/GBSA andMM/PBSA have been successfully applied in the
estimation of free energies for binding of small molecules
(drug candidates) with proteins, and hence, the limitations for
accurate predictions are well known, although sufficient
sampling is required for suitable convergence of free energy
calculations, and the results strongly depend on the quality of
the MM potential.25
Fig. 3 Superimposition of the docked co-crystal ligand and the co-cryst
of the study.

© 2022 The Author(s). Published by the Royal Society of Chemistry
2.5. Drug-likeness and ADMET predictions

The ADMET properties were analyzed using the QikProp
module in Maestro. The drug-likeness property of the best ten
molecules along with the standard PI3K pan-inhibitor Copan-
lisib was examined and drug-likeness could be analyzed on the
basis of Lipinski’s rule of ve.7 Qikprop helps to analyze the
drug-likeness property along with other ADMET properties,
such as molecular weight, hydrogen bond donation and
acceptance, predicted octanol/water partition coefficient
(QlogPo/w), polar surface area (PSA), and % human oral
absorption. The other descriptors of ADMET analysis and their
predictions, such as prediction of aqueous solubility, prediction
of IC50 value for HERG K+ channel blockage, prediction of
apparent Caco-2 cell permeability in nm s�1, etc. were also re-
ported for the top ten hits compared with the PI3K standard
Copanlisib.

2.6. Induced t docking (IFD) analysis

The induced t docking protocol26,27 predicts the effect of ex-
ible ligand docking on protein structure, moving beyond the
rigid ligand–receptor docking, which is typical in structure-
based virtual screening. Aer the analysis of Glide XP dock-
ing,20,21 free binding energy calculations, and ADMET analysis,
IFD26,27 was executed with the two best molecules selected
compared with the standard with the protein – PI3Ka – by
scaling the van der Waals energy to 0.50, and maximum pose
generation, and renement by Prime within 5 Å. IFD26,27 used
Glide20,21 for the docking and the Prime module18 for renement
in the binding poses, which cannot resemble the biological
condition although it provides information on the stability of
the molecule in different poses and different frames at
a particular binding pocket. In the present research, molecular
al ligand with RMSD of 1.1327 Å for the PI3Ka inhibitor for the validation

RSC Adv., 2022, 12, 21452–21467 | 21455
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Table 1 The top ten hits from molecular docking along with their structure, docking score and MMGBSA DG

Compound Structure
Docking score
(kcal mol�1)

MMGBSA DG
(kcal mol�1)

6943 �11.973 �62.97

34100 �11.312 �55.18

31140 �11.079 �49.53

12500 �11.060 �60.91

14178 �10.822 �53.09

7165 �10.927 �62.46

438 �10.846 �59.11

6450 �10.830 �55.45

19885 �10.823 �52.15

16021 �10.522 �61.09

21456 | RSC Adv., 2022, 12, 21452–21467 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 (Contd. )

Compound Structure
Docking score
(kcal mol�1)

MMGBSA DG
(kcal mol�1)

Copanlisib �3.941 �42.58
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dynamics simulation28 was executed for the two best molecules,
along with the standard drug Copanlisib aer IFD analysis,26,27

for a better understanding of the stability of the compounds in
biological conditions.
2.7. Molecular dynamics (MD) simulation

The function and dynamics of protein–ligand complexes have
long been studied using MD.28 Molecular docking does not
perfectly mimic these events, unlike biological procedures that
involve dissolving the protein and ligand in water. So, to further
understand the stability of the two best detected leads, by
comparing with the standard PI3K pan-inhibitor Copanlisib,
the non-bonding interaction between the ligand and the protein
using Desmond MD simulations28 was run for 100 ns for the
protein – PI3Ka. Prior to completing the dynamics, the entire
system was immersed in a simple point charge (SPC) solvent
model.29 Throughout the system development process, the
boundary condition was kept in its orthorhombic box shape. In
the System Builder tool, the OPLS3e force eld15 was used for
preparation and further neutralized by the addition of 0.15 M
NaCl to the buffer. Furthermore, the minimization tool was
used for minimization. During the MD simulation, around 1000
frames were generated, with the recording interval (ps) for the
trajectory set to 100 frames per second. In the MD process, the
temperature (K) and pressure (bar) were both maintained at 300
K and 1.01325 bar, respectively, throughout the experiment.
Aer that, the reports were generated with the help of the
simulation interaction diagram (SID) tool incorporated in
Desmond.28
2.8. Synthetic accessibility analysis

