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responsive covalent organic
frameworks nanocarrier for plumbagin delivery

Yang Wang, *ab Xin Suna and Yi Wangb

Covalent organic frameworks have attracted increasing attention in the fields of nanotechnology and

nanoscience. However, the biomedical applications of COFs still remain less explored. Here, a new type

of nanoscale covalent organic framework (COF-366) composite was prepared by a facile solvothermal

method. The obtained material was characterized by powder X-ray diffraction (XRD), Fourier transform-

infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results showed that the

COF-366 nanocarriers possess uniform spherical morphology with a diameter of 150 nm, which make

them favourable for drug delivery. After the plumbagin encapsulation, an effective pH responsive release,

high adsorption capacity, and good biocompatibility were achieved. These characteristics make

nanoscale COF-366 an ideal material for drug delivery and reveal its promising application in biomedical

applications.
1 Introduction

As a natural naphthoquinone constituent, plumbagin (PLB) has
been found to possess anticancer effects.1,2 Earlier studies have
demonstrated that the anticancer effects of PLB are mainly due
to apoptosis and autophagy, cell cycle arrest, and induction of
intracellular reactive oxygen species generation.3–5 However, the
drawbacks related to a short half-life range, from 36 min to 5 h,
and poor water solubility of PLB restrict its clinical translational
application and therapeutic effects.6 In this respect, a sustained
PLB delivery system which can improve the delivery efficiency
and loading capacity obviously becomes the major trend.

In recent years, many efforts on drug delivery have been
made to ensure efficient therapy.7–9 It is noteworthy that several
materials, such as nanoemulsions, glycerosome gels, and metal
organic frameworks have been developed for PLB delivery.10–13

However, many of the host materials have inherent limitations
(low surface area, low drug loading capacity) to becoming
a successful drug delivery system. Thus, it is imperative to seek
novel materials with impressive properties to improve the drug
delivery performance.

As an emerging material of self-assembled porous structure,
covalent organic framework (COF) is conjugate crystalline
polymer.14–17 Due to the versatility of COF, such as large specic
surface area, controllable pores and structure as well as high
porosity, COF has demonstrated great potential for separation,
heterogeneous catalysis, and sensing.18–20 However, much
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attention has been less paid to the establishment of COF based
drug carriers for the intended applications. For example, Zhao
et al. designed two porous COF as drug nanocarriers. Aer an
anticancer drug (5-FU) was encapsulated, the materials
demonstrated high loading capacity and sustained release
behavior.21 A very recent study by Li et al. have reported the
synthesized of a porous Cage-COF-TT, which exhibits highly
thermal stability and loading capacity. The composite was
employed to effectively deliver three representative drugs.22 Tsai
et al. have also designed a thioether-terminated triazole bridge-
containing COF (TCOF). The TCOF was sensitive to pH and
processed biocompatibility toward HeLa cells.23 All these
studies demonstrated that COF as novel are potential in drug
delivery for therapeutic applications.

Herein, COF-366 nanocomposite with a uniform size was
synthesized and successfully used as a host material for the PLB
encapsulation (denoted as PLB@COF-366) and delivery. The
results indicated that PLB@COF-366 nanocomposite is a physi-
ological pH responsive drug delivery system, and PLB release
from PLB@COF-366 is faster in mild acidic conditions (pH ¼
5.5) than under physiological acidity (pH ¼ 7.4). The loading
capacity was calculated to be 16.3 wt%. The high biocompati-
bility of COF-366 nanocomposite was further demonstrated by
in vitro MTT assay toward pancreatic cancer cells.
2 Experimental
2.1 Materials

Plumbagin, tetra-(amidogen phenyl)-porphine (TAPP) and ter-
ephthaldehyde (BDA) were booked from Aladdin. Chemicals
such as methanol purchased from Sinopharm Chemical
Reagent. Phosphate buffer solution was prepared by using
© 2022 The Author(s). Published by the Royal Society of Chemistry
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0.1 mol L�1 NaH2PO4/Na2HPO4 stock solution. All other
chemicals were of analytical regent grade. And the double
deionized water was prepared using a Millipore water purica-
tion system (resistance > 18 MU cm�1, Bedford, MA, USA).
2.2 Apparatus

