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As an important class of organic products, organophosphorus
compounds have received considerable attention because they
have broad application in the field of materials science,
medicinal chemistry,” organic synthesis,® natural products,*
and ligand chemistry.> Phosphorus-containing compounds are
valuable precursors of many biologically active molecules which
can act as antibiotics,® anti-tumor agents’ and enzyme inhibi-
tors.® Traditionally, the preparation of organophosphorus
compounds relies on a transition-metal-catalyzed cross-
coupling of phosphine reagents with electrophilic aryl halides
(Ar-X),? aryl boronic acids (Ar-B),* aryl diazonium salts (Ar-N),**
and so on.”? Recently, the construction of a Csp>-P bond on
heterocycles is another powerful method to synthesize the
organophosphorus compounds.* For instance, the Duan group
and the Ackermann group reported a Ag-mediated C-H/P-H
functionalization method to construct a Csp>~P bond by using
arylphosphine oxides and internal alkynes as the substrates'**”
(Scheme 1a). In 2014, Studer and co-workers reported a pio-
neering radical cascade reaction for the synthesis of 6-phos-
phorylated phenanthridines from 2-isocyanobiphenyls and
diphenylphosphine oxides (Scheme 1b).** Before long, Ji and
Lu's group described two similar radical process with excess of
PhI(OAc), or K,S,0; as the oxidant (Scheme 1c).**** Recently,
Liang and co-works developed two cases of cascade function-
alization to construct phosphorylated heterocycles via the ionic
pathway (Scheme 1d and 1e).*¥¢ Meanwhile, Li and coworkers
reported a Mn(u)-promoted tandem cyclization reaction of 2-
biaryl isothiocyanates with phosphine oxides which went
through the same mechanism(Scheme 1f)."** Despite the
usefulness of the above methods, common problems, such as
complex reaction substrates, relatively high temperature, excess
amounts of oxidants, limited their applications. Furthermore,
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could be synthesized in moderate to excellent yields. This method has the advantages of easy access to
raw materials, free-metal catalyst, simple operation, high yield and high functional group tolerance.

transition metals are required in these reactions, thereby
resulting in limitations in reactants. Therefore, the develop-
ment of a simple and transition-metal-free method for the
formation of the Csp®>-P bond from easily prepared starting
materials is highly desirable.

o-Alkynylphenyl isothiocyanates are easily prepared organic
synthons with versatile chemical reactivity," and they could be
used as electrophiles,” nucleophiles,® and radical receptors”
due to the N=C=S moiety in the structure. Recently, the rapid
development of the transition-metal-catalyzed cascade cycload-

dition of o-alkynylphenyl isothiocyanates with various
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Scheme 1 Synthesis of P-containing heterocycles through Csp?—P
bond formation.
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nucleophiles provides a new and powerful synthetic strategy to
synthesize different heterocycles. Very recently, we have devel-
oped a tandem cyclization process for the synthesis of 4H-benzo
[d][1,3]thiazin-2-yl)phosphonates by using this strategy.’® As part
of our continuing interest in the transformation of o-alkynyl-
phenyl isothiocyanates,” we describe herein a novel I,-promo-
tedtandem reaction to construct Csp>-P bond from o-
alkynylphenyl isothiocyanates and phosphine oxides(Scheme 1g).

The starting o-alkynylphenyl isothiocyanates were prepared
via the Sonogashira coupling of 2-iodoanilines with terminal
alkynes,*® followed by the treatment with thiophosgene
according to the literature procedure.”® We commenced our
studies with the reaction of o-phenylethynylphenyl iso-
thiocyanate (1a, 0.2 mmol) and diethyl phosphonate (2a, 0.6
mmol) in the presence of I, (0.5 equiv.) as the catalyst, 8-
diazabicyclo[5,4,0Jundec-7-ene (DBU, 3.0 equiv.) as the base, in
dichloromethane (DCM, 2 mL) at 0 °C for 12 h in air atmo-
sphere. Gratifyingly, the desired product diethyl (Z)-(4-benzyli-
dene-4H-benzo[d][1,3] thiazin-2-yl)phosphonate = 3a  was
obtained in 75% yield (Table 1, entry 1). Next, different iodized
salts, no better results can be obtained (Table 1, entries 2-4). It
is worth noting that no product was obtained in the absence of
base (Table 1, entry 5). This result indicated that a base is
indispensable to afford the target product. Subsequently, we