The synthetic accessibility analysis was performed using the
SwissADME free online server, by drawing the two best leads in
ChemDraw and importing them to SwissADME along with the
standard drug Copanlisib. Further the synthetic accessibility
score was reported for the two leads while comparing with
Copanlisib. The synthetic accessibility (SA) score is an approx-
imation; the SA score was generated as a mixture of two
components: the fragment score was created to collect “histor-
ical synthetic knowledge” by examining common structural
© 2022 The Author(s). Published by the Royal Society of Chemistry
properties in a vast number of previously synthesised mole-
cules, as previously indicated. It was given as 1 (very easy) to 10
(very difficult).30
3 Results and discussion

In the past few years, computer-aided lead identication using
a structure-based approach has become a trend in the eld of
computational chemistry. Hit-to-lead optimization has become
easier with the advancement of articial intelligence (AI) as well
as machine learning (ML).31 The virtual screening methodology
has also provided several possibilities for drug discovery.
Squamous cell carcinoma in NSCLC is a well-known disease to
carry research forward, since it has several signaling pathways,
genetic mutations, growth factors and space for drug develop-
ment due to continuous growth of resistance.4 Hence, the initial
priority of research is to nd an appropriate target, and there-
fore, we have selected PI3Ka as a potential target by an elaborate
study of cancer signaling pathways to inhibit the mutation
factor for the proliferation of cells.

The most important characteristic of PI3Ks involves the
proliferation of cells, and their motility, apoptosis and cell
division. The two catalytic subunits of PI3Ks are class IA and
class IB. There are three genes present in the class IA PI3K
receptor, – PIK3CA, PIK3CB and PIK3CG, which are also known
as p110a, p110b, and p110d. p110a and p110b are present in
most of the tissues, but p110d is primarily present in white
blood cells (WBC). In class IB, only one enzyme, PI3Kc, is
present, which is encoded with the PIK3CG gene, also termed as
p110c, mostly expressed in WBC. Hence, any mutation or dys-
regulation of the PI3K signaling pathway can induce cancers
like squamous cell carcinoma as a result of kinase activity, and
can be a possible cause of NSCLC. The only gene involved in
mutation is PIK3CA, also termed as p110a mutation, – PI3Ka
has emerged to be a promising therapeutic research target.32

Specically, the protein was chosen, since it is involved in
mutation and the growth of resistance due to squamous cell
carcinoma in NSCLC. Various small molecules including PI3K
pan-inhibitors and p110a isoform specic inhibitors exhibit
anti-cancer activity against PI3Ka mutant squamous cell carci-
noma in NSCLC, but in the current research, we are reporting
RSC Adv., 2022, 12, 21452–21467 | 21457
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Table 2 2D interaction diagram of the best ten hits along with their interactions with the protein PI3Ka (PDB ID: 4JPS) compared with the
standard drug Copanlisib

Compound 2D interaction diagram Interactions

6943

H bond: Val851(2), Ser854, Asn853
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Met922, Trp780, Ile800,
Met772
p–p stacking: Tyr836, Trp780
Polar: His855, Ser854, Asn853, Gln859
Charged (+ve): Lys802, Arg852
Charged (�ve): Glu849

34100

H bond: Val851(2), Ser774, Asp933
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Met922, Trp780, Ile800,
Pro778 Met772
p–p stacking: Tyr836, Trp780
p–cation: Lys802
Polar: His855, Ser854, Asn853, Gln859, Ser774
Charged (+ve): Lys802, Arg852
Charged (�ve): Glu849, Asp933

31140

H bond: Val851(2)
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Trp780, Ile800, Pro778,
Met922, Met772
p–p stacking: Tyr836
Polar: His855, Ser854, Asn853, Gln859, Ser774
Charged (+ve): Lys802, Arg852
Charged (�ve): Glu849, Asp933

