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Supercapacitors have a rapid charge/discharge rate, long lifespan, high stability, and relatively acceptable
cost, showing great potential in energy storage and conversion applications. However, the current cost-
effective carbon-based electrodes have limited application owing to their low specific capacitance and
unsatisfactory stability. In this regard, we herein prepare nitrogen-doped carbons by carbonizing
a mixture of cotton pulp (CCP) and melamine to improve the specific capacitance by integrating pore
(mesopore) and surface (oxygen-containing groups) modification with defect engineering via the
carbonization process. Furthermore, the structural and morphological features of the resultant nitrogen-
doped carbons are confirmed by various characterization techniques. Excitingly, the specific capacitance
for nitrogen-doped CCP (CCPN1) with a 1 : 1 weight ratio of CCP and melamine is 642 F g~* at a current

density of 0.5 A g~ in a three-electrode system, surpassing that of the reported carbon analogues and
Received 5th May 2022 . - - . .
Accepted 24th July 2022 most metal-based materials to date. The stability test suggests that the specific capacitance of CCPNL1 is
maintained over 150 F g™ at a current density of 2 A g~* even over 5000 cycles. Therefore, the reported

DOI: 10.1039/d2ra02850f nitrogen-doped carbons from cotton pulp exhibit improved specific capacitance and stability, providing
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1. Introduction

With the continuous over-consumption of fossil fuels and the
exacerbation of global climate issues, high-efficiency elec-
tricity storage technologies have attracted great attention due
to their carbon-neutral and environmentally benign nature.
Among the current strategies, supercapacitors possess rapid
charge/discharge rates, long lifespans with high stability, and
relatively acceptable cost for either individual usage or sup-
plemented with batteries in the fields of energy storage and
conversion,” where their performance in electrical double-
layer capacitors (EDLCs) and pseudocapacitors mainly rely
on the electrostatic adsorption/desorption of ions and local
redox pairs over the surface of electrodes, respectively.®
Although tremendous efforts have been made in the devel-
opment of materials to improve the performance of
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a new cost-effective carbon-based material for application in the energy storage field.

supercapacitors, carbon-based materials are still considered
ideal electrode material candidates for supercapacitors due to
their flexible and tunable porous structures,* surface func-
tional groups,® and foreign atoms,® which have enormous
impact on the capacitance of EDLCs and pseudocapacitors.
For instance, Wang et al. reported that the pore size distri-
bution, rather than the specific surface area, has a tremen-
dous impact on ion adsorption/desorption over the electrode
surface. Specifically, ion clusters always cross over the
micropores in irreversible capillary condensation, which
blocks the pathways of ion adsorption/desorption, thereby
compromising EDLC performance.” For carbons with a hier-
archically porous structure originating from a source of wood,
macro-mesopore/meso-micropore compounds show an
optimal electrochemical performance of 133 Fg~* (27 F cm %)
at 10 mA cm 2, outperforming currently reported wood bio-
char monoliths. Surface functional groups, especially oxygen-
containing groups, strengthen the electrochemical perfor-
mance due to their positive charge and subsequently promote
electron transfer during the charging/discharging process.?
Doping foreign atoms,”'® such as N and S, also provide
numerous local redox pairs to boost the pseudocapacitance by
redistributing electrons over the active sites. Therefore,
synergistically realizing hierarchically porous carbons with
oxygen-based groups and heteroatoms is deemed a desirable
channel for boosting the electrochemical performance of
supercapacitors.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Previously, most carbon-based electrodes for super-
capacitors have been mainly produced using fossil fuel-based
precursors (coal, polymers, pitch and so forth) via thermal
carbonation, resulting in enormous nonrenewable energy
resource consumption and leaving large carbon footprints.**?
However, recent research has reported that wood-derived bio-
char shows huge potential in the energy storage field due to the
following aspects: (1) as a renewable and sustainable resource,
the cost-effective nature and high-performance of wood can
replace non-renewable, fossil fuel-based materials in the envi-
ronment-energy nexus;'*'* (2) anisotropic pores with hierar-
chical cellular structures provide channels for water and ion
transfer and regulate the corresponding rate, enhancing the
performance of EDLCs; (3) the large number of oxygen-
containing groups and heteroatoms afford local redox sites,
potentially promoting pseudocapacitance. Thus, based on these
merits of wood precursors, materials using bamboo,"
poplar,*®” Prosopis juliflora wood," beech,* and cotton pulp®
have been reported. Of the reported wood-based carbons,
cotton pulp has attracted tremendous attention due to its
homogenous pore size, stable hierarchical porous architecture®
even when carbonized at high temperature, and cost-effective
and environmentally friendly nature.* Jiang et al. adopted
a two-step carbonization process to convert cotton pulp into
carbons, which exhibited a characteristic capacitance of 107 F
g ' at 1 A g~ with acceptable stability for 2000 cycles,? which
crossed our expectations. Therefore, based on the previous
discussion, the aim of this work is to utilize the advantages of
cotton pulp and synergistically combine pore (mesopore) and
surface (oxygen-containing groups) engineering with defect
engineering (N dopant) to boost the performance of EDLCs and
pseudocapacitors via a one-step carbonization process of
a cotton pulp and melamine mixture to achieve superior
capacitance with exceptional stability. Furthermore, diverse
structural characterizations, including thermogravimetric
analysis (TGA), Brunner-Emmett-Teller (BET) analysis, Raman
spectroscopy, and X-ray photoelectron spectroscopy (XPS), have
been conducted from the perspectives of structural, defective,
and surface functional group features. Finally, the performance
of supercapacitors decorated with nitrogen-doped carbon has
also been evaluated.

