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DNA origami has created complex structures of various spatial dimensions. However, their versatility in terms
of function is limited due to the lower number of the intrinsic building blocks, i.e. nucleotides, compared with
the number of amino acids. Therefore, protein origami has been proposed and demonstrated to precisely
fabricate artificial functional nanostructures. Despite their hierarchical folded structures, chain-like peptides
and DNA share obvious similarities in both structures and properties, especially in terms of chain
hybridization; therefore, replacing DNA with peptides to create bioactivities not only has high theoretical
feasibility but also provides a new bottom-up synthetic strategy. However, designing functionalities with
tens to hundreds of peptide chains using the similar principle of DNA origami has not been reported,
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Accepted 24th August 2022 although the origami strategy holds great potential to generate more complex bioactivities. In this
perspective review, we have reviewed the recent progress in and highlighted the advantages of peptide
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In cells, peptides form versatile nanostructures with different
bioactivities through self-assembly and co-assembly. Proteins
such as collagen," actin®> and the peptides/proteins that are
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peptide origami, we appeal to develop user-friendly softwares in combination with artificial intelligence.

associated with amyloid diseases® can self-assemble into
fibrous structures. Helicase* and nuclease® are naturally ring-
shaped structures. TMV capsid protein,® o-hemolysin,” and
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the Bacillus anthracis protective antigen® are tubular structures.
Citrate synthase,’ lysyl oxidase,' RecR proteins," ribonucleo-
tide reductase I,"* and hydrolase CS2 ** can self-assemble into
the lariat structures. Transferrin,* vault protein,” clathrin,'®
chaperonin,"” and the capsids of viruses® can form cage struc-
tures. These ordered nanostructures formed by the peptide
assembly play essential roles in life.

One of the ultimate goals of synthetic biology is to create
artificial cells, and assembly is an important approach. DNA
origami has been used to create versatile nanostructures since its
origin' and proof-of-concept reports* published by Seeman and
coworkers. The nanostructures from DNA origami can act as
scaffolds to synthesize inorganic particles or units to conduct
multi-component and multi-functional assembly. Recently, de
novo designed proteins have been investigated in various fields
such as catalysis,* energy (i.e., light harvesting®), medicine (i.e.,
vaccine R&D,” gene and drug delivery*), and environmental
science (i.e., water treatment®). Related review papers have been
published by Guang et al.>® and Yan et al.”” However, the current
artificial protein design is normally folded from one to a few long
single-peptide chains (as the subunits of tertiary/quaternary
structures), and designing complex artificial nanostructures
with tens to hundreds of peptide chains using the similar prin-
ciple of DNA origami (Fig. 1) has not been reported yet.
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Origami: a special type of assembly

The concept of protein origami was proposed by Jerala et al.®
Similar to DNA origami, protein origami employs the comple-
mentary pairing capability of coiled-coil secondary structures;
for example, the first artificial tetrahedron was fabricated using
six pairs of coiled-coil sequences, which were all set in a single
chain. Significantly, unlike DNA origami, the current so-called
protein origami has not employed stapling sequences, which
are very short sequences normally over ten in number used in
DNA origami. In this regard, current protein origami is more
like protein folding from an artificial peptide chain using the
complementary pairing capability of coiled-coil sequences.
Single peptide chains, termed as the primary sequence of
proteins, not only contain all the information for intra-
molecular folding and intermolecular self-assembly*® but also
determine the final chemical properties and bioactivities of
proteins. Generally, peptides are defined as either protein
fragments or the amino acid sequence of proteins before
folding, while proteins are the 3-D structures after the intra-
molecular folding and intermolecular self-assembly of peptides.
In order to include most current techniques to create desirable
bioactivities, especially for peptide/protein origami, self-
assembly and co-assembly with more than a single peptide
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Fig.1 Peptide assembly with the principle of DNA origami. All amino acids are blocks for peptide assembly, and short peptide sequences can be
designed as complementary pairs similar to base pairs (A=T, G=C) for peptide origami. Peptide sequences containing such complementary

pairs can further assemble into nanostructures.

chain, hereafter we suggest calling them a peptide assembly
(Fig. 1).

Despite advances in protein design and engineering,
precisely fabricating multiprotein architectures with both
structural and functional sophistication is still challenging.
Considering the combination number of the basic building
blocks, the huge difference between the twenty kinds of amino
acids and four types of bases undoubtedly endows the peptide
assembly with a great advantage. Similar to antibodies
produced by B cells, the enormous number of peptide sequence
or amino acid combinations can create numerous bioactivities.
Because two amino acid residues cannot form a robust conju-
gation like that of base pairs, the origami-like strategy of
peptide assembly is hard to design due to the orthogonal issue.
In addition, both synergistic effects and long-distance interac-
tions among amino acids make it more difficult than DNA
origami.