12500

H bond: Val851(2)
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Met922, Trp780, Ile800,
Met772
p–p stacking: Tyr836, Trp780
Polar: His855, Ser854, Asn853, Gln859
Charged (+ve): Lys802, Arg852
Charged (�ve): Glu849, Asp933, Glu798

21458 | RSC Adv., 2022, 12, 21452–21467 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 (Contd. )

Compound 2D interaction diagram Interactions

14178

H bond: Val851(3)
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Met922, Trp780, Ile800,
Met772
p–p stacking: Tyr836, Trp780
Polar: Ser854, Thr856, Gln859
Charged (+ve): Lys802, Arg852, Arg770
Charged (�ve): Glu849, Asp933

7165

H bond: Val851(2), Ser854
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Met922, Trp780, Ile800,
Met772
p–p stacking: Tyr836, Trp780
Polar: His855, Ser854, Asn853, Gln859, Thr856
Charged (+ve): Lys802, Arg852, Arg770
Charged (�ve): Glu849, Asp933, Glu798

438

H bond: Val851(2)
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Met922, Trp780, Ile800
p–p stacking: Tyr836
Polar: His855, Ser854, Asn853
Charged (+ve): Arg852
Charged (�ve): Glu849, Asp933

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 21452–21467 | 21459
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Table 2 (Contd. )

Compound 2D interaction diagram Interactions

6450

H bond: Val851(2)
Halogen bond: Gln859
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Trp780, Ile800, Pro778,
Met922, Met772
p–p stacking: Trp780
Polar: His855, Ser854, Gln859, Ser774
Charged (+ve): Lys802, Arg852, Arg770
Charged (�ve): Glu849, Asp933

19885

H bond: Val851(2)
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Trp780, Ile800, Pro778,
Met922, Met772
p–p stacking: Tyr836
Polar: Ser854, Asn853 Ser773, Ser774
Charged (+ve): Lys802, Arg852
Charged (�ve): Glu849, Asp933

16021

H bond: Val851(2)
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Trp780, Ile800, Met922,
Met772
Polar: His855, Ser854, Asn853, Gln859
Charged (+ve): Lys802, Arg770, Arg852
Charged (�ve): Glu798, Glu849, Asp933

Copanlisib

H bond: Lys802, Asp933
Hydrophobic: Val850, Val851, Tyr836, Ile848, Phe930, Ile932, Trp780, Ile800, Met922,
Met772
p–p stacking: Trp780
p–cation: Tyr836
Polar: His855, Ser854, Asn853, Gln859, Thr856
Charged (+ve): Lys802, Arg770, Arg852
Charged (�ve): Glu798, Glu849, Asp933

21460 | RSC Adv., 2022, 12, 21452–21467 © 2022 The Author(s). Published by the Royal Society of Chemistry
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a medicinal and computational chemistry approach for the
structure based virtual screening, and hit to lead identication
of kinase inhibitors as PI3Ka inhibitors.
3.1. Protein preparation, receptor grid generation and
validation of docking protocol

The process of PI3Ka protein preparation was performed using
Epik,23 ProtAssign,17 and Impref applications at pH 7.5 � 0 in
the protein preparation wizard17 of the Maestro interface.16 The
protein preparation wizard17 helps to bring several tools and
integrates the complex procedure of energy minimization into
a simple workow for researchers. Furthermore, the receptor
grid generation was implemented in the binding pocket of the
co-crystal ligand for further analysis in Glide20,21 based ligand
docking using the receptor grid generation workowmentioned
in the materials and methodology.

Further validation of the docking protocol was performed
before the structure-based virtual screening using XP docking of
the co-crystal ligand using the Glidemodule20,21 for checking the
resemblance between the lowest energy state of the co-crystal
ligand predicted by Glide20,21 and the experimental binding
mode of the X-ray crystallographic structure. The
Table 4 Evaluation of other ADMET properties of the selected molecule

Compound QPlogPo/w QPlogS QPlogHERG

6943 4.164 �6.312 �6.915
34100 3.555 �6.622 �6.992
31140 4.784 �6.628 �6.229
12500 4.597 �6.19 �7.915
7165 4.874 �6.431 �7.848
438 3.125 �4.621 �6.077
6450 2.719 �4.39 �5.248
19885 2.48 �4.137 �4.495
14178 2.001 �3.451 �5.454
16021 6.093 �7.438 �6.671
Copanlisib 0.586 �3.692 �6.175

a QPlogS: predicted aqueous solubility, QPlogHERG: predicted IC50 value
cell permeability in nm s�1, QPlogBB: predicted brain/blood partition coe
s�1, QPlogKhsa: prediction of binding to human serum albumin.

