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Polysubstituted imidazo[1,2-a]pyridines are well established as
privileged scaffolds which are commonly encountered in many
bioactive natural products and biological molecules that may be
good drug candidates.* Most imidazo[1,2-a]pyridines possess
various biological activities, like antibacterial,®> antiin-
flammatory,® antiviral,* and anticancer.” Some of the imidazo
[1,2-a]pyridine derivatives are commercially available drugs,
including Saripidem,® Alpidem,” Zolpidem,* Zolimidine,” Mir-
oprofen'® and drug candidates GSK812397 (Fig. 1).** Therefore,
the development of novel methods for the synthesis of these
imidazo[1,2-a]pyridines is important in the field of synthetic
organic and pharmaceutical chemistry.

In the past few years, reactions utilizing Cu,* Pd,”* Mn,*
TEMPO-mediated," I, (ref. 16) and a few other catalysts'” have
provided attractive and valuable routes for the construction of
imidazo[1,2-a]pyridines. However, most reactions can only
produce monosubstituted imidazo[1,2-a]pyridines or haloge-
nated intermediates (Scheme 1a)'®* which can undergo one more
steps of coupling reaction leading to polysubstituted products.
Therefore, developing one-pot synthetic reactions will provide
a direct and powerful tool to meet these challenges. To the best
of our knowledge, imidazo[1,2-a]pyridines can be synthesized
from 2-aminopyridines, terminal alkyne and aldehyde in
a three-component coupling reaction, catalyzed by copper, in
one pot (Scheme 1b)." However, aldehydes are unstable and
easily oxidized. They are environmentally unfriendly for
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derivatives in moderate to excellent yields. In particular, the reaction goes a through CuAAC/ring-
cleavage process and forms a highly active intermediate a-acyl-N-sulfonyl ketenimine with base free.

synthesis or complex procedures. Under this background, the
development of multicomponent one-pot synthetic strategies
for the preparation of polysubstituted imidazo[1,2-a]pyridines
still remains highly desirable.

Previous studies reported that the copper-catalyzed multi-
component reactions (MCRs) of sulfonyl azides, terminal
alkynes and other components (CuAAC/ring-cleavage reaction)
has been applied to synthesize numerous oxygen- and nitrogen-
containing heterocyclic compounds.*® However, the reaction
generally carried out under strong base conditions, and limited
the application of some substrates, such as terminal ynones,
which will take a self-condensation under the base conditions.**
Thus, the neutral or weak acidic conditions have developed by
our group and the terminal ynones successfully used in CuAAC/
ring-cleavage reaction to form a highly active intermediate o-
acyl-N-sulfonyl ketenimines.”” Accordingly, an efficient one-pot
and operationally three-component reaction of 2-amino-
pyridines, sulfonyl azides and terminal ynones is reported
(Scheme 1c).

Our initial study began with an examination of the synthesis
of imidazo[1,2-a]pyridine 4a from 2-aminopyridine (1a), ethyl

svSvilesSvEiiey
Cl Cl Me
N/ N/ N/
= oS Me S
o
N-Me o Me,N‘Me

("Pr)oN

(a) Saripidem

N
©4N QN/{_)N @4« CO,H
>—< >—sone - j—@—(
~ N7 [N] OH N ) N Me
N

l\llle (e) GSK812397

(b) Alpidem (c) Zolpidem

(d) Zolimidine (f) Miroprofen

Fig. 1 Some imidazoll,2-alpyridine drugs or drug candidates.
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propiolate (2a) and p-tosyl azide (3a). Initial screenings involved
using Cul as catalyst and no additive with a variety of solvents in
a range of standard solvents. These results revealed that the
desired conversion could be effected in most solvents (Table 1,
entries 1-9), with EtOH delivering product 4a in highest yield
(83%). The other solvents give a comparable yields, such as
DCE, toluene, MeCN and THF, while the DMSO and DMF gave
the 4a lowest yield of 26% and 35%. Thus, the optimal solvent
was determined to be EtOH. Encouraged by this promising
result, variety of catalysts were screened. Among the copper
catalysts used, most Cu-catalysts exhibited the high catalytic
reactivity in this reaction whether it's Cu'-catalysts or Cu™
catalysts (Table 1, entries 10-13). However, Cu(OTf), exhibited
low efficiencies for this reaction, and other catalysts, such as
AgOAc failed to produce the desired product (Table 1, entries 14

Table 1 Optimization of catalytic conditions®

Cat. (10 mol%)

| N solvent, 80 °C, 6 h AN=N
. opt + TNy —————— [T {NHTs

OEt
1a 3a da

Entry Cat. Solvent Yield® (%) 4a
1 Cul CHCl, 74
2 Cul DCE 77
3 Cul Toluene 78
4 Cul MeCN 80
5 Cul THF 62
6 Cul 1,4-Dioxane 44
7 Cul DMSO 26
8 Cul DMF 35
9 Cul EtOH 83
10 CuCl EtOH 75
11 CuBr EtOH 73
12 CuBr, EtOH 70
13 Cu(OAc), EtOH 50
14 Cu(OTf), EtOH 32
15 AgOAc EtOH nd°
16 Cul EtOH 807
17 Cul EtOH 76°

¢ Reaction conditions: 1a (1.0 mmol), cat. (10 mol%) in the solvent (3
mL) was added 2a (1.5 mmol) and 3a (1.5 mmol) stirring at 80 OC for
6 h. ? Isolated yields. “ nd = not detected the target product. ¢ The
reaction temperature was 70 °C. ¢ The temperature was 90 °C.
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Table 2 Substrate scopes®
oo Cul (10 mol%) SO
R! (\/L /L A8 EtOH, 80 °C, 6 h “R?
R2 + 3-S~N _— \/NfN
2 3 4 // OEt
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OEt OEt
o o o By
4c, 86% 4d, 23%
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o g° o ©
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Q0 %9 o2
CF it \/\l CFN /S () P i e Qe s
7/ N N7 et lA N7 NG
\i NG Z>oMe
OEt OEt OEt
o (9)
4- 66% 4j, 58% 4k, 61% 41, 65%

