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Two acid-catalyzed tandem reactions between 4-hydroxy-1-methylquinolin-2(1H)-one and propargylic

alcohols are described. Depending mainly on the propargylic alcohol used, these tandem reactions
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Introduction

Pyrano[3,2-c]quinolone is a structural motif occurring in
a number of natural products® with a wide range of important
biological activities such as anticancer,” antibacterial,” antima-
larial,® antiinflammatory* and antifungal® properties and inhi-
bition of calcium signaling,® TNF-o,” platelet aggregation,® and
nitric oxide production.® For example, alkaloids zanthosimuline
and huajiaosimuline® exhibit cytotoxicity against cancer cells,
which is considered as potential anticancer agents (Scheme 1a).
In addition, furo[3,2-c]quinolone derivatives such as araliopsine
and almein are principally isolated from Rutaceae species'
(Scheme 1a). Furo[3,2-c]quinolone hybrids are a significant
class of angularly fused tricyclic compounds among the great
variety of furan derivatives, which have been shown to exhibit
biological and pharmacological activity such as antimicrobial,
insecticidal, antiarrhythmic, antimalarial, antiplatelet aggrega-
tion and sedative,""* photochemical treatment in clinic thera-
peutic field”® and blocking activities of the voltage-gated
potassium channel Kv1.3." Consequently, a large number of
procedures have been developed for the construction of these
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to afford furo[3,2-clquinolones in moderate-to-high yields. The pyrano[3,2-clquinolones products could
be further transformed to tetracyclic 4,9-dihydro-5H-cyclopentallmn]phenanthridin-5-one derivatives.

highly useful structures.”® However, current methods more or
less suffer from limited substrate scope, complicated catalyst or
noble metal catalyst systems, not easily accessible starting
materials, or multistep manipulations, the development of
simple methods with wide product diversity is still highly
desirable. Propargylic alcohols are readily accessible synthetic
building blocks in organic synthesis.'® Over the past few
decades, the development of Lewis acid-catalyzed tandem
annulations of propargylic alcohols has attracted interests from
synthetic chemists, especially for the construction of various
heterocyclic skeletons including pyrroles,'” furans,'® pyrans,*

a) representative natural products with pyrano[3,2-c]quinolone or furo[3,2-c]quinolone skeleton
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Scheme 1 Representative natural products with pyrano[3,2-clquino-
lone or furo[3,2-clquinolone skeleton.
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carbazoles,” quinolines,” and tetrahydro-B-carbolines.”> We
herein describe the development of acid-catalyzed formal [3 +
3]/[3 + 2] cascade annulation processes for the construction of
pyrano[3,2-c]quinolone/furo[3,2-c]quinolone derivatives from 4-
hydroxy-1-methylquinoline-2(1H)-one and propargylic alcohols
(Scheme 1b).

Results and discussion

Our initial studies commenced with the reaction of 4-hydroxy-1-
methylquinolin-2(1H)-one 1 and propargylic alcohol 2a (Table
1). No reaction occurred in the absence of an acid catalyst (Table
1, entry 1). Using 1,2-DCE (1,2-dichloroethane) as solvent, five
Lewis acid catalysts and four Brensted acid catalysts were
screened and pTsOH-H,O was found to be the most efficient
one for this reaction (Table 1, entries 2-10). The product 3a
could be isolated in only 5% yield when the reaction was per-
formed at 25 °C (Table 1, entry 11). Changing the solvent to
THF, toluene, DMF (N,N-dimethylformamide) gave inferior
results (Table 1, entries 12-14). Further screening of catalyst
loading amount uncovered that 10 mol% was optimal for the
reaction, while lower (5 mol%) or higher (20 mol%) loadings all
led to no improvement in yields (Table 1, entries 15-16).
Notably, relatively lower yields yet shorter reaction time were
observed in the cases of metal Lewis acid catalysts, which might
be due to faster decomposition of the propargylic alcohol 2a
under these conditions as observed by thin-layer chromatog-
raphy (Table 1, entries 2-10). Moreover, it is worth mentioning

Table 1 Screening of the reaction conditions®?

Ph_ Ph
OH
@(i _ o

A PhTohPh Ve Ph

| 'V o

1 2a 3a (x-ray)
Entry Catalyst (mol%) Solvent Time Yield? (%)
1 No catalyst 1,2-DCE 24 h 0
2 Yb(OTH); (10) 1,2-DCE 0.5h 23
3 Sc(OTf), (10) 1,2-DCE 0.5 h 25
4 Zn(OTf), (10) 1,2-DCE 0.5 h 23
5 Cu(OTf), (10) 1,2-DCE 0.5 h 35
6 FeCl;-6H,0 (10) 1,2-DCE 0.5h 20
7 pTsOH-H,O0 (10) 1,2-DCE 1h 70
8 CH;COOH (10) 1,2-DCE 36 h 0
9 TFA (10) 1,2-DCE 36 h 40
10 TfOH (10) 1,2-DCE 1h 57
11° pTSOH-H,0 (10) 1,2-DCE 36 h 5
124 pTsOH-H,0 (10) THF 36 h 35
13° pTsOH-H,0 (10) Toluene 4h 34
14° pTsOH-H,0 (10) DMF 24 h 0
15 pTsOH-H,O (5) 1,2-DCE 4 h 50
16 PTsOH-H,0 (20) 1,2-DCE 1h 65

“ Reaction conditions: 1 (0.5 mmol), 2a (0.5 mmol) solvent (5 mL),
under a1r the reaction was monitored b}/ TLC. ® Yield of the isolated
product. © Reaction was run at 25 °C. “ Reaction was run at 66 °C.
¢ Reaction was run at 90 °C.
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that the reaction is tolerant of moisture and could be performed
under air.

With the optimized reaction conditions (Table 1, entry 7) in
hand, a series of propargylic alcohols 2 were reacted with 4-
hydroxy-1-methylquinolin-2(1H)-one 1 to examine the reaction
scope with regard to the formation of pyrano[3,2-c]quinolone 3.
As depicted in Scheme 2, the transformation of various
substituted propargylic alcohols 2 proceeded smoothly to
deliver the corresponding pyrano[3,2-c]quinolone derivatives in
moderate to good yields, irrespective of the electronic nature of
the substituents. A variety of functional groups, including
methyl, methoxyl, halogen and cyclopropyl substituents, were
compatible with the reaction. Notably, cyclopropyl ring has
a wide range of applications in drug molecular design* and
propargylic alcohol bearing cyclopropyl was tolerated in the
reaction conditions to generate the desired product 3i in 58%

OH
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Scheme 2 Scope study with different propargylic alcohols 2.
?Reaction conditions: 1 (0.5 mmol), 2 (0.5 mmol), pTsOH-H,O (0.05
mmol), 1,2-DCE (5 mL), 84 °C. PIsolated yield refers to pyranol3,2-cl
quinolone derivatives. “Reaction time: 10 h. 9Reaction time: 10 min.
®Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), pTsOH-H,O (0.05
mmol), 1,2-DCE (5 mL), 84 °C.
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yield. In addition, other alkyl groups (R") such as methyl, n-butyl
and trimethylsilyl also gave [3 + 3] products 3t-3u in 51-57%
yields. Moreover, when 9-fluorenyl-substituted propargylic
alcohols 2q-2s were subjected to the reaction conditions, spi-
rocyclic products 3q-3s could be formed in the yields of 24-55%
albeit with much prolonged reaction time of 10 h. It was found
that product 3x was produced by hydroamination of N-H in 1
with alkyne in 2 beside normal product 3w. Then products 3y
and 3z were synthesized by adjusting molar ratio of the reac-
tion. The structure of the products 3a and 3z was additionally
confirmed by X-ray crystallographic analysis (see ESI{ for
details).

Based on the above experimental results, a plausible mech-
anism for the present cascade reactions is proposed (Scheme 3).
First, in the presence of a Brgnsted acid catalyst, propargylic
alcohol 2a is converted to the propargylic carbocation I, which is
in equilibrium with the allenic form IL>* The latter would
undergo Friedel-Crafts-type reaction with 1 to form the allene
intermediate III, which would be transformed to the final
product 3a via 6-endo-dig cyclization.*¥

To further extend the scope of the current reaction,
secondary propargylic alcohols 2u was tested as substrate.
Unexpectedly, 3-(1,3-diphenylprop-2-yn-1-yl)-4-hydroxy-1-meth-
ylquinolin-2(1H)-one 5a was isolated instead of the desired
pyrano[3,2-c|quinolone 3u under the above optimized reaction
conditions (Scheme 4). Given the recent reports on transition-
metal-catalyzed direct heterocyclization of alkynes to
construct furan frameworks,* Cu(OTf), was then used to cata-
lyze the reaction and to our delight, the ring-closure compound
furo[3,2-c]quinolone 4a was isolated as expected in 48% yield
(Table 2, entry 2). Different Lewis acid catalysts were then
screened (Table 2, entries 1-10), and CuOTf was found to be one
of the best choice (Table 2, entry 3), while some catalysts could
not transform 5a to 4a accordingly (Table 2, entries 1 and 4-7),
indicating that the reactions were stuck at the stage of 5a. The
reaction hardly occurred at room temperature (Table 2, entry 8).
The use of other solvents including THF, toluene, DMF or
changing the catalyst loadings made no improvement in yield
(Table 2, entries 11-16).

Next, the scope of the reaction with regard to the propargylic
alcohols was investigated under the optimized reaction condi-
tions, and the results were presented in Scheme 5. In general,
the products 4 were produced in low to moderate yields (31—
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Scheme 3 A possible mechanism for the dehydrative annulation.
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Scheme 4 Synthesis of 5a catalyzed by pTsOH-H,O.