Table 3 Evaluation of the ADMET properties of the chosen compounds

Compound
Molecular
weight

Hydrogen bond
donor

Hydrog
accepto

6943 388.468 2 6.7
34100 439.396 3 7.5
31140 357.454 1 4.5
12500 366.421 2 5
7165 380.448 2 5
438 331.407 1 5.75
6450 384.231 1 6.5
19885 353.438 2 6.5
14178 355.411 2 7.25
16021 360.433 1 2.5
Copanlisib 480.525 6.5 8

a PSA: polar surface area.

© 2022 The Author(s). Published by the Royal Society of Chemistry
superimposition between the docked molecule pose and the
experimental X-ray crystallographic structure pose is presented
in Fig. 3 with an RMSD between the two poses of 1.1327 Å.
Hence, the docking protocol was validated since the RMSD
value is less than 2.0 Å, which was known from previous studies.
3.2. Structure based virtual screening by molecular docking

Chemical library screening with a large number of compounds
is time-consuming as well as expensive, considering both false
positive and false negative rates. And therefore, ligand–receptor
docking is the apparent computational technique of choice for
virtual screening in the process of hit to lead identication. The
main advantage of this methodology is that it is rapid and time-
saving while requiring minimum investment. Furthermore,
ligand preparation of 36 324 molecules of the protein kinase
inhibitor library was performed using LigPrep at the same pH of
7.5, like protein preparation.

Structure-based virtual screening was performed for 36 324
molecules using Glide HTVS, and on the basis of docking score,
the best 1000 molecules were selected for SP docking, and then
the best 30 molecules were selected for XP docking for analysis
of accurate binding interactions of the ligand with the receptor
sa

QPlogBB QPPCaco QPPMDCK QPlogKhsa

�0.866 1246.697 627.851 0.499
�1.402 228.465 442.638 0.325
�0.288 2102.976 1104.831 0.903
�0.738 1326.693 671.507 0.617
�0.851 1210.115 607.961 0.715
�0.537 1209.78 1544.245 0.028
�0.451 755.857 968.803 0.032
�1.01 312.473 415.155 �0.101
�1.36 231.929 101.947 �0.134
0.047 4437.132 4471.604 1.219

�0.523 152.836 71.858 �0.263

for blockage of HERG K+ channels, QPPCaco: predicted apparent Caco-2
fficient, QPPMDCK: predicted apparent MDCK cell permeability in nm

en bond
r PSAa

Percent human
oral absorption Rule of ve

76.14 100 0
99.77 89.978 0
54.88 100 0
66.91 100 0
66.91 100 0

117.65 100 0
61.77 94.382 0
99.33 86.122 0

100.56 80.998 0
42.22 100 1
76.14 43.555 2
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in the same grid generated with PDB 4JPS. A brief under-
standing of energy optimization and ligand–protein affinity
could be acknowledged by the ligand docking study. HTVS and
SP may provide false-positive results, so we have chosen XP
docking, to get a more accurate outcome.

The top tenmolecules were selected having compound ID 6943,
34100, 31140, 12500, 14178, 7165, 438, 6450, 19885, and 16021,
and are described in Table 1 along with their structures, docking
score and free binding energyMMGBSADG score with the protein.

The best ten molecules show docking scores in the range of
�11.973 to �10.522, although the standard PI3K pan-inhibitor
Copanlisib shows a docking score of�3.941. And, the MMGBSA
binding affinity value ranges between �62.97 and
�49.53 kcal mol�1, and the value for the standard drug is
�42.58 kcal mol�1, which is comparatively lower than that of
the hit molecules. The top 10 molecules expressed signicant
interactions, compared with all molecules present in the PI3Ka
drug database as well as with the PI3K pan-inhibitor Copanlisib.