2. Experimental
2.1 Chemicals

All the chemicals, including cotton pulp (diameter: 5-20 nm,
length: 10-1000 nm, purity: 99.9%, crystallinity = 75%, solid
content = 5%, North Century (Jiangsu) Cellulose Materials Co.,
Ltd.), melamine (AR 99%, Aladdin), Vulcan XC-72 carbon
(Cabot), and Nafion (5 wt%, DuPont D520) were used as received
without any purification.

2.2 Preparation of nitrogen-doped carbon derived from
cotton pulp

First, the purchased cotton pulp was dehydrated by vacuum
drying to protect the textural structure of cellulose nanofibers
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for forty-eight hours after being firmly frozen at —70 °C for
twelve hours. Afterwards, mixtures of different weight ratios
(1:0,1:1, and 2:1, labeled as CCP, CCPN1, and CCPN2,
respectively) of melamine and dried CCP were ground at room
temperature for at least thirty minutes until a homogenous
mixture was formed. Then, the mixture was annealed under an
argon atmosphere in a tube furnace with a temperature ramp of
10 °C min~ " from room temperature to 550 °C with a one-hour
platform, followed by further increasing the temperature to
800 °C with the same rate and keeping it at 800 °C for another
two hours. Finally, the prepared samples were obtained and
stored in a drying cabinet for further testing.

2.3 Preparation of electrodes

2 mg of the synthesized materials (CCP, CCPN1, and CCPN2),
0.25 mg carbon black, and 5 mg Nafion (5 wt%) were dispersed
in a 275 pL mixed solution of isopropanol and DI water with
a 3 :7 volume ratio. Then, the suspension was vortexed and
sonicated for at least 10 minutes three times to ensure the
formation of homogenous ink. Afterwards, the ink was drop-
casted on hydrophobic carbon paper with a size of 1.0 cm x
1.0 cm and dried at room temperature until the solvent
completely evaporated, and a loading of 0.4 mg cm™> was
maintained for all the electrodes.

2.4 Electrochemical measurements

The nitrogen-doped porous wood-derived carbons (CCP,
CCPN1, and CCPN2) were used as prepared. An electrochemical
workstation (IVIUM, V22612) was used as the voltage/potential/
current source for three-electrode electrochemical analyses. In
the three-electrode setup, the catalyst-coated carbon paper was
connected to the working electrode terminal. The counter and
reference electrode terminals were Pt slice and Ag/AgCl elec-
trodes, respectively. The electrochemical performance of the
supercapacitors was tested by cyclic voltammetry (CV) and gal-
vanostatic charge/discharge (GCD) in 0.1 M NacCl. The potential
range for CV and GCD was from —1.0 to +1.0 V. The mass-
specific capacitances (C) were calculated using the equation C
= 4(IAt)/(mAV), where I is the constant discharging current, At
is the discharging time, m is the mass of the electrode materials,
and AV is the potential drop during the discharge process in the
range of Viax and 1/2Vi x>