Table 1 Optimization of the reaction conditions®

o]
N RN Catalyst, Base
| -8 o
Z N/,C L Solvent, Temp.
1a 2a

Entry  Catalyst  Base Solvent Temp. yield (%)”
1 I, DBU DCM 0°C 75

2 KI DBU DCM 0°C 64

3 Nal DBU DCM 0°C 50

4 Znl, DBU DCM 0°C 55

5 I, — DCM 0°C NR

6 I, DABCO DCM 0°C Trace
7 I, KOAc DCM 0°C NR

8 I, NaOAc DCM 0°C NR

9 I K,HPO, DCM 0°C NR
10 I, Cs,CO3 DCM 0°C Trace
11 1, NaOH DCM 0°C Trace
12 I, DBU DCE 0°C 28

13 L DBU CHCl, 0°C 32

14 I, DBU DMF 0°C Trace
15 1, DBU 1,4-Dioxane 0°C 50

16 I, DBU MeCN 0°C 35

17 1, DBU Toluene 0°C 84

18 1, DBU Toluene 25 °C 70
19 1, DBU Toluene 40 °C 52

20 1, DBU Toluene 80 °C 42

21 1, DBU Toluene —10 °C 66

“ Reaction was performed with 1a (0.2 mmol), 2a (0.6 mmol)}, catalyst
(0.1 mmol), base (0.6 mmol), in solvent (2 mL) for 12 h. ” Isolated
yield based on o-phenylethynylphenyl isothiocyanate 1a.
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examined the base effect on the reaction (Table 1, entries 6-11).
The reaction can hardly proceed when other bases such as
DABCO, KOAc, NaOAc, K,HPO,, Cs,CO; and NaOH were
employed. We next examined the solvent effect (Table 1, entries
12-17). When toluene was employed as the solvent, the highest
yield of 84% was obtained. Then, we examined the effect of
temperature on the reaction. When the reaction temperature
was increased to room temperature, the reaction was completed
with a yield of 70% (Table 1, entry 18). Increasing the reaction
temperature to 80 °C or reducing the reaction temperature to
—10 °C resulted in a diminished yield (Table 1, entries 19-21)
(Schemes 1-4)

In order to further demonstrate the substrate scope, different
o-alkynyl phenylisothiocyanates were then explored and the
results are summarized in Table 2. All reactions proceeded
smoothly, leading to the desired 4H-benzo[d][1,3]thiazin-2-yl
phosphonates in moderate to good yields. For example, the
reactions of o-alkynyl phenylisothiocyanates 1b-1f completed at
0 °C in 12 h to give corresponding products 3b-3f in 70-85%
yields. Among them, substrates 1 with an electron-rich aryl group
such as p-MeOCgH, and p-MeCgH, at the R* position, showed
good results (81% and 85%, 3e and 3f). As reported in our other

Table 2 Tandem cyclization of o-alkynylphenyl isothiocyanates with
diphenylphosphines®?

R2

R? 1 (0.5 equiv.) |
Z o N
=z DBU (3.0 equiv S
N +  H-P-R® R'L /)\ 19]
RY- .S ', Toluene (2.0mL), -~ 0°C NN B
AN R 1 R3
N i

1a 2a 3a-3w

F cl Br
S S« S« '
{ { { { {
Clte O, O, Clr, O
A P A0 P J_0
N/)\?,O e e o N*?'o
o N— C‘)w¥ (‘)\\g DW¥

0

3
3a 84% yield 3e 81% yield
OMe

N

3b 70% yield 3¢ 71%yield 3d 72% yield

Ph
S

O Ph Ph
i ‘ s F. ‘ cl ‘ s Br ‘ s
s A2 A2 P A2
NP, NP NP, NP,
— o N— o —
) J

D) Fo, .
NP

F-0, o o,

o — W N
W 3g 70%yield 3h 73% yield 3i 88%yield 3j 92% yield
31 85% yield

Ph Ph Ph
_Ph ‘ Ph 1 | |
i MeO.
S S
e $ $ J_0 /S\ 0 Jd o
P N7 ‘P/,D NTFS F N RS, Br NP,
N TPL 7~0, o — o\ o —
O\ e O, N N N

3k 69% yield 31 90% yielj 3m 92% yield 3n 74%yield 30 90% yield

F cl Ph
3 O \
F. { Cl ‘ b 0
s S NZ P
o X3, TlJe o
=0, N g'o\ ]