The molecules of protein kinase inhibitors – compound ID
6943, 34100, 31140, 12500, 14178, 7165, 438, 6450, 19885, and
16021 – expressed signicant interactions, comparing all mole-
cules present in the kinase inhibitor database, in the specic
binding pocket of PI3Ka (PDB ID: 4JPS). Aer interpreting the
grid based extra precision docking of the top 10molecules, it can
be summarized that amino acid residue Val851 played the most
important role in the hydrogen bonding interaction, followed by
Ser854 and subsequently Asn853 and Asp933.
Fig. 4 3D interaction diagram of induced fit docking of (A) 6943 [IFD sco
score: �2244.06].

21462 | RSC Adv., 2022, 12, 21452–21467
Hydrophobic interactions were shown by the Val850, Val851,
Tyr836, Ile848, Phe930, Ile932, Trp780, Ile800, Pro778, Met922,
and Met772 amino acid residues, and p–p stacking was
observed with Tyr836 and subsequently Trp780. Various ligands
show p–p stacking interactions with Tyr836 and Trp780,
although only one ligand (compound ID: 34100) shows a p–

cation interaction with Lys802. The positive charge and negative
charge interactions with Lys802 and Arg852, and Glu849 and
Asp933 respectively also played a dynamic role in the particular
interaction (Table 2).

On the other hand, Copanlisib is a standard marketed drug,
and shows non-bonding H-bond interactions with Lys802 and
Asp933, but not with Val851, which is the key amino acid for
PI3Ka inhibition. Hydrophobic interactions with Val850,
Val851, Tyr836, Ile848, Phe930, Ile932, Trp780, Ile800, Met922,
and Met772, p–p stacking with Trp780, p–cation interaction
with Tyr836, polar interactions with His855, Ser854, Asn853,
Gln859, and Thr856, and the positive and negative charge
interactions are indistinguishable (Table 2). Hence, it can be
observed that the top 10 hit molecules may be effective in the
treatment of NSCLC by inhibiting the PI3Ka activity. The 3D
interactions of the top ten hits are provided in the ESI.†
3.3. Drug likeness predictions and ADMET analysis

The top 10 molecules were selected on the basis of docking
score, ligand receptor interactions and MMGBSA binding
re: �2252.79], (B) 34100 [IFD score: �2245.53] and (C) Copanlisib [IFD

© 2022 The Author(s). Published by the Royal Society of Chemistry
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affinity compared with Copanlisib as the standard drug and
a PI3K pan-inhibitor. The ADMET analysis was performed using
the QikProp application of Maestro. First, drug likeness prop-
erties and rule of ve violation were analyzed and are reported
in Table 3, and compared with the standard.

Furthermore, the values of other ADMET descriptors are
reported in Table 4. It was nally observed that the best two
molecules – 6943 and 34100 – of the ten hits showed the best
results. Although all ten molecules showed better results than
the standard drugs.

The two kinase inhibitors – compound IDs 6943 and 34100 –

were selected according to the results of docking score and
interactions, MMGBSA free energy calculation and ADMET
analysis. Further in silico investigation was done by IFD and
molecular dynamics simulation.
3.4. Induced t docking analysis

The induced t docking (IFD) protocol26,27 was based on Glide
docking20,21 and Prime18 is used as the renement module in the
Maestro interface of Schrodinger. It helps in accurate prediction
of ligand binding mode in the receptor binding pocket, as well
Fig. 5 MD simulation for the 6943–PI3Ka complex (PDB ID: 4JPS), (A) int
of the PI3Ka–6943 complex, (C) histogram of the PI3Ka–6943 complex

© 2022 The Author(s). Published by the Royal Society of Chemistry
as the concomitant structural changes. It almost generates an
accurate binding mode similar to the biological ligand receptor
binding, by eradicating false negative bonds. IFD is used to
understand the stability of the complex in the particular
binding pocket of the receptor to undergo a specic inhibitory
effect.