60%), regardless of the electronic nature and/or position of the
substituents on the benzene rings (R" or R?). It was worth noting
that only stereodefined (Z)-furo[3,2-c]quinolones had been iso-
lated. The structure of the product 4g was additionally
confirmed by X-ray crystallographic analysis (see ESIt for
details). The primary alcohol such as 3-phenylprop-2-yn-1-ol
was tested under the same reaction conditions for 24 hours,
but no new product was detected and the staring material was
recovered in 95% yield. Primary alcohol may not easily form
primary carbocation under this reaction conditions.

To gain some insight into the reaction mechanism of this
formal [3 + 2] annulation, some controlled experiments were
conducted (Scheme 6a). Quenching the reaction between 1 and

Table 2 Screening of the reaction conditions®

Ph Ph
OH 0 / OH ‘ |
H catalyst Ph
X N X
e o e e
1 2u 4a 5a
yield” (%)
Entry Catalyst (mol%) Solvent Time 4a 5a
1 PTsOH-H,0 (10) 1,2-DCE 10 h 0 52
2 Cu(OTf), (10) 1,2-DCE 10 h 48 0
3 CuOTf (10) 1,2-DCE 10h 60 0
4 Yb(OTT); (10) 1,2-DCE 24 h 0 51
5 Zn(OTf), (10) 1,2-DCE 24h 0 53
6 FeCl;-6H,0 (10) 1,2-DCE 24 h 0 55
7 HAuCl,-3H,0 (10) 1,2-DCE 24 h 0 Trace
8 CuCl (10) 1,2-DCE 24 h 0 0
9 CuBr (10) 1,2-DCE 24 h 0 0
10 CuOAc (10) 1,2-DCE 24 h 0 0
11° CuOTf (10) 1,2-DCE 24 h 0 0
124 CuOTf (10) THF 10 h 31 0
13° CuOTf (10) Toluene 10 h 34 0
14° CuOTf (10) DMF 10 h 30 0
15 CuOTf (5) 1,2-DCE 10 h 20 0
16 CuOTf (20) 1,2-DCE 10 h 51 0

“ Reaction conditions: 1 (0.5 mmol), 2u (0.5 mmol), solvent (5 mL),
under air, the reaction was monitored bay TLC. ? Yield of the isolated
product. “ Reaction was run at 25 °C. “ Reaction was run at 66 °C.
¢ Reaction was run at 90 °C.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 5 Scope study with secondary propargylic alcohols™?
?Reaction conditions: 1 (0.5 mmol), 2 (0.5 mmol), CuOTf (0.05 mmol),
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Scheme 6 Controlled experiments and mechanistic proposal for the
[3 + 2]-annulation.

propargylic alcohols 2u at an early stage (1 hour) gave the
compound 5a as the major product in 60% yield, indicating the
Friedel-Crafts-type reaction was a relatively fast step in this
process. Treatment of the isolated 5a under the otherwise same
reaction conditions produced the final product 4a in 80% yield
after 10 hours. On the basis of these results and literature
reports,*”fa mechanistic proposal for the conversion of 5a to 4a
is depicted (Scheme 6b). The transformation began with the
coordination of the triple bond to the copper(i) salt to facilitate
the highly regioselective 5-exo-dig nucleophilic attack of the
hydroxy group to form the intermediate B. Finally, protonolysis
of B afforded 4a and regenerated the catalyst.

To demonstrate the practicality of this formal [3 + 3] cascade
annulation, a gram-scale experiment was carried out to provide
desired product 3a in 73% yield (Scheme 7a). Furthermore,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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a) Gram-scale experiment
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Scheme 7 Scale-up reaction and product transformations.

novel tetracyclic compounds 6a-6e were forged from 3a and
propargylic alcohols 2 in 41-60% yields, which proceeded via
sequential Diels-Alder reaction of 2H-pyran with alkynes fol-
lowed by retro-Diels-Alder extrusion of benzophenone under
thermal reaction conditions and Friedel-Crafts-type reaction at
last.?® Furo[3,2-c]quinolones 4 could be isomerized to 7 under
the catalysis pTsOH - H,O with excellent yields (Scheme 7b). The
structure of the product 6a was additionally confirmed by X-ray
crystallographic analysis (see ESIT for details).

Conclusions

In conclusion, novel acid-catalyzed annulation reactions of
propargylic alcohols with 4-hydroxy-1-methylquinolin-2(1H)-
one were developed. This method provides a good atom- and
step-economic way to useful pyrano[3,2-c]quinolone and furo
[3,2-c]quinolone derivatives in moderate to good yields from
readily accessible starting materials. Efforts towards the utili-
zation of the propargylic alcohols to the synthesis of other
useful cyclic compounds are underway in our laboratories.

Experimental section
General comments

Infrared spectra were obtained on a FTIR spectrometer. "H NMR
spectra were recorded on 400 MHz spectrometer in CDCly
solution and the chemical shifts were reported relative to
internal standard TMS (0 ppm). The following abbreviations are
used to describe peak patterns where appropriate: br = broad, s
= singlet, d = doublet, t = triplet, = quartet, m = multiplet.

RSC Adv, 2022, 12, 21066-21078 | 21069
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Coupling constants are reported in Hertz (Hz). *C NMR were
recorded on 100 MHz and referenced to the internal solvent
signals (central peak is 77.00 ppm in CDCl;). HRMS data were
obtained using ESI ionization. Melting points were measured
with micro melting point apparatus.

The propargylic alcohols 2 were prepared from phenyl-
acetylene and benzophenone according to published
methods.”” Solvents were distilled prior to use. All chemicals
were used as purchased unless otherwise mentioned.

General procedure for the synthesis of 3

A solution of 4-hydroxy-1-methylquinolin-2(1H)-one 1 (0.5
mmol), propargylic alcohols 2 (0.5 mmol) and pTsOH-H,O (0.05
mmol) in 1,2-DCE (5 mL) was stirred under air at 84 °C for 1 h.
After being cooled down to room temperature, the solvent was
evaporated and the crude product was purified by silica gel
column chromatography with petroleum ether/ethyl acetate
(2:1,v).

General procedure for the synthesis of 4

A solution of 4-hydroxy-1-methylquinolin-2(1H)-one 1 (0.5
mmol), the secondary propargylic alcohols 2 (0.5 mmol) and
CuOTf (0.05 mmol) in 1,2-DCE (5 mL) was stirred under air at
84 °C for 10 h. After being cooled down to room temperature,
the solvent was evaporated and the crude product was purified
by silica gel column chromatography with petroleum ether/
ethyl acetate (2 : 1, v/v).

Synthesis of 5a

A solution of 4-hydroxy-1-methylquinolin-2(1H)-one 1 (0.5
mmol), propargylic alcohols 2u (0.5 mmol) and CuOTf (0.05
mmol) in DCE (5 mL) was stirred under air at 84 °C for 1 h. After
being cooled down to room temperature, the solvent was
evaporated and the crude product was purified by silica gel
column chromatography with petroleum ether/ethyl acetate
(1:1,v).

General procedure for the synthesis of 6

A solution of pyrano[3,2-c]quinolone 3a (0.5 mmol), propargylic
alcohols 2 (0.6 mmol) and Yb(OTf); (0.05 mmol) in 1,2-DCE (5
mL) was stirred under air at 84 °C for 4 h. After being cooled
down to room temperature, the solvent was evaporated and the
crude product was purified by silica gel column chromatog-
raphy with petroleum ether/ethyl acetate (3 : 1, v/v).

General procedure for the synthesis of 7

A solution of furo[3,2-c]quinolones 4 (0.2 mmol) and
pTsOH-H,0 (0.04 mmol) in 1,2-DCE (3 mL) was stirred under
air at 84 °C for 12 h. After being cooled down to room temper-
ature, the solvent was evaporated and the crude product was
purified by silica gel column chromatography with petroleum
ether/ethyl acetate (2 : 1, v/v).

21070 | RSC Adv, 2022, 12, 21066-21078
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Gram-scale synthesis for product 3a

A solution of 4-hydroxy-1-methylquinolin-2(1H)-one 1 (4.0
mmol), propargylic alcohols 2a (4.0 mmol) and pTsOH-H,O (0.4
mmol) in 1,2-DCE (20 mL) was stirred under air at 84 °C for 1 h.
After being cooled down to room temperature, the solvent was
evaporated and the crude product was purified by silica gel
column chromatography with petroleum ether/ethyl acetate
(2:1,vv).

Characterization data of products

6-Methyl-2,2 4-triphenyl-2,6-dihydro-5H-pyrano[3,2-c]
quinolin-5-one (3a). White solid (155 mg, 70%); mp 217-218 °C;
'H NMR (400 MHz, CDCl;) 6 8.22 (d, J = 8.2 Hz, 1H), 7.61-7.47
(m, 5H), 7.44-7.20 (m, 13H), 5.96 (s, 1H), 3.54 (s, 3H); "*C NMR
(100 MHz, CDCl3) 6 159.60, 156.52, 143.67, 139.88, 139.55,
135.74, 131.31, 128.17, 127.84, 127.66, 127.32, 127.24, 126.80,
126.10, 123.53, 121.75, 115.89, 113.98, 108.19, 84.31, 29.20. IR
(KBr) » 3022, 1649, 1557, 1489, 1393, 1116, 990, 756, 698 cm ™ *;
HRMS (ESI): m/z caled for ([C3,H,3NO, + H]"): 442.1802; found:
442.1801.