Scanning electron microscopy (SEM, Hitachi S-4800, 15 kV,
Japan) was utilized to analyze the surface morphology of the
products. Powder X-ray diffraction (PXRD) was performed by D8
Advanced X-ray diffractometer (Bruker Co., Germany) in the
range of 5 to 80�. The Fourier transform infrared spectroscopy
(FTIR) was measured via Bruker tensor 27 infrared microscopic
spectrometer (Bruker Co., Germany). UV-vis absorption was
detected with a Hitachi U-3010 spectrophotometer.
Fig. 2 (A) XRD patterns and (B) FTIR spectra of COF-366 and
PLB@COF-366.
2.3 Synthesize of COF-366 and PLB@COF-366

The main paragraph text follows directly on here. COF-366 was
synthesized based on the previous reports with some modi-
cations.24 Tetra(p-amino-phenyl)porphyrin (TAPP) (27.0 mg,
0.04 mmol), terephthaldehyde (11.2 mg, 0.08 mmol), 1.0 mL of
absolute EtOH, 1.0 mL of mesitylene and 0.2 mL of 6 mol L�1

aqueous acetic acid were mixed together and stirred at room
temperature for 15 min. Then the mixture was heated to 120 �C
for three days in a 25 mL teon-lined stainless steel container.
Aer the mixture was cooled, purple solid was separated, then
washed with 1,4-dioxane, THF, and acetone, and dried at 40 �C
under vacuum for 12 h to obtain a purple powder. For the
synthesis of PLB@COF-366 (Fig. 1), the obtained crystal powder
(33.3, 50 and 66.6 mg) was placed into the 10 mL ethanol
solution of PLB (10 mg) and then stirred under room temper-
ature condition for 9 h. PLB@COF-366 was obtained by ltrat-
ing and washing the product with methanol for three times to
take out the excess drugs in the solvent and drying it in
a vacuum stove. Subsequently, 0.1 g PLB@COF-366 was
dispersed in 20 mL H2O with the addition of 0.3 g PVP. The
mixture kept stirring for 12 h. Aer that, resultant nano-
composite was washed with water for about ve times and then
dried in vacuum stove before use. In addition, different
amounts of COF-366 (50, and 66.6 mg) were also used to
fabricate PLB@COF-366 for comparison of their drug loading
capacity. The drug loading capacity and drug encapsulation
efficiency were calculated by the following equations:

Drug loading capacity ¼ weight of the loaded drug

weight of COF-366
� 100%
Fig. 1 Schematic illustration of the preparation process of nanoscale
COF-366 and PLB@COF-366.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Drug encapsulation efficiency ¼ weight of the loaded drug

weight of initial total drug

� 100%
3 Results and discussion

The obtained materials were characterized by powder X-ray
diffraction to conrm the successful formation of COF-366
and PLB@COF-366 nanocomposites. As displayed in Fig. 2A,
the main diffraction peaks of both materials at 3.5�, 5.12�, 6.3�

and 8.0� were corresponded to the (100), (110), (200), and (210)
planes, respectively, which is consistent with the previous
literature.25,26 The results also indicated that COF-366 still
maintains its high crystallinity aer the encapsulation of PLB.
The Fourier-transform infrared spectroscopy (FTIR) spectrum
was measured to verify the chemical structures of PLB and
PLB@COF-366. As shown in Fig. 2B, the characteristic peak at
3343 cm�1 was ascribed to the amide –OH stretching of PLB.27

As for COF-366, a characteristic peak at about 1623 cm�1 cor-
responded to the stretching C]N bonds from the linkage of
organic ligand. Two characteristic peaks at 1691 cm�1 and
3360 cm�1 can be allocated to the residual aldehyde group and
amino, respectively.28,29 In comparison to the spectrum of PLB
and COF-366, the main characteristic peaks of PLB@COF-366
match well with the curves of PLB and COF-366, suggesting
the encapsulation of PLB would not change the crystallinity of
COF-366. This is consistent with the above results of XRD.

