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Diastereoselective synthesis of chroman bearing
spirobenzofuranone scaffolds via oxa-Michael/1,6-
conjugated addition of para-quinone methides
with benzofuranone-type olefinst
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A simple and convenient cyclization of ortho-hydroxyphenyl-substituted para-quinone methides with

benzofuran-2-one type active olefins via oxa-Michael/1,6-conjugated addition has been developed,
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Accepted 29th May 2022 which afforded an easy access to enriched functionalized chroman-spirobenzofuran-2-one scaffolds
with good to excellent yields (up to 90%) and diastereoselectivities (up to >19:1 dr). This reaction
DOI: 10.1035/d2ra03031d provided an efficient method for constructing desired spirocyclic compounds combining both well-

rsc.li/rsc-advances known heterocyclic pharmacophores chroman and benzofuran-2-one.
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The chroman framework represents a privileged heterocyclic
core commonly found within a wide variety of biologically active
natural products’ and synthetic compounds of medicinal
interest (Fig. 1).> Owing to the wide application of these
heterocyclic molecules, over the past few decades, numerous
efforts have been devoted to the efficient synthesis of chroman
nucleus motifs.>* In particular, incorporating chroman into
spiro-bridged and spiro-fused heterocyclic systems is appealing
due to its fascinating molecular architecture and proven bio-
logical activity.” Among the existing methods, the [4 + m]
cycloaddition of para-quinone methides (p-QMs) is found to be
an efficient pathway to access these valuable spirocyclic skele-
tons.® For instance, the Enders group synthesized functional-
ized chromans with an oxindole motif by the asymmetric
organocatalytic domino oxa-Michael/1,6-addition reaction.”
After that, the Hao,* Peng,® Shi,**? Zhou,* Liang®¥ and Wang®
groups developed convenient methods to construct chromans
bearing spirocyclic skeletons from p-QMs, respectively. Despite
all these shining achievements, however, it is still very chal-
lenging to simply and conveniently construct chromans bearing
quaternary carbon spirals for organic chemical or drug
discovery among these [4 + m] cycloaddition reactions.
Benzofuran-2-(3H)-ones as one of the important oxygen-
containing heterocycles that exist in a broad array of natural
products® and potential medicines.'® The streamlined synthesis
of benzofuran-2-ones pose considerable challenge due to their
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quaternary carbon centers at the C-3 position,** especially those
featuring relatively congested spirocyclic motifs represent
challenging synthetic targets.">** In our continuous interests in
developing efficient method for the synthesis of spirocyclic
compounds based on cyclization reaction," we wish to report
a cycloaddition of para-quinone methides with benzofuranone
derived olefins, affording the spiro-cycloadducts in good to
excellent yields and diastereoselectivities. This cyclization
features the simultaneous formation of chroman and
spirobenzofuran-2-one skeletons in a single step (Scheme 1),
which may be potentially applied as pharmaceutical agents.
We initiated our investigations with the readily available
ortho-hydroxyphenyl-substituted para-quinone methides 1a and
3-benzylidenebenzofuran-2-one 2a in toluene at room temper-
ature in the presence of base. Unfortunately, no desired
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Scheme 1 Strategy for the synthesis of chroman-spirobenzofuran-2-
one.
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chroman derivatives bearing spirobenzofuranone scaffolds 3a
was isolated in the presence of 2 eq. Na,CO; after stirring at
room temperature for 48 h (entry 1, Table 1). A base survey
showed that K,CO; and CsF led to desired cycloaddcuts 3a even
if with a disappointing yield (entries 2-4, Table 1). Gratifyingly,
Cs,CO; furnished the desired product in 70% yield and with
a generally acceptable 6 : 1 dr value (entry 5, Table 1). A solvent
screening indicated that the yield and diastereoselectivity are
both dependent on the solvent (Table 1). Thus, the oxygenated
solvents such as THF, diethyl ether and 1,4-dioxane gave
comparably high yields and diastereoselectivities than polar
solvents as exemplified by CH;CN or DMF (entries 5-10). To our
delight, performing the reaction in THF led to desired chroman-
spirobenzofuranone 3a with an excellent diastereoselectivity,
albeit with a very subtle erosion of the yield (entry 6). Further
optimization of the reaction conditions by varying the temper-
ature was also investigated. When higher temperature was used,
no improvement in the final yield was observed (entry 11).
Performing the reaction at lower 10 °C resulted in a increase of
the yield accompanied with no erosion in diastereoselectivity
(entry 12). However, the yield decreased to 64% when the
reaction performed at lower 0 °C (entry 13).