The success of DNA origami is mainly ascribed to the two
A=T and G=C pairings. However, the limitation of both the
permutation and combination number and chemical activities
of these DNA bases significantly restrict their potential to
produce enough bioactivities, which might be the reason for life
to use DNA as a conserved genetic material and use peptides to
create bio-functionalities. Therefore, to employ the origami
strategy for peptide assembly, the most important requirement
is to realize orthogonal complementary pairing between short
peptide motifs. Here, we introduce a new idea of using short
peptide sequences or motifs instead of single amino acids to
form conjugations with both specificity and affinity. Fortu-
nately, leucine zipper sequences or so-called coiled-coils (a
short a-helix peptide sequence consisting of ~35 amino acids)
can perfectly realize this idea,**** which has been successfully
demonstrated by Jerala et al**** If one could consider these
special peptide sequences similar to DNA base pairs, the prin-
ciple of origami can naturally extend from DNA to peptides.
Regarding the regulation capabilities of both specificity and
affinity, peptide motifs show more advantages than DNA
sequences due to the various interactions among amino acids.
Moreover, such orthogonal motifs could be derived from some
natural proteins, i.e., prions,* o-synuclein,***” insulin,*® A-B,*°

© 2022 The Author(s). Published by the Royal Society of Chemistry

the core sequence of natural silk proteins* and the artificially
designed ionic-complementary peptides,** which could be
a giant bank for developing orthogonal pairs for peptide
assembly.

The increasing protein data bank can also provide a resource
pool for orthogonal pairs. For example, motifs like B-sheets and
coiled-coils coexist in proteins, and normally form natural
orthogonal pairs. Simply with coiled-coils, scientists have
already designed complex nanostructures such as cages for
diverse applications in biomedicine.”” Secondly, short peptides
with less than 100 amino acid residues can be easily synthesized
in the solid phase, while longer peptides can be obtained
through genetic engineering, ie., fused protein expression.
Thirdly, the rapid development of molecular dynamics simu-
lation makes the theoretical prediction of peptide spatial
structures increasingly accurate.* There are already several
powerful software such as Gromacs, NAMD, RoseTTAfold and a-
Fold that not only allow scientists to understand the dynamic
process of peptide assembly but also help perfect the design of
peptide sequences. Prof. Susan Lindquist from MIT wrote,
“Humans have been domesticating plants and animals about
10 000 years ago, and now it's time to domesticate molecules”.
Now it is time to develop peptide origami.

Woolfson and co-workers constructed a single-layered
protein grid using two coiled-coil orthogonal complementary
pairs, which further self-assembled into hollow balls with
a diameter of 100 nm.* Jerala and co-workers designed an
artificial peptide containing six coiled-coil orthogonal comple-
mentary pairs (Fig. 2a), which was produced by the genetic
engineering method and can fold into a tetrahedral structure
with a 10 nm length.** Ryadnov and co-workers constructed the
smallest artificial viruses using coiled-coil orthogonal comple-
mentary pairs.*® Baker and co-workers successfully constructed
2-D* and 3-D nanostructures*® using a theoretical calculation
that has been published online.**** Recently, they also precisely
controlled the B-sheet curvature of proteins at the nanoscale.>
Ryoichi et al. constructed versatile nanostructures with one
dimer of WA20 and one trimer of foldon conjugated peptides®
(Fig. 2b). These results indicate that peptide origami is already

RSC Adv, 2022, 12, 25955-25961 | 25957
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Fig.2 Creating pre-designed nanostructures with peptide origami. (a)
A tetrahedron was folded by a single peptide chain, which was fused
with a fluorescent protein.** (b) Constructing nanostructures with
genetically fused peptide WA20—foldons.5?

comparable to DNA origami, and has ushered a new era for
creating novel nanostructures and bioactivities.

Superiority of peptide origami

In living systems, efficient functions are normally achieved by
nanostructures that are subtly arranged with complex mole-
cules, such as molecular machines (2016 Nobel Prize in
Chemistry) and light-harvesting complexes, both of which were
listed as the top ten research hotspots in biology. In contrast,
DNA origami involves covalently conjugating functional groups
to complementary DNA sequences in advance to realize pre-
designed functionalities.®® There are a few approaches to
realize site-specific conjugation to proteins, such as the
unnatural amino acid-based conjugation invented by Schultz
and co-workers,* but these are highly skilled. Due to the
orthogonality of the complementary pairs, coiled-coil motifs
could produce more complex nanostructures than B-tails. The
development of new vaccines requires the following effects:
long-term, highly effective immune-stimulating enhancement
with minimal or complete elimination of adjuvant additions.
With both protein fusion and peptide assembly/origami, high-
efficiency polyvalent vaccines or combined vaccines of
multiple diseases can be achieved by displaying different types
and quantities of epidemic antigens on the surface of prede-
signed nanostructures such as nanofibers® (Fig. 3a). In this
way, catalytic performance can also be enhanced by clustering
proteinases or antigens on the surface of fibrils.*® With the same
principle, Collier and co-workers constructed fibrils using p-tail-
fused fluorescent proteins, which not only retain the structure's
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epitopes with fibril-forming B-tail peptides.® (b) Replacing the antigen
epitope with fluorescent proteins (of different colors) to construct
nanofibrils with B-tail-based peptide origami.*®
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fluorescence but can also emit different fluorescence by mixing
fluorescent proteins in different ratios®® (Fig. 3b).