6-Methyl-2,2-diphenyl-4-(p-tolyl)-2,6-dihydro-5H-pyrano[3,2-
c]quinolin-5-one (3b). White solid (155 mg, 68%); mp 192-
193 °C; "H NMR (400 MHz, CDCl;) 6 8.21 (dd, J = 8.3, 1.4 Hz,
1H), 7.65-7.43 (m, 5H), 7.41-7.21 (m, 10H), 7.16 (d, ] = 7.9 Hz,
2H), 5.94 (s, 1H), 3.54 (s, 3H), 2.36 (s, 3H); "*C NMR (100 MHz,
CDCl3) 6 159.67, 156.52, 143.73, 139.87, 136.85, 136.62, 135.61,
131.28, 128.44, 128.16, 127.82, 127.17, 126.83, 125.73, 123.54,
121.76, 115.94, 113.99, 108.29, 84.31, 29.23, 21.28. IR (KBr) »
3025, 2920, 1732, 1648, 1556, 1447, 1389, 1113, 988, 752,
700 cm™'; HRMS (ESI): m/z caled for ([C3H,sNO, + H]™):
456.1958; found: 456.1960.

4-(4-Methoxyphenyl)-6-methyl-2,2-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3c). White solid (111 mg, 47%);
mp 199-200 °C; "H NMR (400 MHz, CDCI;) 6 8.21 (dd, J = 8.1,
1.5 Hz, 1H), 7.58-7.46 (m, 5H), 7.36-7.20 (m, 10H), 6.95-6.84
(m, 2H), 5.92 (s, 1H), 3.81 (s, 3H), 3.54 (s, 3H); *C NMR (100
MHz, CDCl;) 6 159.68, 158.84, 156.57, 143.75, 139.85, 135.27,
131.86, 131.29, 128.45, 128.15, 127.81, 126.81, 125.41, 123.53,
121.76, 115.94, 113.98, 113.13, 108.25, 84.30, 55.13, 29.23. IR
(KBr) v 3058, 2837, 1652, 1557, 1499, 1384, 1113, 988, 756,
700 cm™'; HRMS (ESI): m/z caled for ([C3H,sNO; + H]Y):
472.1907; found: 472.1905.

4-(2-Fluorophenyl)-6-methyl-2,2-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3d). White solid (142 mg, 62%);
mp 196-197 °C; *H NMR (400 MHz, CDCl;) 6 8.19 (d, J = 7.2 Hz,
1H), 7.57-7.49 (m, 5H), 7.42 (t, ] = 7.5 Hz, 1H), 7.36-7.20 (m,
9H), 7.16 (t,] = 7.5 Hz, 1H), 7.05 (t, 1H), 6.01 (s, 1H), 3.52 (s, 3H);
3C NMR (100 MHz, CDCl;) 6 159.87 (d, Jo_p = 244.6 Hz), 159.86,
155.48, 143.60, 139.78, 131.31, 130.13, 129.60 (d, Jo_r = 3.7 Hz),
129.01 (d, Jo_r = 8.1 Hz), 128.24, 127.92, 127.74, 127.28, 126.83,
123.70 (d, Jo_r = 3.3 Hz), 123.56, 121.78, 115.86, 114.73 (d, Jo_r =
21.6 Hz), 114.00, 108.18, 84.05, 29.19; ’F NMR (377 MHz,
CDCl;) 6 —114.21 (m). IR (KBr) » 3061, 1736, 1649, 1559, 1489,
1394, 1124, 993, 753, 699 cm '; HRMS (ESI): m/z caled for
([C51H,,FNO, + H]"): 460.1707; found: 460.1709.
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4-(3-Fluorophenyl)-6-methyl-2,2-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3e). White solid (218 mg, 95%);
mp 194-195 °C; *H NMR (400 MHz, CDCl;) 6 8.22 (dd, J = 8.1,
1.3 Hz, 1H), 7.61-7.53 (m, 1H), 7.53-7.46 (m, 4H), 7.36-7.22 (m,
9H), 7.15 (d, ] = 7.7 Hz, 1H), 7.13-7.06 (m, 1H), 7.00 (td, ] = 8.4,
2.1 Hz, 1H), 5.97 (s, 1H), 3.54 (s, 3H); "*C NMR (100 MHz, CDCI;)
6 162.27 (d, Jo_r = 243.5 Hz), 159.50, 156.68, 143.47, 141.84 (d,
Jo-r = 8.0 Hz), 139.93, 134.79 (d, Jo_p = 2.0 Hz), 131.54, 129.05
(d, Je_r = 8.2 Hz), 128.26, 127.97, 126.77, 126.61, 123.61, 123.18
(d, Jo-r = 2.7 Hz), 121.91, 115.82, 114.50 (d, Jo_r = 21.8 Hz),
114.10 (d, Jc_r = 20.9 Hz), 114.09, 107.86, 84.35, 29.24; °F NMR
(377 MHz, CDCl;) § —114.10 (m). IR (KBr) » 3061, 2943, 1732,
1645, 1559, 1486, 1395, 1115, 756, 698 cm'; HRMS (ESI): m/z
caled for ([C3;H,,FNO, + H]): 460.1707; found: 460.1709.
4-(4-Fluorophenyl)-6-methyl-2,2-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3f). White solid (140 mg, 61%); mp
210-211 °C; 'H NMR (400 MHz, CDCl;) 6 8.22 (d,J = 8.1 Hz, 1H),
7.60-7.45 (m, 5H), 7.39-7.21 (m, 10H), 7.04 (t, / = 8.7 Hz, 2H),
5.93 (s, 1H), 3.53 (s, 3H); "*C NMR (100 MHz, CDCl;) 6 162.15 (d,
Jo-r = 244.1 Hz), 159.64, 156.67, 143.57, 139.88, 135.47 (d, Jo_r =
3.3 Hz), 134.85, 131.48, 128.94 (d, Jo_r = 8.0 Hz), 128.23, 127.93,
126.77, 126.10, 123.59, 121.89, 115.85, 114.6 (d, Jo_r = 21.4 Hz),
114.06, 107.94, 84.32, 29.22; F NMR (377 MHz, CDCl,)
6 —115.24 (s). IR (KBr) » 3058, 2925, 1646, 1556, 1509, 1388,
1118, 988, 755, 701 cm™'; HRMS (ESI): m/z caled for
([C31H,,FNO, + H]"): 460.1707; found: 460.1709.
4-(4-Chlorophenyl)-6-methyl-2,2-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3g). White solid (195 mg, 82%);
mp 218-219 °C; *H NMR (400 MHz, CDCl;) 6 8.21 (dd, J = 8.2,
1.1 Hz, 1H), 7.59-7.45 (m, 5H), 7.35-7.19 (m, 12H), 5.94 (s, 1H),
3.52 (s, 3H); C NMR (100 MHz, CDCl;) § 159.56, 156.71,
143.45, 139.86, 137.99, 134.74, 133.03, 131.52, 128.68, 128.22,
127.94, 127.85, 126.74, 126.33, 123.57, 121.91, 115.79, 114.05,
107.77, 84.32, 29.21. IR (KBr) » 3059, 2933, 1648, 1556, 1489,
1401, 1114, 989, 755, 699 cm *; HRMS (ESI): m/z caled for
([C31H,,CINO, + H]"): 476.1412; found: 476.1410.
4-(4-Bromophenyl)-6-methyl-2,2-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3h). White solid (193 mg, 74%);
mp 177-178 °C; 'H NMR (400 MHz, CDCl;) 6 8.22 (dd, J = 8.1,
1.4 Hz, 1H), 7.61-7.54 (m, 1H), 7.53-7.43 (m, 6H), 7.35-7.21 (m,
10H), 5.95 (s, 1H), 3.54 (s, 3H); >C NMR (100 MHz, CDCl;)
6 159.59, 156.75, 143.46, 139.90, 138.51, 134.79, 131.56, 130.80,
129.03, 128.25, 127.97, 126.77, 126.35, 123.61, 121.94, 121.29,
115.82, 114.10, 107.73, 84.35, 29.25. IR (KBr) v 3062, 2937,1736,
1648, 1557, 1486, 1400, 1114, 989, 760, 700 cm ™ '; HRMS (ESI):
m/z caled for ([C3,H,,BrNO, + H]): 520.0907; found: 520.0904.
4-Cyclopropyl-6-methyl-2,2-diphenyl-2,6-dihydro-5H-pyrano
[3,2-c]quinolin-5-one (3i). White solid (118 mg, 58%); mp 213-
214 °C; "H NMR (400 MHz, CDCl;) 6 8.14 (dd, J = 7.9, 0.7 Hz,
1H), 7.50 (t, J = 7.8 Hz, 1H), 7.44-7.36 (m, 4H), 7.32-7.17 (m,
8H), 5.62 (s, 1H), 3.61 (s, 3H), 2.81-2.56 (m, 1H), 0.98-0.77 (m,
2H), 0.75-0.47 (m, 2H); “*C NMR (100 MHz, CDCl;) ¢ 160.73,
155.41, 144.21, 139.56, 136.91, 131.07, 128.08, 127.64, 126.74,
123.56, 121.71, 119.57, 115.78, 113.81, 109.18, 84.04, 29.10,
13.41, 7.34. IR (KBr) » 3056, 3000, 1643, 1554, 1497, 1399, 1108,
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990, 752, 701 cm™'; HRMS (ESI): m/z calcd for ([C,5H,3NO, +
HJ"): 406.1802; found: 406.1801.
6-Methyl-4-phenyl-2,2-di-p-tolyl-2,6-dihydro-5H-pyrano[3,2-
c]quinolin-5-one (3j). Blue solid (193 mg, 82%); mp 236-237 °C;
'H NMR (400 MHz, CDCl;) 6 8.19 (dd, J = 8.1, 1.5 Hz, 1H), 7.57-
7.48 (m, 1H), 7.44-7.29 (m, 9H), 7.27-7.20 (m, 2H), 7.10 (d, ] =
8.0 Hz, 4H), 5.92 (s, 1H), 3.52 (s, 3H), 2.29 (s, 6H); **C NMR (100
MHz, CDCl;) 6 159.66, 156.57, 140.90, 139.85, 139.68, 137.53,
135.42, 131.22, 128.81, 127.63, 127.32, 127.15, 126.77, 126.43,
123.58, 121.69, 116.00, 113.93, 108.12, 84.27, 29.20, 21.02. IR
(KBr) » 3032, 2932, 2838, 1733, 1649, 1555, 1461, 1385, 1113,
983, 757, 696 cm™'; HRMS (ESI): m/z caled for ([C33H,,NO, +
HJ"): 470.2115; found: 470.2117.
2,2-Bis(4-methoxyphenyl)-6-methyl-4-phenyl-2,6-dihydro-
5H-pyrano[3,2-c]quinolin-5-one (3k). White solid (108 mg,
43%); mp 218-219 °C; 'H NMR (400 MHz, CDCl;) 6 8.17 (d, ] =
7.9 Hz, 1H), 7.58-7.51 (m, 1H), 7.45-7.29 (m, 9H), 7.29-7.20 (m,
2H), 6.83 (d, J = 8.5 Hz, 4H), 5.89 (s, 1H), 3.76 (s, 6H), 3.54 (s,
3H); *C NMR (100 MHz, CDCl;) é 159.70, 159.11, 156.56,
139.89, 139.68, 135.96, 135.42, 131.25, 128.29, 127.67, 127.33,
127.20, 126.49, 123.58, 121.71, 116.04, 113.98, 113.45, 108.12,
84.17, 55.21, 29.23. IR (KBr) v 3056, 1652, 1556, 1489, 1393,
1116, 988, 757, 697 cm™'; HRMS (ESI): m/z caled for
([C33H,,NO, + H]"): 502.2013; found: 502.2012.
2,2-Bis(4-chlorophenyl)-6-methyl-4-phenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (31). White solid (189 mg, 74%); mp
264-265 °C; 'H NMR (400 MHz, CDCl;) 6 8.14 (dd, J = 7.9,
1.1 Hz, 1H), 7.62-7.52 (m, 1H), 7.48-7.39 (m, 4H), 7.39-7.32 (m,
5H), 7.31-7.22 (m, 6H), 5.85 (s, 1H), 3.55 (s, 3H); **C NMR (100
MHz, CDCl;) 6 159.44, 156.26, 141.72, 139.97, 139.06, 136.63,
134.10, 131.65, 128.52, 128.23, 127.78, 127.53, 127.25, 124.91,
123.35, 121.94, 115.62, 114.17, 108.35, 83.46, 29.29. IR (KBr) »
3056, 1652, 1556, 1488, 1393, 1115, 988, 757, 697 cm ™~ '; HRMS
(ESI): m/z caled for ([C3;H,,ClLNO, + H]"): 510.1022; found:
510.1024.
2-(4-Methoxyphenyl)-6-methyl-2,4-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3m). Yellow solid (141 mg, 60%);
mp 253-254 °C; "H NMR (400 MHz, CDCl;) 6 8.19 (d, J = 8.3 Hz,
1H), 7.58-7.47 (m, 3H), 7.46-7.28 (m, 9H), 7.28-7.21 (m, 3H),
6.87-6.77 (m, 2H), 5.92 (s, 1H), 3.74 (s, 3H), 3.54 (s, 3H); °C
NMR (100 MHz, CDCl,) 6 159.66, 159.20, 156.54, 144.04, 139.89,
139.61, 135.58, 135.56, 131.29, 128.43, 128.14, 127.70, 127.67,
127.32, 127.23, 126.69, 126.29, 123.56, 121.74, 115.98, 113.99,
113.48, 108.15, 84.24, 55.18, 29.23. IR (KBr) » 3049, 2931, 2840,
1648, 1558, 1498, 1387, 1116, 989, 754, 699 cm™*; HRMS (ESI):
m/z caled for ([C3,HpsNO; + H]): 472.1907; found: 472.1904.
2-(4-Chlorophenyl)-6-methyl-2,4-diphenyl-2,6-dihydro-5H-
pyrano[3,2-c]quinolin-5-one (3n). Yellow solid (193 mg, 81%);
mp 245-246 °C; "H NMR (400 MHz, CDCl;) 6 8.18 (d, ] = 8.2 Hz,
1H), 7.60-7.53 (m, 1H), 7.52-7.42 (m, 4H), 7.41-7.21 (m, 12H),
5.91 (s, 1H), 3.54 (s, 3H); *C NMR (100 MHz, CDCI;) 6 159.54,
156.40, 143.27, 142.15, 139.94, 139.31, 136.20, 133.88, 131.50,
128.39, 128.37, 128.32, 128.04, 127.73, 127.40, 127.29, 126.69,
125.52, 123.46, 121.86, 115.78, 114.09, 108.28, 83.88, 29.27. IR
(KBr) v 3059, 2970, 1652, 1557, 1491, 1388, 1113, 986, 754,
697 cm '; HRMS (ESI): m/z caled for ([C3;H,,CINO, + H]"):
476.1412; found: 476.1409.