The size and morphology of COF-366 and PLB@COF-366
were investigated by SEM. It can be observed that the mono-
dispersed nanocrystals with a mean diameter of ca. 150 nm are
mainly spherical in shape (Fig. 3A). This size matches well with
Fig. 3 SEM images of (A) COF-366 and (B) PLB@COF-366
nanocomposite.

RSC Adv., 2022, 12, 16046–16050 | 16047
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the reported suitable nanoparticle diameter for the effective cell
uptake. Hence, it is anticipated that the obtained COF-366
could be internalized into cells effectively. Aer the encapsu-
lation of PLB, the geometrical structure of COF-366 was retained
but its surface became a litter rough (Fig. 3B). This nding
suggests that the successful formation of PLB@COF-366
nanocomposite.

Thermogravimetric analysis was carried out to investigate
the thermal stability of COF-366. As shown in Fig. 4, a slight
weight loss of 17.42% occurred at low temperatures, which was
attributed to the removal of adsorbed molecules such as H2O
and small organic precursors. Subsequently, the dramatic
decomposition between 400 and 800 �C with a weight retention
of 50.17% was due to the decomposition of the COF-366,
demonstrating its excellent thermal stability. The specic
surface area was determined using nitrogen adsorption
isotherms at 77 K, and the Brunauer–Emmett–Teller (BET)
surface area was found to be 1240 m2 g�1, which was benecial
for drug loading and delivery applications. A substantial
decrease in the BET area (560 m2 g�1) occurred aer the
incorporation of PLB, indicating PLB was successfully immo-
bilized into the internal pores of COF-366.

In order to investigate the encapsulating and controlled
release behavior of the prepared COF-366 nanocomposite, PLB
was selected as a model anti-cancer drug. As shown in Fig. 5, an
obvious UV-vis absorption spectrum of PLB was observed at
480 nm, and the absorbance intensity is proportional to the PLB
concentration in a wider range of 5 to 50 mg L�1. The linear
regression equation was calculated to be A ¼ 0.023C (mg L�1) +
0.0251 (R2¼ 0.9971). COF-366 was immersed in an aqueous PLB
Fig. 4 Thermogravimetric analysis curve of COF-366.

Fig. 5 UV-vis absorption spectrum of PLB in the pH 5.5 solution. The
inset shows the relationship between absorbance intensity and PLB
concentration.

16048 | RSC Adv., 2022, 12, 16046–16050
solution under agnetically stirred overnight for drug encapsu-
lation. The resultant nanocomposite was collected by ltration,
and washed with water. UV-vis absorption spectra were used to
determine the content of the original PLB solution and the
residual PLB in the supernatant aer interaction with COF-366.
The drug loading capacity decreased in a sequence of
PLB@COF-366 (16.3 wt%) > PLB@COF-366-2 (10.8 wt%) >
PLB@COF-366-3 (8.2 wt%) with the change of COF-366 contents
(33.3, 50, and 66.3 mg), suggesting that COF-366 (33.3 mg) was
favorable for the drug loading. In addition, the drug encapsu-
lation efficiency was calculated to be 54.3%. The high loading
capacity of COF-366 for the encapsulation of PLB could occur
for two reasons: (I) COF-366 is synthesized by organic linkers. So
it is possible to interact with the PLB organic molecules through
p–p stacking interaction;30 (II) the relative high surface area of
COF-366 could improve the adsorption capacity of PLB.