Ph
{
S
NP, N
0, oW N

\
3p 80% yield 3q 71%yield 3s 81%yleld

3r 76%yield

OMe
3v 99% yield

3w 80% yield

3t 79% yield

3u 96%yield

“ Reactions were performed with o-alkynylphenyl isothiocyanates 1 (0.2
mmol), phosphite or diphenylphosphines 2 (0.6 mmol), I, (0.1 mmol),
DBU (0.6 mmol), in toluene (2 mL) under 0 °C for 12 h. ” Isolated
yield based on o-phenylethynylphenyl isothiocyanate 1.
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articles,' no desired products were obtained when the R* group
in the substrate o-alkynylphenyl isothiocyanates 1 was an alkyl
group, such as n-butyl, t-butyl, and n-hexyl. Similarly, when the
R? group in the substrate o-alkynylphenyl isothiocyanates 1 was
the cyclopropyl group, the desired desired 4H-benzo[d][1,3]
thiazin-2-yl phosphonate 3g was obtained in 70% yield. On the
other hand, the reactions of o-alkynylphenyl isothiocyanates
bearing various substituents such as fluoro, chloro, bromo, tri-
fluoromethyl, methyl and methoxy groups on the aryl rings at the
R' position, regardless of their electronic properties and substi-
tution positions, gave the desired products 3h-3r in moderate to
good yields. Particularly, p-Br substituted 1j and 1o appeared
excellent reactivity and the corresponding products 3j and 30
were obtained in 92% and 90% yield, respectively. In order to
further expand the substrate scope, we moved on to examine the
P-reagents under the optimal conditions. The reaction of
dimethyl phosphate and diphenylphosphine oxide with 1a under
the standard conditions, the corresponding products dimethyl
(2)-(4-benzylidene-4H-benzo[d][1,3]thiazin-2-yl)phosphonate and
(2)-(4-benzylidene-4H-benzo[d][1,3]thiazin-2-yl)diphenyl ~ phos-
phine oxide (3s and 3t) were obtained in 81% yield and 79%
yield, respectively. It is noteworthy that the corresponding target
products (3u and 3v) with excellent yield (96% and 99% yield) are
obtained when we replace diphenylphosphine oxide with di-p-
tolylphosphine oxide and bis(4-methoxyphenyl)phosphine oxide.
Similarly, all products were uniformly formed as the Z-isomer,
which might be due to a kinetic effect according to Baldwin's
rules and a smaller steric effect compared to the E-isomer.**

Next, we examined the reaction of 2-isothiocyanato-3-
(phenylethynyl)pyridine 1x with 2a under the standard condi-
tions (Scheme 2). Not surprisingly, the corresponding product
3x diethyl (Z)-(4-benzylidene-4H-pyrido[2,3-d][1,3]thiazin-2-yl)
phosphonate was obtained in 47% yield.

47%yield

Scheme 2 The reaction of 2-isothiocyanato-3-(phenylethynyl)pyri-
dine with 2a.

TEMPO (3.0eq)
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Scheme 3 Two control experiments for mechanism.
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Scheme 4 Proposed mechanism.

Two control experiments were carried out to obtain some
mechanism insight into the reaction. Firstly, 3.0 equiv. of
2,2,6,6 tetramethylpiperidine N-oxide (TEMPO) was added in
the reaction of o-alkynylphenyl isothiocyanate 1a with diethyl
phosphonate 2a, and product 3a could be isolated in 75% yield
(Scheme 3, 1). Similarly, the yield of 3a was not influenced when
we added 3.0 equiv. of 2,6-di-tert-butyl-4-methylphenol (BHT) in
the reaction (Scheme 3, 2). These results probably suggested
that the reaction may not follow a radical pathway.

Base on the above results and previous reports,* a possible
mechanism was proposed for this reaction (Scheme 4). Firstly,
in the presence of DBU as the base, the nucleophilic addition of
P-anion to an isothiocyanate moiety in compound 1 would
occur to produce the intermediate A. Then, Intermediate A
could undergo isomerization to afford intermediate B. Next,
molecular iodine serves as a m-acid to react with triple bond,
giving iodocyclized intermediates C which followed by an
intramolecular nucleophilic addition to give the intermediate
D. Finally, intermediate D underwent the protodeiodination to
give the target product 3.

Conclusions

In summary, we have developed molecular-iodine-catalyzed
cyclization reactions of o-alkynylphenyl isothiocyanates and
organophosphorus esters as a mild synthetic method of
organophosphorus compounds. Different kinds of 4H-benzo[d]
[1,3]thiazin-2-ylphosphonate could be synthesized in moderate
to good yields. Avoiding the use of metal catalysts and the
availability of raw materials are the advantages of this approach
which provided a simple and direct pathway to construct
organophosphorus compounds.
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