Compared with DNA origami, the central dogma endows
more advantages to peptide origami, i.e., bioactivities created by
peptide origami hold the potential to be replicated in vivo.
Although DNA self-replicates, DNA origami requires tempera-
ture ramping to finish the annealing process, which is hard to
achieve in vivo. Peptides can be excreted from cells after being
produced from the protein synthesizing machinery, which
inspires us to yield bioactivities en masse using cells. Yeates and
co-workers reported a fusion protein including two orthogonal
complementary pair subunits, and this protein can further self-
assemble into protein cages with a diameter of 16 nm.*>” After-
wards, they created another kind of porous cube with a pore
diameter of 130 nm using the same peptide origami approach.*®
Our group overcame the shortcomings of the poor photo-
stability and complex synthetic process of organic molecular
probes and used the natural tripeptide GYK (G, glycine, Y,
tyrosine, K, lysine) to generate fluorescence.* The red shift of
about 100 nm in the fluorescence of GYK assemblies already
overcame the obstacle of natural amino acids.*®® Such peptide
assemblies hold great promise for developing novel fluorescent
probes for cell labeling and imaging.*

Due to the intrinsic chemical complexity based on amino
acid sequences, peptides can be screened out or designed to
specifically respond to metal ions®* or recognize inorganic
materials with relatively high affinity (Fig. 4). Liu and co-
workers constructed protein-based nanorings and nanorods
using the recognition between metal ions and proteins, and
demonstrated their application value in artificial light-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(b)

Fig. 4 Peptide—inorganic hybrid functional nanomaterials. (a) Artificial light-harvesting hybrid nanostructures by co-assembling proteins and
nanoparticles.®® Stable protein one (SP1) forms ring-like nanostructures, DSP1, which were modified by a thiol-reactive chromophore 9-[4-
(bromomethyl)phenyl]-10-(4-methylphenyl)anthracene (DPA-Br, as the donor chromophore). EY (eosin Y, as the acceptor chromophore)-
modified CCMs (core-cross-linked micelles), ECCMs, can co-assemble with DSP1 into antenna-like hybrid nanostructures for FRET (Forster
resonance energy transfer). (b) Screening out semiconductor-recognizing peptides using the phage display technique. GaAs, but not SiO,, was
specifically recognized by phages that were fluorescently labeled with tetramethyl rhodamine (TMR), which was verified by scanning electron

microscopy.®’

harvesting systems (Fig. 4a).** In combination lab experiments
with theoretical simulations, Zhou and co-workers conducted
a systematic study on controlling GAV peptide origami on
a liquid-solid interface.** In general, thiol group-modified DNA
can form robust conjugation with some materials (such as gold
and silver), while such functional groups are naturally con-
tained in peptides. Fan and co-workers reported an interesting
method wherein polyA has strong affinity to gold nanoparticles,
whereby gold-DNA hybrid nanostructures were constructed by
DNA origami.® Systematic evolution of ligands by exponential
enrichment (SELEX) could screen out DNA aptamers binding to
different molecules and materials,* but so far these aptamers
cannot be compared to antibodies in terms of affinity. However,
peptide aptamers have a higher affinity than DNA aptamers and
can be selected using a bio-evolution system. For example,
Belcher and co-workers successfully applied the phage display
technique to screen out peptides with high affinity to semi-
conductors (Fig. 4b).*” Hence, regarding their diversity and
affinity, we believe that there is plenty of room at the bottom of
peptide origami.

Outlook

Although the current nanostructures created by peptide origami
are less complex than those made by DNA origami, and the
computational assisted programs are also limited to a few
peptide chains that are much less than the chain number used
in current DNA origami, peptide origami has already demon-
strated its feasibility and superiority, and holds great potential
to combine other material blocks for fabricating hybrid origami
structures, i.e., DNA-peptide hybrid origami structures.®®

Our group previously discovered strong physical adsorption
between serum albumin and amphiphilic polymer-
encapsulated nanoparticles,* and proposed a “mortise-tenon
joint” mechanism.” This mortise-tenon joint is independent of
the properties of the material encapsulated inside the polymer,
and with this advantage, nanostructures with a discrete number

© 2022 The Author(s). Published by the Royal Society of Chemistry

of ligands (i.e., peptides) can be obtained by gel electropho-
resis.”* Such peptide/protein-nanoparticle’> hybrid building
blocks hold great potential for bottom-up origami-like nano-
fabrication, with which Parak and co-workers demonstrated the
significant differences of nanoparticles conjugated with
a different number of antibodies in tumor-targeting therapy.”
Artificial light-harvesting complexes have been a hot spot to use
“infinite” light energy due to the depleting fossil fuels such as
coal, oil and natural gas. However, improving the current light
energy conversion rate is still challenging, and the delicate
design of photosynthetic nanostructures is key; therefore,
peptide origami could be the most effective way to solve this
problem.
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