RSC Adv, 2022, 12, 21066-21078 | 21071


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra03416f

Open Access Article. Published on 21 July 2022. Downloaded on 8/2/2025 2:16:45 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

2,2-Bis(4-methoxyphenyl)-6-methyl-4-(p-tolyl)-2,6-dihydro-
5H-pyrano[3,2-c]quinolin-5-one (30). White solid (142 mg,
55%); mp 266-267 °C; 'H NMR (400 MHz, CDCl,) 6 8.16 (dd, J =
8.0, 1.2 Hz, 1H), 7.61-7.50 (m, 1H), 7.47-7.34 (m, 4H), 7.32-7.21
(m, 4H), 7.20-7.11 (m, 2H), 6.89-6.74 (m, 4H), 5.87 (s, 1H), 3.76
(s, 6H), 3.55 (s, 3H), 2.36 (s, 3H); "*C NMR (101 MHz, CDCI;)
6159.72, 159.07, 156.53, 139.86, 136.76, 136.71, 136.00, 135.30,
131.18, 128.42, 128.29, 127.17, 126.09, 123.54, 121.68, 116.05,
113.95, 113.41, 108.21, 84.15, 55.19, 29.21, 21.28. IR (KBr) »
2933, 2836, 1647, 1558, 1510, 1388, 1114, 989, 762, 717 cm ™ };
HRMS (ESI): m/z caled for ([C34H,0NO, + H]): 516.2169; found:
516.2166.

4-(4-Chlorophenyl)-2,2-bis(4-methoxyphenyl)-6-methyl-2,6-
dihydro-5H-pyrano[3,2-c]quinolin-5-one  (3p). White solid
(163 mg, 61%); mp 247-248 °C; 'H NMR (400 MHz, CDCI;)
68.17 (dd, J = 8.0, 1.3 Hz, 1H), 7.61-7.52 (m, 1H), 7.43-7.36 (m,
4H), 7.34-7.26 (m, 5H), 7.26-7.21 (m, 1H), 6.89-6.78 (m, 4H),
5.87 (s, 1H), 3.76 (s, 6H), 3.55 (s, 3H); "*C NMR (100 MHz, CDCI;)
6 159.66, 159.17, 156.74, 139.88, 138.13, 135.74, 134.43, 132.98,
131.44, 128.69, 128.23, 127.85, 126.72, 123.61, 121.85, 115.94,
114.04,113.51, 107.70, 84.20, 55.21, 29.22. IR (KBr) » 2934, 2836,
1732, 1644, 1558, 1491, 1387, 1115, 991, 759, 691 cm™; HRMS
(ESD): m/z caled for ([C33H,eCINO, + H]"): 536.1623; found:
536.1620.

6'-Methyl-4'-phenylspiro[fluorene-9,2’-pyrano[ 3,2-c]quino-
lin]-5'(6’H)-one (3q). Yellow solid (55 mg, 25%); mp 167-168 °C;
'H NMR (400 MHz, CDCl;) 6 7.83 (dd, J = 8.0, 1.3 Hz, 1H), 7.66
(t,4H), 7.56-7.48 (m, 1H), 7.42 (td,J = 7.5, 0.9 Hz, 2H), 7.37-7.17
(m, 8H), 7.07 (t, 1H), 5.56 (s, 1H), 3.68 (s, 3H); *C NMR (100
MHz, CDCl;) 6 159.84, 158.69, 146.49, 139.79, 139.68, 139.32,
136.35, 131.39, 130.21, 128.43, 127.57, 127.31, 127.11, 125.44,
124.09, 122.82, 121.57, 120.08, 115.80, 113.83, 106.93, 86.37,
29.39. IR (KBr) v 3046, 1641, 1553, 1497, 1384, 1116, 986, 752,
698 cm™'; HRMS (ESI): m/z caled for ([C3;H,NO, + HJ"):
440.1645; found: 440.1648.