With the optimized reaction conditions in hand, we explored
the substrate scope of this cyclization reaction with a selection of
benzofuranones. The results are shown in Table 2. To our plea-
sure, a wide range of benzofuran-2-ones derived olefins were
compatible  affording the corresponding chromans-
spirobenzofuranone scaffolds 3 in good results. In detail, the
steric hindrance of substituents had a significant impact on the
cyclization reaction. The substrates with substituents on para- or

Table 1 Optimization of conditions®

base

solvent, temp

Entry Base Solvent Yield” (%) Dr°

1 Na,CO; Toluene — —

2 DMAP Toluene — —

3 K,CO;3 Toluene 25 3:1

4 CsF Toluene 52 5:1

5 Cs,CO;3 Toluene 70 6:1

6 Cs,CO; THF 68 >19:1
7 Cs,CO; Et,0 60 8:1

8 Cs,CO; Dioxane 53 7:1

9 Cs,CO; CH,CN 50 >19:1
10 Cs,CO5 DMF 31 15:1
114 Cs,CO; THF 65 >19:1
12¢ Cs,CO; THF 75 >19:1
13/ Cs,CO; THF 64 >19:1

“ Reaction conditions: p-QMs 1a (0.1 mmol), benzofuranones 2a (0.12
mmol) and base (0.2 mmol) in 2 mL of solvent for 6-48 h. ? Isolated
yields. ¢ Determined t}y crude 'H NMR analysis. ¢ Performed at 30 °C.
¢ Performed at 10 °C.” Performed at 0 °C.
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Table 2 Substrate scope of diastereoselective synthesis of chroman-
spirobenzofuran-2-one®

| / Cs,C0;5
O ' d © 1, 10C
OH
1a 2 3

Entry R 3 Yield” (%) Dr¢

1 CeHs 3a 75 >19:1
2 2-CIC,H, 3b 69 >19:1
3 2-BrC¢H, 3¢ 67 15:1
4 2-CH;CgH, 3d 64 >19:1
5 3-CH;CeH, 3e 75 >19:1
6 3-MeOCgH, 3f 72 >19:1
7 3-NO,CcH, 3g 71 >19:1
8 3-BrCgH, 3h 75 >19:1
9 4-CH,C¢H, 3i 73 10:1
10 4-MeOCgH, 3j 86 >19:1
11 4-CF3;CgHy 3k 82 12:1
12 4-NO,Cg¢H, 3l 85 12:1
13 4-CIC¢H,y 3m 83 >19:1
14 4-BrC¢H, 3n 81 12:1
15 2-Naphthyl 30 74 >19:1
16 3,4,5-(0OMe);CeH, 3p 88 12:1
17 3-Pyridinyl 3q 79 >19:1
18 3-Thiophenyl 3r 80 >19:1

¢ Reaction conditions: p-QMs 1a (0.1 mmol), benzofuranones 2 (0.12
mmol) and Cs,CO; (0.2 mmol) in 2 mL of THF. ? Isolated yields for 4-
48 h. ¢ Determined by crude "H NMR analysis.

meta-position on phenyl ring were tolerable affording the desired
cycloadducts in good yields regardless of the electronic nature of
substituents (entries 5-14). However, good diastereoselectivities
were also observed in ortho-substituted substrates (entries 2-4).
Furthermore, 2-naphthyl derived substrate gave also good yield
and sole diastereoselectivity (entry 15). Multi-substituted
substrate was also able to participate in this cyclization, for
example, 3,4,5-trimethoxylphenyl substituted benzofuranone
delivered cycloadduct 3p in 88% yield and with 12 : 1 dr value
(entry 16). Interestingly, the extension of the reaction conditions
to heteroaromatic substrates including 3-pyridyl and 3-thio-
phenyl benzofuranones were proceeded smoothly, giving rise to
cyclization products 3q and 3r in 79% and 80% yield, respectively
(entries 17-18).

Subsequently, the generality of this cyclization reaction was
further evaluated through varying p-QMs 1. As shown in Table 3.
It turned out that various p-QMs 1 can be employed to the
reaction, which delivered functionalized chroman-spiro-
benzofuran-2-ones scaffolds 4 in high yields (up to 90%) and
with good diastereoselectivities. It seems that the position of
the substituents had some delicate influence on the reaction.
The C5-methoxyl- or methyl-substituted substrates p-QMs 1
generated the products with a higher yield than those of the C4-
substituted counterparts (entries 3-6). Moreover, the C5-chloro-
and bromo-substituted p-QMs 1 afforded the products 4a and
4b in moderate yield (entries 1-2).
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Table 3 Substrate scope of p-QMs*

o
tBu tBu
Ph
| (:C/L Cs,C0;
TN * {o)
R g THF, 10°C
7 oH
1 2a 4
Entry R 4 Yield® (%) Dr¢
1 5-Cl 4a 73 >19:
2 5-Br 4b 65 >19:
3 5-CH; 4c 90 >19:1
4 5-OCHj; 4ad 80 10:1
5 4-CH; 4e 72 >19:1
6 4-OCHj; af 66 10:1

“ Reaction conditions: p-QMs 1 (0.1 mmol), benzofuranones 2a (0.12
mmol) and Cs,CO; (0.2 mmol) in 2 mL of THF for 6-48 h. ” Isolated
yields. ¢ Determined by crude "H NMR analysis.

Fig. 2 X-ray crystal structure of 3a.

The structure and relative configuration of 3a were deter-
mined by HRMS, NMR spectroscopy and single-crystal X-ray
analysis.”® The relative configuration of other cycloadducts
were tentatively assigned by analogy (Fig. 2 and see ESIY).

Conclusions

In conclusion, we described a cyclization reaction of ortho-
hydroxyphenyl-substituted = para-quinone methides with
benzofuran-2-one derived olefins via oxa-Michael/1,6-
conjugated addition, which efficiently constructed enriched
functionalized spirocyclic compounds combining both well-
known  heterocyclic =~ pharmacophores chroman and
benzofuran-2-one in good to excellent yields (up to 90%) and
diastereoselectivities (up to 19 : 1 dr).
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