2.5 Characterization

Thermogravimetric analysis (TGA) was conducted on an STA449
F5 (Netzsch, Germany) with a ramp of 10 K min~" from room
temperature to 800 °C by inletting N, as the carrier gas. The
microstructures of the samples were observed by scanning
electron microscopy (SEM, Hitachi S-4800). The textural prop-
erties of the samples were identified by nitrogen adsorption/
desorption isotherm analysis examined at 77 K on a NOVA-
2200e analyzer (Quantachrome, USA). The defects and graphi-
tization of the samples were analyzed by recording their Raman
spectra (InVia, Renishaw, PLC, UK). The surface functional
groups were analyzed by X-ray photoelectron spectroscopy (XPS)
(ESCALAB 250 XI spectrometer).
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Fig. 1

3. Results and discussion
3.1 Structural and morphological characterization

To confirm the formation of N-doped cotton pulp-derived
carbons, thermogravimetric analysis (TGA) was performed. As
presented in Fig. 1a, the TGA profiles of CCP, CCPN1, and
CCPN2 exhibit a relatively similar tendency of mass loss as the
temperature increases from room temperature to 800 °C with
a rate of 2 °C min~ . Specifically, the remarkable mass loss at
the temperature range of 200 °C to 400 °C can be attributed to
the thermal decomposition of cellulose,**** a component of the
cotton pulp.”* However, in comparison to pure CCP, the slight
differences in the TGA curves of CCPN1 and CCPN2 suggest that
the inflection point of mass loss at 300-400 °C is mainly
ascribed to the further transformation from melamine to C;N,
(Fig. 1a).>> The continuous increase in temperature gives rise to
C;N, decomposition, resulting in the second platform of mass
loss until the temperature reaches 800 °C.>® For further inves-
tigation, DTG curves were plotted to probe the nitrogen doping
behavior. The results in Fig. 1b suggest that, unlike for pure
CCP, the characteristic peak in the vicinity of 330 °C in the DTG
curve of the CCP and melamine mixture indicates the occur-
rence of a cross-linking reaction between melamine and the

Temperature (°C)

(a) Thermogravimetric analysis (TGA) and (b) derivative thermogravimetry (DTG) curves of CCP, CCPN1, and CCPN2.

hydroxyl groups on the surface of CCP (O 1s XPS spectrum in
Fig. S17), which leads to the formation of nitrogen-doped CCP,
as shown in Fig. 3a. Additionally, such a peak indicates that the
mesopore protect CCP by limiting the shrinkage of CCP during
the carbonization process, which agrees with the data of its
textural properties (Table S1+).

The morphology of the mentioned materials was charac-
terized by scanning electron microscopy (SEM). As shown in
Fig. S2,1 pure CCP exhibits a lump structure with a partially
wrinkled surface. As the doping amount of nitrogen increases,
the surface of the CCPN series of carbons becomes rough,
probably resulting from the thermal decomposition of mela-
mine. To further identify the textural properties (specific
surface area and pore size distribution), the nitrogen
adsorption/desorption isotherms are recorded. As shown in
Fig. 2a, all the samples show type IV isotherms as classified by
the TUPAC. Specifically, the hysteresis loop occurs over the
entire investigated pressure range, without presenting steep
nitrogen uptake at low partial pressure (P/P, < 0.1). Therefore,
it is suggested that unique mesopores dominate the main
porous structure.*®?” Additional information from pore size
distribution (PSD) (Fig. 2b) showcases that the central peaks in
the PSD of CCP, CCPN1, and CCPN2 are at 18.66 nm, 18.66 nm,
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Fig. 2 (a) Nitrogen adsorption/desorption isotherms and (b) pore size
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distribution curves of CCP, CCPN1, and CCPN2.
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Fig. 3 Raman spectra of (a) CCP, (b) CCPN1, and (c) CCPN2.

and 18.45 nm, respectively, providing supplementary proof of
the presence of mesopores (size: ~18.5 nm, summarized in
Table S1t) and suggesting the stability of the mesoporous
structure after nitrogen doping, which grants numerous active
sites for ion adsorption and quick ion migration.*® Excitingly,
it is worth noting that the specific surface area (351.8 m* g™ ")
of CCPN1 is much higher than that of CCP (30.6 m> g™ ') and
CCPN2 (252.6 m”> g '), potentially providing plenty of
adsorption sites.