4'-(4-Methoxyphenyl)-6'-methylspiro[fluorene-9,2'-pyrano
[3,2-c]quinolin]-5'(6' H)-one (3r). Yellow solid (129 mg, 55%); mp
130-131 °C; "H NMR (400 MHz, CDCl;) 6 7.82 (dd, J = 8.0,
1.3 Hz, 1H), 7.65 (t, 4H), 7.55-7.46 (m, 1H), 7.41 (td, J = 7.5,
0.8 Hz, 2H), 7.31 (d, J = 8.5 Hz, 1H), 7.28-7.18 (m, 4H), 7.06 (t, ]
= 7.6 Hz, 1H), 6.92-6.81 (m, 2H), 5.53 (s, 1H), 3.80 (s, 3H), 3.68
(s, 3H); C NMR (100 MHz, CDCl;) 6 159.87, 158.74, 158.72,
146.51, 139.63, 139.31, 135.91, 132.08, 131.33, 130.16, 128.42,
128.40, 125.43, 124.05, 122.07, 121.55, 120.04, 115.81, 113.79,
113.01, 107.00, 86.33, 55.12, 29.37. IR (KBr) » 3940, 2930, 2833,
1734, 1646, 1556, 1511, 1383, 1114, 986, 754, 692 cm ™~ '; HRMS
(ESI): m/z caled for ([C;,Hy3NO; + HJY): 470.1751; found:
470.1749.