In the present study, IFD was performed for the two best
molecules, which are the lead compounds, according to the
molecular docking, MMGBSA analysis, and ADMET predictions
targeting PI3Ka (PDB ID: 4JPS) and a comparison was made
with PI3K pan-inhibitor Copanlisib.

Aer analysis of IFD interactions, it was observed that
compound 6943 had a strong hydrogen bonding interaction
with Val851 and an IFD score of �2252.79, which showed
maximum inhibitory effect, greater than that of compound
34100 showing a hydrogen bonding interaction with Ser854 and
an IFD score of �2245.53, and both compounds showed better
interaction and IFD score than the standard PI3K pan inhibitor
Copanlisib, showing a hydrogen bonding interaction with
Trp780 and an IFD score of �2244.06. The IFD score and 3D
interactions are provided in Fig. 4.
eraction diagram of PI3Ka–6943 after MD simulation, (B) the RMSD plot
, (D) RMSF of the PI3Ka–6943 complex.

RSC Adv., 2022, 12, 21452–21467 | 21463

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra03451d


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
A

ug
us

t 2
02

2.
 D

ow
nl

oa
de

d 
on

 5
/4

/2
02

5 
4:

55
:5

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3.5. Molecular dynamics (MD) simulation

An MD simulation study was executed to validate the stability of
the receptor–ligand complex, predicted binding mode, and the
types of potential interactions, which were studied previously by
Glide XP docking.20,21 The primary reason behind using MD
simulation is that it can accurately simulate actual biological
situations. Although the exible docking study can be per-
formed by induced t docking (IFD),26,27 it was unable to mimic
the biological conditions. The simulation was carried out using
the Desmond28 application in the Maestro interface, as it
executes explicit solvent simulation with periodic boundary
conditions in a orthorhombic simulation box with a high-
resolution dynamic structure of the protein in a water-
solvated model similar to the biological system.33 The infor-
mation on structural changes in the form of conformations and
ligand–protein interactions was sufficient. Further MD simula-
tion was performed for the top two ligands and the standard
drug for comparison targeting the PI3Ka protein
simultaneously.

In the present research, MD simulation was performed for
the two best leads – 6943 and 34100 – and compared with the
Fig. 6 MD simulation for the 34100–PI3Ka complex (PDB ID: 4JPS), (A) i
plot of the PI3Ka–34100 complex, (C) histogram of the PI3Ka–34100 co

21464 | RSC Adv., 2022, 12, 21452–21467
standard Copanlisib–PI3Ka complex. Aer analysing the data
from the simulation interaction diagram, it was observed that
the RMSD of the 6943–PI3Ka complex shows uctuations of
1.2–1.6 Å, which is very stable and in the acceptable range (1–4
Å) in the specic binding pocket of PI3Ka, and the maximum
protein–ligand contacts are hydrogen bonding interactions with
Val851, Asn853 and Ser854 which are crucial for the inhibitory
activity (Fig. 5). Similarly, aer the analysis of the 34100–PI3Ka
complex, it was observed that the RMSD uctuation is between
2 and 3 Å [Fig. 6(B)], which is in the acceptable range, but less
stable than the 6943–PI3Ka complex, and more stable than the
standard Copanlisib–PI3Ka complex with an RMSD of 2–4 Å
[Fig. 7(B)].

The compound 34100–PI3Ka complex shows a hydrogen
bonding interaction with Val851 only [Fig. 6(C)], although this is
better than the standard Copanlisib–PI3Ka complex which has
a hydrogen bonding interaction with Asp933 [Fig. 7(C)].

The Root Mean Square Fluctuations (RMSF) help in charac-
terizing local changes in the protein. These uctuations were
used for determining the residue present that contributes to
structural uctuations in the complex. The fewer the
nteraction diagram of PI3Ka–34100 after MD simulation, (B) the RMSD
mplex, (D) RMSF of the PI3Ka–34100 complex.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 MD simulation for the Copanlisib–PI3Ka complex (PDB ID: 4JPS), (A) interaction diagram of PI3Ka–Copanlisib after MD simulation, (B) the
RMSD plot of the PI3Ka–Copanlisib complex, (C) histogram of the PI3Ka–Copanlisib complex, (D) RMSF of the PI3Ka–Copanlisib complex.