Wavelength (cm-T)

500 2000 2500 3000 3500
Wavelength (cm-)

2000 2500 3000 3500 O 500 1000

To identify the defects or graphitization of carbon-based
materials, Raman spectroscopy is employed by focusing on
two characteristic peaks at ~1350 c¢cm ' (D band) and
~1580 cm™ ' (G band).?* Specifically, a higher area ratio of the D
and G bands (Ip/Ig) indicates more defects and lower graphiti-
zation levels. As shown in Fig. 3, the Ip/I; values of CCP, CCPN1,
and CCPN2 are 0.902, 0.995, and 0.993, respectively, indicating
lower graphitization induced by more defects from melamine
decomposition. However, in porous materials, judgments based
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(a) Survey XPS spectra of CCP, CCPN1, and CCPN2. (b—d) XPS spectra of C 1s, N 1s, and O 1s in CCPNL1, respectively.
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(a) Cyclic voltammograms in 0.1 M NaCl scanned from 1.0 to —1.0 V. (b) The correlation between specific capacitance and current. (c)

GCD curves in 0.1 M NaCl of CCPNL1 at different current densities. (d) Specific capacitance of the investigated carbon-based materials against

cycle number.

on the value of Ip/Ig can offer misleading information on the
graphitization crystal structure as porous channels will impart
the graphitization level of only the bulk counterpart, neglecting
the local graphitic or ordering domains.”” Therefore, it is better
to obtain the graphitic ordering structure for porous carbons by
investigating the narrowness of the G and D bands.*® As clearly
observed in Fig. 3, the value of the D band of CCPN1 is much
wider than that of CCP (165-180 cm '), suggesting a lower level
of graphitization or ordering in CCPN1. Moreover, the higher
ratio of D and G band narrowness serves as complementary
proof to confirm the defect structure in CCPN1. In addition, the
2D’ Raman peak centered at ~2700 cm™ " is highly correlated
with the disorder level of heteroatom-doped graphite. Specifi-
cally, a higher intensity indicates a more disordered structure in
carbon-based materials after doping heteroatoms.*" As seen in
Fig. 3, the intensity of the 2D’ Raman peak is promoted as more
nitrogen is doped into the carbons, indicating a more disor-
dered structure in nitrogen-doped CCP, which is consistent
with the conclusion of the discussion of the D and G bands.
For further investigation on the impact of the surface func-
tional groups of CCP and nitrogen-doped CCP, the survey XPS
spectra and XPS spectra of the C, N, and O elements in CCPN1
are shown in Fig. 4. As controls, the XPS spectra of CCP and
CCPN2 are presented in Fig. S1 and S3-S7.7 According to the

29250 | RSC Adv, 2022, 12, 29246-29252

data from Fig. 4a, it is clearly seen that the intensity of the N
signal is enhanced as the amount of nitrogen doping increases.
Meanwhile, the intensity of the O signal presents a “volcano”
type, indicating that the highest intensity is achieved when the
predetermined weight ratio of CCP and melamine is 1 to 1.
Specifically, the N content increased from 3.18 to 11.68 atom%.
Notably, the N content of pure CCP probably comes from cotton
pulp, consistent with previous observations that multiple non-
carbon inorganic atoms exist in cotton pulp.”” For the O
element, the maximum content is achieved at 10.01 atom% by
decomposing the mixture of CCP and melamine with a 1:1
weight ratio, outperforming the corresponding value of either
pure CCP (6.44 atom% in CCP) or a higher melamine weight
ratio (6.83 atom% in CCPN2) (Table S2%). Furthermore, as
shown in Fig. 4b-d, the main surface functional groups include
pyrrole-N/pyridine-N** and C=O/C-OH, which promote the
local redox environment and ion adsorptive sites, synergistically
boosting the performance of pseudocapacitors and EDLCs,
respectively.