4'-(4-Fluorophenyl)-6'-methylspiro[fluorene-9,2’-pyrano[3,2-
c]quinolin]-5'(6’H)-one (3s). Yellow solid (85 mg, 37%); mp 134-
135 °C; 'H NMR (400 MHz, CDCl,) 6 7.83 (d, J = 7.9 Hz, 1H),
7.73-7.59 (m, 4H), 7.53 (t, ] = 7.8 Hz, 1H), 7.42 (t,] = 7.5 Hz, 2H),
7.37-7.18 (m, 5H), 7.15-6.92 (m, 3H), 5.52 (s, 1H), 3.68 (s, 3H);
3C NMR (100 MHz, CDCl;) 6 162.04 (d, Jo_p = 243.8 Hz), 159.85,
158.80, 146.40, 139.67, 139.32, 135.71 (d, Jo_r = 3.4 Hz), 135.42,
131.52, 130.28, 128.93 (d, Jo_r = 7.9 Hz), 128.46, 125.38, 124.12,
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122.88,121.68,120.12, 115.74, 114.47 (d, Jo_r = 21.5 Hz), 113.87,
106.60, 86.36, 29.37; '°F NMR (377 MHz, CDCl;) 6 —115.47 (s).
IR (KBr) v 3042, 2925, 1645, 1556, 1508, 1384, 1115, 987, 754,
692 cm~'; HRMS (ESI): m/z caled for ([Cs;H,oFNO, + H]"):
458.1551; found: 458.1553.
4,6-Dimethyl-2,2-diphenyl-2,6-dihydro-5H-pyrano([3,2-c|
quinolin-5-one (3t). White solid (102 mg, 54%); mp 240-241 °C;
"H NMR (400 MHz, CDCl3) 6 8.15 (dd, J = 7.9, 1.1 Hz, 1H), 7.55-
7.49 (m, 1H), 7.48-7.41 (m, 4H), 7.33-7.27 (m, 4H), 7.27-7.20
(m, 4H), 5.75 (s, 1H), 3.60 (s, 3H), 2.45 (s, 3H); *C NMR (100
MHz, CDCl;) 6 161.05, 155.52, 144.31, 139.55, 131.08, 128.11,
127.65, 126.77, 123.58, 123.09, 121.76, 115.81, 113.82, 108.87,
84.12, 29.05, 20.99. IR (KBr) » 3052, 2920, 1648, 1627, 1606,
1558, 1450, 1389, 1316, 1201, 984, 758, 701 cm ; HRMS (ESI):
mj/z caled for ([C3;H,3NO, + H]"): 380.1645; found: 380.1646.
4-Butyl-6-methyl-2,2-diphenyl-2,6-dihydro-5H-pyrano| 3,2-c]
quinolin-5-one (3u). White solid (120 mg, 57%); mp 157-158 °C;
"H NMR (400 MHz, CDCl;) 6 8.16 (dd, J = 7.9, 1.2 Hz, 1H), 7.55-
7.48 (m, 1H), 7.47-7.40 (m, 4H), 7.33-7.31 (m, 1H), 7.30-7.29
(m, 2H), 7.28-7.27 (m, 1H), 7.27-7.19 (m, 4H), 5.77 (s, 1H), 3.60
(s, 3H), 2.92 (t, 2H), 1.57-1.48 (m, 2H), 1.46-1.35 (m, 2H), 0.92 (t,
J = 7.2 Hz, 3H); *C NMR (100 MHz, CDCl3) 6 160.67, 155.92,
144.33, 139.54, 135.50, 131.01, 128.09, 127.63, 126.83, 123.55,
122.70, 121.70, 115.91, 113.81, 108.61, 84.02, 33.20, 31.63,
29.16, 22.59, 14.11. IR (KBr) » 3025, 2941, 1639, 1622, 1604,
1555, 1491, 1391, 1201, 1104, 955, 750, 700 cm ™ '; HRMS (ESI):
miz caled for ([C,0H,,NO, + H]): 422.2115; found: 422.2114.
6-Methyl-2,2-diphenyl-4-(trimethylsilyl)-2,6-dihydro-5 H-pyr-
ano[3,2-c]quinolin-5-one (3v). White solid (112 mg, 51%); mp
180-181 °C; "H NMR (400 MHz, CDCl;) 6 8.14 (d, ] = 8.0 Hz, 1H),
7.50-7.40 (m, 5H), 7.33-7.26 (m, 4H), 7.26-7.17 (m, 4H), 6.29 (s,
1H), 3.58 (s, 3H), 0.32 (s, 9H); >*C NMR (100 MHz, CDCl;)
0 161.44, 153.77, 144.05, 139.26, 135.00, 133.29, 130.76, 128.14,
127.65, 126.78, 123.25, 121.73, 116.08, 113.74, 111.17, 82.88,
29.36, 0.52. IR (KBr) v 3058, 2952, 1643, 1618, 1591, 1492, 1384,
1126, 992, 751, 696 cm '; HRMS (ESI): mj/z caled for
([C31H23NO, + H]"): 438.1884; found: 438.1883.
2,2,4-Triphenyl-2,6-dihydro-5H-pyrano[3,2-c]quinolin-5-one
(3w). White solid (64 mg, 30%); mp 277-278 °C; "H NMR (400
MHz, CDCl;) 6 12.29 (s, 1H), 8.07 (dd, J = 8.1, 1.0 Hz, 1H), 7.58-
7.48 (m, 4H), 7.47-7.40 (m, 2H), 7.39-7.22 (m, 10H), 7.18 (t, ] =
7.6 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 5.96 (s, 1H); "*C NMR (100
MHz, CDCl;) 6 161.87, 158.47, 143.67, 139.42, 138.49, 135.20,
131.05, 128.21, 127.90, 127.79, 127.60, 126.87, 126.83, 125.61,
122.73, 122.04, 116.12, 114.94, 107.76, 84.55. IR (KBr) v 3056,
2842, 1650, 1494, 1388, 1105, 950, 752, 695 cm ™ '; HRMS (ESI):
m/z caled for ([C3oH,1NO, + H]'): 428.1645; found: 428.1647.
(2)-6-(3-Hydroxy-1,3,3-triphenylprop-1-en-1-yl)-2,2,4-tri-
phenyl-2,6-dihydro-5H-pyrano[3,2-c]quinolin-5-one (3x). White
solid (71 mg, 20%); mp 254-255 °C; "H NMR (400 MHz, CDCl)
67.92 (dd, J = 7.9, 1.2 Hz, 1H), 7.66-7.60 (m, 2H), 7.55-7.45 (m,
4H), 7.45-7.38 (m, 5H), 7.38-7.30 (m, 5H), 7.30~-7.28 (m, 2H),
7.27-7.26 (m, 1H), 7.26-7.20 (m, 4H), 7.20-7.13 (m, 4H), 7.12-
7.04 (m, 3H), 6.78 (d,J = 8.3 Hz, 1H), 6.33 (t,/ = 7.3 Hz, 1H), 6.17
(t,J = 7.7 Hz, 2H), 5.92 (s, 1H), 5.41 (s, 1H); *C NMR (100 MHz,
CDCl;) 6 160.60, 157.77, 148.27, 144.26, 144.03, 143.69, 139.32,
137.86, 136.49, 136.41, 135.48, 135.02, 130.49, 128.84, 128.73,
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128.43, 128.39, 128.22, 128.17, 127.71, 127.67, 127.48, 127.35,
127.21, 126.85, 126.66, 126.64, 125.77, 125.70, 125.57, 125.36,
124.88, 122.86, 122.30, 117.44, 115.56, 106.85, 84.81, 75.69. IR
(KBr) » 3057, 3027, 1735, 1637, 1600, 1553, 1492, 1393, 1163,
1011, 757, 696 cm™'; HRMS (ESI): m/z caled For ([Cs;Hj3,NO; +
H]"): 712.2846; found: 712.2843.
(2)-6-(3-Hydroxy-3,3-diphenyl-1-(p-tolyl)prop-1-en-1-yl)-2,2-
diphenyl-4-(p-tolyl)-2,6-dihydro-5H-pyrano[3,2-c]quinolin-5-one
(3y). White solid (203 mg, 55%); mp 166-167 °C; '"H NMR (400
MHz, CDCl;) 6 7.91 (d, J = 7.9 Hz, 1H), 7.63 (d, ] = 7.3 Hz, 2H),
7.56-7.36 (m, 7H), 7.35-7.22 (m, 8H), 7.21-7.11 (m, 4H), 7.11-
6.96 (m, 7H), 6.76 (d, ] = 8.4 Hz, 1H), 6.30 (t,/ = 7.3 Hz, 1H), 6.13
(t,J = 7.7 Hz, 2H), 5.89 (s, 1H), 5.41 (s, 1H), 2.34 (s, 3H), 2.27 (s,
3H); *C NMR (100 MHz, CDCl;) 6 160.60, 157.70, 148.45,
144.44, 144.05, 143.79, 138.71, 137.90, 136.92, 136.42, 135.55,
135.45, 134.96, 133.59, 130.37, 129.51, 128.41, 128.36, 128.18,
128.12, 127.64, 127.31, 127.28, 126.78, 126.62, 125.81, 125.47,
125.27, 124.89, 122.78, 122.18, 117.46, 115.53, 106.95, 84.79,
75.66, 21.26, 21.11. IR (KBr) » 3058, 3025, 2921, 1745, 1634,
1601, 1555, 1492, 1448, 1391, 1149, 755, 698 cm ™~ *; HRMS (ESI):
m/z caled for ([Cs3H4NO3 + H]'): 740.3159; found: 740.3161.
(2)-6-(3-Hydroxy-1-phenyl-3,3-di-p-tolylprop-1-en-1-yl)-4-
phenyl-2,2-di-p-tolyl-2,6-dihydro-5H-pyrano[3,2-c]quinolin-5-
one (3z). White solid (307 mg, 80%); mp 257-258 °C; "H NMR
(400 MHz, CDCl,) 6 7.87 (dd, J = 7.9, 1.3 Hz, 1H), 7.54 (d, J =
8.2 Hz, 2H), 7.47-7.37 (m, 5H), 7.36-7.25 (m, 7H), 7.22 (s, 5H),
7.16-7.00 (m, 6H), 6.90 (d, J = 8.1 Hz, 2H), 6.68 (d, J = 8.3 Hz,
1H), 5.92 (d, J = 8.0 Hz, 2H), 5.83 (s, 1H), 5.32 (s, 1H), 2.38 (s,
3H), 2.32 (s, 3H), 2.26 (s, 3H), 1.72 (s, 3H); "*C NMR (100 MHz,
CDCl;) 6 160.72, 157.73, 145.67, 141.72, 141.27, 141.02, 139.48,
138.19, 137.70, 137.31, 136.67, 136.32, 136.29, 135.61, 134.79,
134.71, 130.23, 129.20, 128.86, 128.79, 128.68, 127.60, 127.57,
127.44, 127.37, 127.24, 126.52, 125.72, 125.65, 125.34, 124.70,
122.58, 121.98, 117.38, 115.60, 106.56, 84.91, 75.29, 21.15,
21.04, 20.95, 20.50. IR (KBr) » 3023, 2920, 1738, 1633, 1604,
1551, 1493, 1387, 1149, 925, 749, 699 cm™*; HRMS (ESI): m/z
caled for([CssHysNO; + H]): 768.3472; found: 768.3473.
(2)-2-Benzylidene-5-methyl-3-phenyl-3,5-dihydrofuro[3,2-c]
quinolin-4(2H)-one (4a). White solid (110 mg, 60%); mp 210-
211 °C; *H NMR (400 MHz, CDCIl;) 6 8.00 (dd, J = 7.9, 1.4 Hz,
1H), 7.75-7.56 (m, 3H), 7.46-7.29 (m, 8H), 7.29-7.18 (m, 2H),
5.64 (d,J = 2.2 Hz, 1H), 5.36 (d, J = 2.2 Hz, 1H), 3.64 (s, 3H); "*C
NMR (100 MHz, CDCl;) 6 160.30, 159.60, 158.73, 140.91, 140.66,
134.48, 131.56, 128.73, 128.45, 128.33, 128.05, 127.35, 126.61,
123.17, 121.99, 114.73, 111.80, 111.39, 106.38, 51.20, 29.05. IR
(KBr) » 3059, 1694, 1658, 1641, 1568, 1494, 1404, 1121, 759,
700 cm™'; HRMS (ESI): m/z caled for ([C,sH;oNO, + HJ"):
366.1489; found: 366.1487.
(2)-5-Methyl-2-(4-methylbenzylidene)-3-phenyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4b). White solid (80 mg,
42%); mp 201-202 °C; *H NMR (400 MHz, CDCl;) 6 7.98 (d, J =
7.8 Hz, 1H), 7.63 (t,/ = 7.9 Hz, 1H), 7.56 (d, ] = 8.0 Hz, 2H), 7.45-
7.28 (m, 6H), 7.28-7.13 (m, 3H), 5.61 (s, 1H), 5.34 (s, 1H), 3.63 (s,
3H), 2.36 (s, 3H); "*C NMR (100 MHz, CDCI;) 6 160.33, 159.63,
158.03, 140.92, 140.83, 136.38, 131.65, 131.49, 129.15, 128.69,
128.25, 128.06, 127.28, 123.18, 121.93, 114.70, 111.82, 111.46,
106.33, 51.12, 29.03, 21.21. IR (KBr) » 3041, 2946, 1690, 1659,
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1638, 1565, 1503, 1400, 1096, 751, 702 cm ™ '; HRMS (ESI): m/z
caled for ([Co6H,NO, + H]): 380.1645; found: 380.1644.
(2)-2-(4-Methoxybenzylidene)-5-methyl-3-phenyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4c). White solid (97 mg,
49%); mp 203-204 °C; 'H NMR (400 MHz, CDCl;) 6 7.99 (d, ] =
7.8 Hz, 1H), 7.71-7.54 (m, 3H), 7.45-7.29 (m, 6H), 7.28-7.19 (m,
1H), 6.92 (d, J = 8.4 Hz, 2H), 5.58 (s, 1H), 5.34 (s, 1H), 3.82 (s,
3H), 3.63 (s, 3H); “*C NMR (100 MHz, CDCl,) 6 160.33, 159.66,
158.24, 157.11, 140.94, 140.92, 131.48, 129.58, 128.69, 128.05,
127.29, 127.26, 123.17, 121.91, 114.71, 113.90, 111.82, 111.48,
105.93, 55.24, 51.04, 29.03. IR (KBr) v 3003, 2927, 2832, 2248,
1692, 1662, 1644, 1566, 1510, 1403, 1123, 757, 699 cm™'; HRMS
(ESI): m/z caled for ([CoH,NO; + HJ): 396.1594; found:
396.1596.
(2)-2-(2-Fluorobenzylidene)-5-methyl-3-phenyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4d). White solid (69 mg,
36%); mp 226-227 °C; "H NMR (400 MHz, CDCl;) 6 8.19 (t, ] =
6.9 Hz, 1H), 7.97 (d,J = 7.8 Hz, 1H), 7.65 (t,] = 7.9 Hz, 1H), 7.48-
7.30 (m, 6H), 7.29-7.14 (m, 3H), 7.03 (t,J = 9.3 Hz, 1H), 5.93 (s,
1H), 5.38 (s, 1H), 3.65 (s, 3H); >*C NMR (100 MHz, CDCI;)
6 160.17, 160.07 (d, Jo_r = 2.1 Hz), 159.25 (d, Jop = 247.7
Hz),158.01, 140.98, 140.38, 131.62, 129.56 (d, Jc_r = 2.6 Hz),
128.80, 128.00 (d, Jc_p = 7.8 Hz), 127.98, 127.44, 124.01 (d, Jo_r =
3.6 Hz), 123.10, 122.41 (d, Jo_r = 12.0 Hz), 122.00, 115.16 (d, Jc_¢
= 22.1 Hz), 114.77, 111.94, 111.33, 97.58 (d, Jo.r = 7.7 Hz),
51.41,29.08; "°F NMR (377 MHz, CDCl;) § —117.05 (). IR (KBr) v
3059, 3029, 2921, 1694, 1662, 1643, 1568, 1485, 1404, 1124, 750,
700 cm™'; HRMS (ESI): m/z caled for ([CpsH;sFNO, + HJ"):
384.1394; found: 384.1397.
(2)-2-(3-Fluorobenzylidene)-5-methyl-3-phenyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4e). Yellow solid (98 mg,
51%); mp 211-212 °C; "H NMR (400 MHz, CDCl;) 6 7.99 (d, J =
7.8 Hz, 1H), 7.65 (t, ] = 7.9 Hz, 1H), 7.51 (d, J = 10.3 Hz, 1H),
7.45-7.19 (m, 9H), 7.00-6.85 (m, 1H), 5.62 (s, 1H), 5.35 (s, 1H),
3.64 (s, 3H); "*C NMR (100 MHz, CDCl;) 6 162.87 (d, Jo_p = 242.6
Hz), 160.15, 159.81, 159.48, 140.96, 140.33, 136.59 (d, Jo_r = 8.4
Hz), 131.67, 129.73 (d, Jo_r = 8.5 Hz), 128.81, 128.02, 127.47,
124.13 (d, Jo_p = 2.4 Hz), 123.13, 122.10, 114.97, 114.75, 113.41
(d, Jor = 21.4 Hz), 111.77, 111.26, 105.41 (d, Jo_r = 2.6 Hz),
51.34, 29.07; °F NMR (377 MHz, CDCl,) 6 —113.17, —113.18
(m). IR (KBr) » 3040, 1691, 1658, 1642, 1574, 1489, 1406, 1102,
755, 702 cm™'; HRMS (ESI): m/z caled for ([C,sH;gFNO, + H]"):
384.1394; found: 384.1397.
(2)-2-(4-Fluorobenzylidene)-5-methyl-3-phenyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4f). Yellow solid (77 mg,
40%); mp 221-222 °C; *H NMR (400 MHz, CDCl;) 6 7.98 (d, ] =
7.8 Hz, 1H), 7.74-7.54 (m, 3H), 7.48-7.30 (m, 6H), 7.30-7.21 (m,
1H), 7.07 (t,J = 8.7 Hz, 2H), 5.60 (d, / = 2.1 Hz, 1H), 5.34 (d,] =
1.6 Hz, 1H), 3.64 (s, 3H); "*C NMR (100 MHz, CDCl;) 6 161.31 (d,
Jor = 245.0 Hz), 160.20, 159.55, 158.33 (d, jo_r = 2.4 Hz),
140.90, 140.57, 131.61, 130.62 (d, Jo_p = 3.2 Hz), 129.88 (d, Jo_r =
7.8 Hz), 128.77, 127.99, 127.40, 123.08, 122.02, 115.33 (d, Jo_r =
21.4 Hz), 114.78, 111.78, 111.31, 105.25, 51.12, 29.07; '°F NMR
(377 MHz, CDCl;) 6 —114.90 (m). IR (KBr) » 3063, 2943, 1694,
1659, 1640, 1570, 1506, 1403, 1100, 753, 703 cm ™ *; HRMS (ESI):
m/z caled for ([Co5H,gFNO, + H]): 384.1394; found: 384.1397.
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(2)-2-(4-Chlorobenzylidene)-5-methyl-3-phenyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4g). White solid (68 mg,
34%); mp 239-240 °C; 'H NMR (400 MHz, CDCl,) 6 7.97 (dd, J =
7.9, 1.4 Hz, 1H), 7.70-7.63 (m, 1H), 7.62-7.55 (m, 2H), 7.44-7.30
(m, 8H), 7.30-7.23 (m, 1H), 5.59 (d, J = 2.2 Hz, 1H), 5.34 (d, ] =
2.2 Hz, 1H), 3.65 (s, 3H); "*C NMR (100 MHz, CDCl;) 6 160.15,
159.50, 159.22, 140.92, 140.39, 132.96, 132.04, 131.65, 129.50,
128.80, 128.56, 128.00, 127.45, 123.07, 122.05, 114.79, 111.77,
111.26, 105.22, 51.27, 29.08. IR (KBr) » 3054, 2946, 1695, 1659,
1640, 1568, 1491, 1403, 1096, 753, 707 cm™*; HRMS (ESI): m/z
caled for ([Cy5H;5CINO, + H]'): 400.1099; found: 400.1096.