An efficient pH-responsive delivery system should be char-
acterized by the slow and sustained release property. This is
great for preventing the drug dissipation before it reaches the
cancer cells. Compared to normal tissues at physiological pH,
the extracellular microenvironments of tumors are mildly
acidic. Hence, dialysis bag with PLB encapsulated COF-366 were
immersed in PBS solution and investigated at different pH
values of 5.5 and 7.4 at room temperature. Aer selected time
intervals, the amount of PLB releasing from PLB@COF-366 was
determined. As shown in Fig. 6, PLB encapsulated PLB@COF-
366 nanocomposite demonstrated sustained release without
any burst dissociation. Around of 93% of encapsulated PLB was
released into the 5.5 pH solution aer 72 hours. In comparison,
PLB@COF-366 nanocomposite exhibited a slower release
prole at a pH value of 7.4 within the same period. The pH-
sensitive released PLB continuously increased due to the acid-
promoted dissolution of COF-366. Hence PLB@COF-366 nano-
composite with a pH responsive drug release property are
promising as drug carriers for targeted drug release to the
different pH values between acidic tumour sites and normal
tissues. In addition, the BET surface area of COF-366 was
reduced to 420 m2 g�1 aer the release of PLB, probably due to
the structure of COF-366 was partially destroyed under acidic
conditions. The release kinetic and mechanism of PLB@COF-
366 was analyzed using Baker–Lonsdale, Higuchi, zero order,
and rst order kinetic models. The regression coefficient (R2)
Fig. 6 PLB release profiles from COF-366 in simulated physiological
solution with pH values of 5.5 and 7.4.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Cell viability after exposure to COF-366 and PLB@COF-366.
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values for each model were 0.9568, 0.9425, 0.9015, and 0.8627,
respectively. Hence we can conclude that the Baker–Lonsdale
model generates a more satisfactory t to the experimental data
with the highest R2 values. The calculated kinetic exponent was
0.6257, suggesting that PLB release from COF-366 are non-
Fickian transport mechanism.

Nontoxicity or low-toxicity is necessary for further bio-
applications likewise. Hence, the cytotoxicity of the COF-366
nanocomposite against human prostate cell lines LNCap was
examined using standard 3-(4,5-dimethyl-thiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assays. LNCap cells were
incubated with the COF-366, and PLB@COF-366 nano-
composite at different concentrations for 24 h. As shown in
Fig. 7, the COF-366 nanocomposite exhibited excellent
biocompatibility. Negligible changes in cell viability aer 24 h
of incubation were found. Even when the concentration of COF-
366 nanocomposite was over 40 mg mL�1, the cell proliferation
is slightly hindered. The relatively good biocompatibility of
COF-366 nanocomposite shows their potential use as an excel-
lent nanocarrier in vitro. Aer LNCap cells were treated with
PLB@COF-366 for 24 h, PLB@COF-366 nanocomposite exhibi-
ted higher inhibition to the growth of LNCap cells due to the
encapsulating of PLB. But the cells could keep a high viability of
85% at the maximum dosage of 30 mg mL�1. The results sug-
gested that PLB@COF-366 nanocomposite is a high biocom-
patibility drug carrier material.
4 Conclusions

In summary, a nanoscale COF-366 nanocomposite was synthe-
sized by a facile method. Considering its structural character-
istics, COF-366 nanocomposite was employed as a host for the
encapsulation and delivery of the anticancer drug PLB, and the
release of targeted drug demonstrated pH-dependent behavior
and a sustained release pattern over three days. Moreover, the
carriers demonstrated a large drug loading capacity and lower
cytotoxicity against the human prostate cell lines (LNCap). In
addition, a postsynthetic strategy could be adopted to prepare
other functional nanomaterials for the development of highly
pH-sensitive and targeted nanocarrier. It is clear that, given the
promising results obtained for covalent organic framework
based PLB pharmaceutical delivery, further studies will focus on
© 2022 The Author(s). Published by the Royal Society of Chemistry
a broader range of COF-366 and PLB combinations to suppress
gastric cancer or lung injury therapy. The related studies in our
laboratory are in progress.
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