3.2 Electrochemical performance

To evaluate the performance of the electrochemical capacitors,
cyclic voltammetry (CV) and galvanostatic charge-discharge

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(GCD) cycling were utilized. Fig. S8-S10t present the CV curves
of CCP and N-doped CCP obtained at different scan rates with
a potential windows from —1.0 to 1.0 V.*> The quasi-rectangular
shape of the CV curve with visible redox peaks suggests that
capacitive behaviors are still dominated by the EDL, accompa-
nying the contribution of pseudocapacitance. However, as the
scan rate increases, the CV curve presents obvious distortion
(Fig. S8-5107), which is probably due to the limited diffusion
and migration of electrolytes, agreeing with the observation of
Liu et al'” Therefore, to determine the effects of nitrogen
dopant on the capacitance of the carbonized CCP microporous
carbon from the CV curves, we selected a scan rate of 10 mv s~ *
(Fig. 5a). As observed by Chen et al.,' the capacitance mainly
relies on the total voltammetric charge from the integration of
the positive and negative sweeps between Ejgyese and Epighest in
the CV curve, excluding catalyst mass and scan rate, under the
same electrode preparation protocol and test conditions. As
shown in Fig. 5a, the integrated area of the CV curve indicates
that the capacitance of CCP is enhanced significantly by
inducing additional pseudocapacitance via the nitrogen
heteroatom dopant strategy.

Furthermore, this capacitance variation is also confirmed at
different scan rates during the rapid charge-discharge process.
As shown in Fig. 5b, the capacitance of nitrogen-doped CCP was
much higher than that of individual CCP, suggesting the posi-
tive role of redox-induced pseudocapacitance from the nitrogen
dopant. Specifically, the specific capacitance of pure CCP is 300
Fg 'at0.5Ag ', approaching that of most carbon materials, as
reported in the literature (Table S31). Excitingly, nitrogen-doped
CCP exhibits much higher specific capacitance than pure CCP
(Fig. 5b), even surpassing most metal-free materials. Specifi-
cally, the specific capacitances for nitrogen-doped CCP with
1:1 and 1: 2 weight ratios of CCP and melamine are 642 and
598 F g, respectively, at a current density of 0.5 A g~ . Even at
a higher current density, such as 4.0 A g™, a specific capaci-
tance of 250 F g " is obtained. Although a higher specific
capacitance is achieved at a low current density, the time-
consumption impedes its application during the charge-
discharge process. Moreover, as the current density increases,
the interfacial voltage-drop leads to a decrease in the specific
capacitance. For example, the values of the voltage-drop in CCP,
CCPN1, and CCPN2 from 0.5 A g~' to 4 A g " are 0.492 V,
0.223 V, and 0.192 V, respectively, resulting in the reduction in
specific capacitance at the corresponding current density range
(Fig. 5c). Additionally, insufficient mass transport over the
electrode/electrolyte interface at a high current density nega-
tively affects the specific capacitance.?*” Therefore, the long-
term cycling stabilities of CCP and nitrogen-doped CCP have
been evaluated at a moderate current density of 2 A g~ for 5000
cycles. As displayed in Fig. 5d, pure CCP shows extraordinary
stability but only limited specific capacitance. In comparison,
although CCPN1 is less stable, the specific capacitance remains
greater than 150 F g~ after 5000 cycles. However, on further
increasing the nitrogen content, the specific capacitance of
CCPN2 shows great collapse as the cycles increase, and is even
lower than that of CCP after 1000 cycles.
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4. Conclusion

Overall, an improved nitrogen-doped biochar from cotton pulp
for supercapacitor application has been prepared by the
synergistic carbonization of dry cotton pulp and melamine to
combine pore and surface modification with defect engi-
neering. The specific capacitance and stability of the nitrogen-
doped carbons are highly dependent on nitrogen content,
which present a broad size distribution as well as numerous
oxygen-terminated functional groups and carbon defects.
Excitingly, such a unique structure is beneficial to the perfor-
mance of pseudocapacitors and EDLCs, affording 642 F g~ at
0.5 A g ' in a three-electrode system, which surpasses the
performance of the carbon analogues and most metal-based
materials to date. In addition, the specific capacitance of the
nitrogen-doped biochar from wood-derived cellulose is main-
tained at 150 F g ' at a current density of 2 A g~ over 1000
cycles. Based on this performance, the presented biochar can
fully utilize waste renewable biomass to prepare advanced
carbonaceous energy storage materials.
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