(2)-2-Benzylidene-5-methyl-3-(p-tolyl)-3,5-dihydrofuro[ 3,2-c]
quinolin-4(2H)-one (4h). White solid (68 mg, 36%); mp 214-
215 °C; 'H NMR (400 MHz, CDCl,) 6 7.99 (d, J = 7.8 Hz, 1H),
7.74-7.58 (m, 3H), 7.46-7.30 (m, 4H), 7.29-7.18 (m, 3H), 7.17-
7.07 (m, 2H), 5.64 (d, J = 2.0 Hz, 1H), 5.32 (d, J = 1.7 Hz, 1H),
3.63 (s, 3H), 2.30 (s, 3H); **C NMR (100 MHz, CDCI;) 6 160.15,
159.60, 158.91, 140.83, 137.67, 136.92, 134.53, 131.47, 129.43,
128.41, 128.29, 127.91, 126.53, 123.12, 121.94, 114.70, 111.94,
111.39, 106.15, 50.84, 29.02, 21.10. IR (KBr) » 3052, 3024, 1694,
1663, 1645, 1568, 1459, 1401, 1120, 752, 693 cm ™ *; HRMS (ESI):
m/z caled for ([Cp6H,,NO, + H]'): 380.1645; found: 380.1644.

(2)-2-Benzylidene-3-(4-methoxyphenyl)-5-methyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4i). White solid (105 mg,
53%); mp 222-223 °C; 'H NMR (400 MHz, CDCl,) 6 8.00 (dd, J =
7.9, 1.4 Hz, 1H), 7.73-7.59 (m, 3H), 7.43-7.27 (m, 6H), 7.26-7.19
(m, 1H), 6.91-6.82 (m, 2H), 5.64 (d, ] = 2.2 Hz, 1H), 5.32 (d, ] =
2.1 Hz, 1H), 3.77 (s, 3H), 3.64 (s, 3H); "*C NMR (100 MHz, CDCI;)
0 160.05, 159.64, 159.00, 158.73, 140.84, 134.52, 132.78, 131.48,
129.09, 128.43, 128.29, 126.55, 123.13, 121.95, 114.71, 114.10,
111.95,111.40, 106.15, 55.15, 50.47, 29.02. IR (KBr) » 3001, 2949,
2831, 1694, 1662, 1644, 1566, 1494, 1403, 1121, 753, 692 cm ™ };
HRMS (ESI): m/z caled for ([Co6H,1NO; + H]"): 396.1594; found:
396.1596.

(2)-2-Benzylidene-3-(4-fluorophenyl)-5-methyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4j). White solid (59 mg, 31%);
mp 216-217 °C; *H NMR (400 MHz, CDCl,) 6 8.00 (d, J = 7.8 Hz,
1H), 7.74-7.58 (m, 3H), 7.50-7.30 (m, 6H), 7.29-7.16 (m, 1H),
7.01 (t, ] = 8.6 Hz, 2H), 5.63 (s, 1H), 5.35 (s, 1H), 3.65 (s, 3H); *C
NMR (100 MHz, CDCl;) 6 162.07 (d, Jo_r = 244.2 Hz), 160.31,
159.60, 158.51, 140.96, 136.46 (d, Jo_r = 3.3 Hz), 134.33, 131.68,
129.67 (d, Jo_r = 8.0 Hz), 128.50, 128.35, 126.76, 123.21, 122.07,
115.72, 115.51, 114.78, 111.47 (d, Jo_r = 24.2 Hz), 106.59, 50.47,
29.06; "°F NMR (377 MHz, CDCl;) § —115.30 (s). IR (KBr) » 3036,
1694, 1662, 1643, 1570, 1507, 1403, 1122, 756, 693 cm ™~ '; HRMS
(ESI): m/z caled for ([CpsHisFNO, + HJ]'): 384.1394; found:
384.1397.