Table 5 Synthetic accessibility of the top two kinase inhibitors, compared with the PI3K pan-inhibitor Copanlisib

Compound Structure SA score

6943 3.44

34100 2.88

Copanlisib 3.84

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 21452–21467 | 21465
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uctuations, the better the stability, and so, by comparing
Fig. 5(D) with Fig. 6(D) and 7(D), it was observed that Fig. 5(D)
for the 6943–PI3Ka complex shows fewer uctuations than
Fig. 6(D) for the 34100–PI3Ka complex, and both complexes
show fewer uctuations than Fig. 7(D) for the Copanlisib–PI3Ka
complex.

Hence, from the MD simulation it was proved that ligand
6943 shows the best stability with PI3Ka inhibitory activity,
compared to the other molecule 34100; although both mole-
cules are more stable and potent inhibitors of PI3Ka than the
standard pan-inhibitor Copanlisib.
3.6. Synthetic accessibility (SA) analysis

SA evaluation is a method for determining the ease with which
substances can be synthesized.34 A quick method for assessing
synthetic accessibility for a large number of chemical
compounds is likely to be a new approach for drug discovery,
based on 1024 fragmental contributions (FP2) modulated by
size and complexity penalties, trained on 12 782 590 molecules
and tested on 40 external molecules (r2 ¼ 0.94).35

The two leads aer the structure-based virtual screening,
ADMET analysis and MD simulation, underwent SwissADME
synthetic accessibility score prediction, reported in Table 5. It
was observed that the lead compounds – 6943 and 34100 – have
SA scores of 3.44 and 2.84 which are lower than that of the
standard PI3K pan-inhibitor Copanlisib of 3.84. All the mole-
cules exhibit easy to moderate difficulty for synthesis. Hence, it
may be predicted that the lead kinase inhibitors – 6943 and
34100 – are easier to synthesize than the standard PI3K pan-
inhibitor Copanlisib as reported in Table 5.
4 Conclusion

Mutation in PI3Ka is a continuous process in squamous cell
carcinoma in NSCLC. And so, to inhibit the growth and cell
proliferation abnormalities, small molecules are needed for
targeted therapy. PI3K is a kind of kinase enzyme which readily
mutates in squamous cell carcinoma in NSCLC, and therefore,
the kinase inhibitor library from ChemDiv was chosen for the
virtual screening. The selection of a protein from the Uniprot
database was a difficult procedure, and in the present research,
a mutated protein of PI3Ka (PDB ID: 4JPS) was rst taken and
the docking protocol was validated successfully with the co-
crystal ligand. Aer the structure based virtual screening
protocol of 36 324 molecules from the kinase inhibitor library,
only 10 molecules were chosen as promising hits aer going
through HTVS, SP and XP docking, and compared with the PI3K
pan-inhibitor Copanlisib. Hit to lead optimization was per-
formed using lters like MMGBSA, drug-likeness and ADMET
analysis, and IFD. The two best molecules, compound IDs 6943
and 34100, showed promising interaction with the amino acid
residue Val851, which produces a better inhibitory effect on the
PI3Ka of squamous cell carcinoma in NSCLC than the PI3K pan-
inhibitor Copanlisib. In the IFD, the two molecules – 6943 and
34100 – also showed better interactions and binding poses than
the standard drug. Furthermore, in the molecular dynamics
21466 | RSC Adv., 2022, 12, 21452–21467
simulation, the stability of the two lead molecules 6943 and
34100 showed more promising results, in the ligand protein
interactions as well as in the RMSD and RMSF, than the stan-
dard PI3K pan-inhibitor. Furthermore, the synthetic accessi-
bility of the lead molecules was examined and compared with
that of the standard drug Copanlisib to understand the diffi-
culty of the synthetic approach in medicinal chemistry. Thus,
the current study demonstrates the association between PI3Ka
inhibition in NSCLC and the in silico approach for optimising
the best two molecules. Further in vitro and in vivo assays of
these molecules can be performed, and these molecules may act
as potential anticancer agents in the therapy of NSCLC.
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