(2)-2-Benzylidene-3-(4-chlorophenyl)-5-methyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (4k). White solid (84 mg,
42%); mp 224-225 °C; '"H NMR (400 MHz, CDCl3) 6 8.00 (d, J =
7.7 Hz, 1H), 7.67 (d, J = 7.4 Hz, 3H), 7.52-7.13 (m, 9H), 5.62 (s,
1H), 5.35 (s, 1H), 3.65 (s, 3H); "*C NMR (100 MHz, CDCl;)
6 160.44, 159.57, 158.24, 141.00, 139.19, 134.27, 133.25, 131.76,
129.49, 128.94, 128.52, 128.38, 126.82, 123.25, 122.11, 114.82,
111.42, 111.34, 106.73, 50.62, 29.08. IR (KBr) » 3023, 1693, 1662,
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1641, 1567, 1493, 1403, 1121, 754, 692 cm ™ *; HRMS (ESI): m/z
caled for ([Cy5H;gCINO, + H]'): 400.1099; found: 400.1096.
(2)-2-Benzylidene-3-(4-bromophenyl)-5-methyl-3,5-dihy-
drofuro[3,2-c]quinolin-4(2H)-one (41). White solid (69 mg, 31%);
mp 213-214 °C; "H NMR (400 MHz, CDCI;) 6 8.01 (d, ] = 7.8 Hz,
1H), 7.67 (d, J = 7.4 Hz, 3H), 7.53-7.33 (m, 6H), 7.32-7.17 (m,
3H), 5.63 (s, 1H), 5.34 (s, 1H), 3.66 (s, 3H); *C NMR (100 MHz,
CDCl;) 6 160.48, 159.58, 158.15, 141.02, 139.72, 134.26, 131.89,
131.78, 129.87, 128.53, 128.39, 126.84, 123.26, 122.13, 121.43,
114.83,111.35, 106.77, 50.69, 29.09. IR (KBr) » 3021, 1694, 1662,
1641, 1567, 1505, 1402, 1120, 753, 691 cm ™ '; HRMS (ESI): m/z
caled for ([C,5H;gBINO, + H]"): 444.0594; found: 444.0597.
3-(1,3-Diphenylprop-2-yn-1-yl)-4-hydroxy-1-methylquinolin-
2(1H)-one (5a). White solid (110 mg, 60%); mp 204-205 °C; 'H
NMR (400 MHz, CDCl;) 6 8.02 (dd, J = 8.0, 1.4 Hz, 1H), 7.88 (s,
1H), 7.68-7.46 (m, 5H), 7.40-7.29 (m, 6H), 7.28-7.19 (m, 2H),
6.11 (s, 1H), 3.73 (s, 3H); "*C NMR (100 MHz, CDCl;) 6 162.39,
157.59, 139.33, 139.00, 131.79, 131.15, 128.83, 128.80, 128.42,
127.32, 127.14, 123.75, 121.82, 116.21, 113.80, 110.47, 87.45,
87.02, 33.07, 29.95. IR (KBr) v 2940, 1637, 1556, 1489, 1393,
1248, 1152, 756, 693 cm '; HRMS (ESI): m/z caled for
([C25H1oNO, + H]"): 366.1489; found: 366.1487.
4-Methyl-6,8,9,9-tetraphenyl-4,9-dihydro-5H-cyclopenta[lmn]
phenanthridin-5-one (6a). White solid (158 mg, 60%); mp 287-
288 °C; 'H NMR (400 MHz, CDCl;) é 7.57-7.52 (m, 2H), 7.50-
7.35 (m, 4H), 7.26-6.97 (m, 16H), 6.85-6.76 (m, 2H), 3.70 (s, 3H);
3C NMR (100 MHz, CDCl,) 6 162.11, 152.72, 145.35, 143.39,
142.80, 142.12, 141.35, 140.25, 139.31, 135.92, 134.82, 130.76,
129.46, 129.20, 128.50, 127.85, 127.46, 127.34, 127.26, 127.23,
126.83, 123.31, 118.48, 117.99, 110.75, 69.17, 29.42. IR (KBr) »
3024, 1648, 1591, 1490, 1268, 1123, 1012, 758, 702 cm ™ *; HRMS
(ESI): m/z caled for ([C3oH,,NO + HJ'): 526.2165; found:
526.2164.
4-Methyl-6,9,9-triphenyl-8-(p-tolyl)-4,9-dihydro-5H-cyclo-
penta[lmn]phenanthridin-5-one (6b). White solid (151 mg,
56%); mp 264-265 °C; 'H NMR (400 MHz, CDCl;) ¢ 7.58-7.51
(m, 2H), 7.49-7.35 (m, 4H), 7.21-6.98 (m, 13H), 6.88 (d, J =
7.5 Hz, 2H), 6.75-6.65 (m, 2H), 3.69 (s, 3H), 2.29 (s, 3H); *C
NMR (100 MHz, CDCl;) 6 162.12, 152.69, 145.39, 143.53, 142.75,
142.20, 141.35, 140.30, 136.93, 136.46, 135.89, 135.03, 130.68,
129.45, 129.09, 128.54, 128.13, 127.83, 127.31, 127.22, 126.79,
123.33, 118.35, 117.98, 110.71, 69.16, 29.39, 21.11. IR (KBr) »
3026, 1656, 1561, 1492, 1271, 1124, 960, 756, 707 cm ™ *; HRMS
(ESI): m/z caled for ([C4H,oNO + HJ"): 540.2322; found:
540.2324.
8-(4-Methoxyphenyl)-4-methyl-6,9,9-triphenyl-4,9-dihydro-
5H-cyclopenta[lmn]phenanthridin-5-one (6¢). White solid
(128 mg, 46%); mp 282-283 °C; 'H NMR (400 MHz, CDCl;)
6 7.58-7.51 (m, 2H), 7.49-7.34 (m, 4H), 7.21-6.99 (m, 13H),
6.78-6.69 (m, 2H), 6.66-6.57 (m, 2H), 3.75 (s, 3H), 3.69 (s, 3H);
BC NMR (100 MHz, CDCl;) ¢ 162.11, 158.88, 152.70, 145.53,
143.19, 142.77, 142.14, 141.37, 140.30, 135.88, 135.12, 131.81,
130.68, 130.40, 129.43, 128.52, 127.84, 127.31, 127.21, 126.82,
123.33, 118.30, 117.96, 112.89, 110.70, 69.13, 55.21, 29.38. IR
(KBr) » 3032, 1650, 1514, 1490, 1269, 1181, 1037, 752, 711 cm ™
HRMS (ESI): m/z caled for ([CaoH,0NO, + H]'): 556.2271; found:
556.2269.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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9,9-Bis(4-methoxyphenyl)-4-methyl-6,8-diphenyl-4,9-dihy-
dro-5H-cyclopenta[lmn]phenanthridin-5-one (6d). White solid
(120 mg, 41%); mp 265-266 °C; '"H NMR (400 MHz, CDCl;)
4 7.56-7.51 (m, 2H), 7.48-7.35 (m, 4H), 7.23-7.17 (m, 2H), 7.14-
7.06 (m, 3H), 7.02 (d, J = 7.5 Hz, 1H), 6.94-6.88 (m, 4H), 6.87-
6.82 (m, 2H), 6.66-6.57 (m, 4H), 3.73 (s, 6H), 3.69 (s, 3H); °C
NMR (100 MHz, CDCl;) 6 162.13, 158.34, 153.19, 145.81, 143.21,
142.62, 141.19, 140.30, 139.42, 135.91, 134.76, 134.32, 130.71,
129.54, 129.44, 129.26, 127.46, 127.32, 127.22, 123.07, 118.42,
117.74,113.15,110.57, 67.90, 55.16, 29.39. IR (KBr) » 3030, 2959,
1649, 1507, 1451, 1248, 1180, 1029, 758, 699 cm ™ *; HRMS (ESI):
m/z caled for ([C41H3,NO; + H]'): 586.2377; found: 586.2376.

9,9-Bis(4-chlorophenyl)-4-methyl-6,8-diphenyl-4,9-dihydro-
5H-cyclopenta[lmn]phenanthridin-5-one (6e). White solid
(140 mg, 47%); mp 314-315 °C; '"H NMR (400 MHz, CDCl;)
6 7.58-7.36 (m, 6H), 7.28-7.19 (m, 2H), 7.18-7.09 (m, 3H), 7.09-
7.02 (m, 4H), 6.97 (d, J = 7.5 Hz, 1H), 6.93-6.85 (m, 4H), 6.84-
6.77 (m, 2H), 3.70 (s, 3H); **C NMR (100 MHz, CDCl;) 6 161.92,
151.73, 144.39, 143.33, 143.28, 141.13, 140.40, 139.94, 138.93,
136.10, 134.80, 132.92, 130.97, 129.68, 129.40, 129.00, 128.10,
127.69, 127.57, 127.40, 127.38, 123.10, 118.63, 117.60, 111.16,
68.05, 29.45. IR (KBr) » 3026, 1650, 1591, 1489, 1266, 1093, 1012,
753, 697 cm ™ '; HRMS (ESI): m/z caled for ([C30H,5CILNO + H]"):
594.1386; found: 594.1388.

2-Benzyl-5-methyl-3-phenylfuro[3,2-c]quinolin-4(5H)-one
(7a). White solid (70 mg, 96%); mp 156-157 °C; 'H NMR (400
MHz, CDCl;) 6 8.01-7.93 (m, 1H), 7.59-7.41 (m, 5H), 7.41-7.34
(m, 2H), 7.34-7.19 (m, 6H), 4.17 (s, 2H), 3.72 (s, 3H); °C NMR
(100 MHz, CDCl;) 6 159.17, 154.38, 152.22, 137.94, 137.76,
130.90, 130.21, 129.25, 128.63, 128.38, 127.95, 127.56, 126.61,
121.99, 121.83, 121.14, 114.76, 113.98, 112.83, 32.44, 29.09. IR
(KBr) » 3022, 2940, 1655, 1582, 1493, 1225, 1113, 980, 744,
701 em™"; HRMS (ESI): m/z caled for ([CpsHioNO, + HJ"):
366.1489; found: 366.1487.

2-(4-Methoxybenzyl)-5-methyl-3-phenylfuro[3,2-c]quinolin-
4(5H)-one (7b). White solid (74 mg, 94%); mp 141-142 °C; 'H
NMR (400 MHz, CDCl;) 6 7.97 (dd, ] = 7.9, 1.3 Hz, 1H), 7.59-7.34
(m, 7H), 7.29-7.22 (m, 1H), 7.20-7.13 (m, 2H), 6.89-6.80 (m,
2H), 4.10 (s, 2H), 3.77 (s, 3H), 3.72 (s, 3H); >C NMR (100 MHz,
CDCl3) 6 159.19, 158.31, 154.32, 152.67, 137.92, 130.95, 130.22,
129.78, 129.36, 129.22, 127.93, 127.52, 121.98, 121.50, 121.14,
114.76, 114.02, 113.99, 112.86, 55.21, 31.58, 29.09. IR (KBr) v
3052, 2991, 1658, 1512, 1251, 1179, 1111, 1039, 746, 700 cm ™ *;
HRMS (ESI): m/z caled for ([Co6H,1NO; + H]"): 396.1594; found:
396.1596.

2-(4-Chlorobenzyl)-5-methyl-3-phenylfuro[3,2-c]quinolin-
4(5H)-one (7¢). White solid (76 mg, 95%); mp 151-152 °C; 'H
NMR (400 MHz, CDCl;) 6 7.97 (dd, J = 7.8, 1.2 Hz, 1H), 7.57-7.49
(m, 3H), 7.48-7.35 (m, 4H), 7.31-7.23 (m, 3H), 7.20-7.13 (m,
2H), 4.13 (s, 2H), 3.73 (s, 3H); *C NMR (100 MHz, CDCIl;)
6 159.13, 154.48, 151.61, 138.02, 136.19, 132.50, 130.73, 130.15,
129.72, 129.40, 128.76, 128.02, 127.69, 122.07, 121.14, 114.83,
113.98, 112.78, 31.85, 29.12. IR (KBr) » 3035, 2895, 1653, 1581,
1489, 1308, 1220, 1111, 750, 699 cm ™ '; HRMS (ESI): m/z caled
for ([C,5H,5CINO, + H]"): 400.1099; found: 400.1096.
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2-Benzyl-3-(4-methoxyphenyl)-5-methylfuro[3,2-c]quinolin-

4(5H)-one (7d). White solid (73 mg, 92%); mp 172-173 °C; 'H
NMR (400 MHz, CDCl;) 6 7.97 (dd, J = 7.9, 1.4 Hz, 1H), 7.53-7.44
(m, 3H), 7.39 (d, J = 8.5 Hz, 1H), 7.34-7.28 (m, 2H), 7.28-7.20
(m, 4H), 7.03-6.94 (m, 2H), 4.16 (s, 2H), 3.84 (s, 3H), 3.72 (s, 3H);
3C NMR (100 MHz, CDCl3) 6 159.27, 159.08, 154.30, 151.89,
137.92, 137.88, 131.35, 129.18, 128.62, 128.36, 126.58, 123.11,
121.97, 121.46, 121.13, 114.75, 114.07, 113.50, 112.89, 55.23,
32.43,29.07. IR (KBr) v 3023, 2939, 1658, 1589, 1516, 1252, 1184,
1112, 752, 698 cm™; HRMS (ESI): m/z caled for ([CpeH,1NO; +
HJ): 396.1594; found: 396.1596.
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