QL 02

NN SO NN S
- N{NH "Pr o N{NH Bu >~NHT5
OEt OEt ~OMe
o o 4

O/ )—NHTs
~0"*Bu

4m, 76% 4n, 66% 40, 80% 4p, 85%

7 AN Me OMe
N ¥NHTs CNV,%NHTs 1
SN 9 NTs NN o NTs D
)
g Me O& CsH1q EkOM” = E‘OMN =
4q,78% 4, 71% 4s, 25% 4t,60%

¢ Unless otherwise noted, the reaction conditions were as follow: 1 (1.0
mmol), Cul (10 mol%) in the MeCN (3 mL) was added 2 (1.5 mmol), 3
(1.5 mmol) stirring at 80 °C for 6 h.

and 15). Lastly, the effect of temperature was evaluated.
Screening results revealed that the reaction temperature above
or below 80 °C decreased the reaction yield (Table 1, entries 16
and 17).

Under the optimized conditions (Table 1, entries 9), the
capacity of this reaction to affect the coupling of a range of
different substrates was investigated. Agreeably, as shown in
Table 2, various 2-aminopyridines, with an alkyl group or
methoxy group, all exhibited good functional group tolerance to
obtain the desired products (4a-4c, 4e). However, the 2-ami-
nopyridines with electron-withdrawing nature can't obtain the
desire products. In addition, due to steric hindrance, some 2-
aminopyridines obtained the products with low yield or cannot
be separated to obtain the desired products. Such as 6-ethyl-2-
aminopyridine (1d) obtained the product 4d with low yield
and  6-methyl-2-aminopyridine  (1f) or  6-methoxy-2-
aminopyridine (1g) obtained the uncyclized products 4s and 4t.

Next, the scope and limitation of the terminal ynone 2 and
sulfonyl azide 3 substrates were tested. It is noteworthy that the
sulfonyl azide substrates showed slight influences on this
reaction. With R® changed by aromatic or aliphatic substitu-
ents, such as -Ph, —(4-CIC¢H,), —(4-CF3C¢H,), —(4-OMeCcH,),
-Me and -n-Bu, the reaction could smoothly give the anticipated
products (4f-4n) in comparable yields. The substrates R>
bearing the -OMe, -O'Bu, -Me and other alkyl group also can
obtain 40-4r in good yields.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Investigation the reaction of 2-aminopyridine (1a), aryl

acetylenes (2f, 2g) and p-tosyl azide (3a).

In order to broaden the suitability of substrates, we also
investigated other terminal alkynes, such as aryl acetylenes. The
experiments revealed that some aryl acetylene such as 3-methyl
phenylacetylene can obtain imidazo[1,2-a]pyridine 4u with low
yield of 26% and an uncyclized linear product 4v (Scheme 2a).
Most aryl acetylenes such as 4-methoxy phenylacetylene only
obtain uncyclized products (Scheme 2b). It shows that the
reactivity of terminal ynones is higher than that of traditional
terminal alkyne.

None of the product imidazo[1,2-a]pyridines 4a-4r have been
reported previously, which were subject to full spectroscopic
characterization (see ESI} for details) and the derived data were
in complete accord with the assigned structures. And 4a was
confirmed by single-crystal X-ray analysis (Fig. 2).

A possible reaction pathway for the formation of imidazo
[1,2-a]pyridine (4a) from precursors 1a, 2a and 3a is shown in
Scheme 3. Thus, in keeping with earlier proposals,’®* the
substrates 2a and 3a are expected to react, in the presence of the
copper(i) catalyst to form the metallated triazole A through the
CuAAC procedure. Then, the complex A undergo a ring-cleavage
rearrangement leading to a highly active intermediate N-
sulfonyl-a-acylketenimine B. This last species B is captured by
1a via nucleophilic addition to generate the intermediate C,
which deliver the observed product 4a by intramolecular
oxidative coupling similar to literature.”® Otherwise, due to the
poor activity, most of the traditional terminal alkynes involved
in the reaction will stop in the intermediate C leading the
uncyclized products.

In summary, we have developed an original approach for the
synthesis of polysubstituted imidazo[1,2-a]pyridines from
a mixture of the corresponding 2-aminopyridines, sulfonyl
azides and terminal ynones, through CuAAC/ring-cleavage

Fig. 2 Single-crystal X-ray analysis of 4a (CCDC 2121234).}

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 Plausible reaction mechanism.

process and generated a highly active intermediate o-acyl-N-
sulfonyl ketenimines. More detailed novel reactions and the
investigation of new applications of this intermediate are now
being undertaken in our laboratory.

Experimental
General

All melting points were determined on a Yanaco melting point
apparatus and were uncorrected. IR spectra were recorded as
KBr pellets on a Nicolet FT-IR 5DX spectrometer. All spectra of
"H NMR (400 MHz) and "*C NMR (100 MHz) were recorded on
a JEOL JNM-ECA 400 spectrometer in DMSO-dg or CDCl;
(otherwise as indicated) with TMS was used as an internal
reference and J values are given in Hz. HRMS were obtained on
a Thermo Scientific Q Exactive Focus Orbitrap LC-MS/MS
spectrometer.

Preparation and characterizations of compounds 4a-4x

Ethyl-2-((4-methylphenyl)sulfonamido)imidazo[1,2-a]pyridine-
3-carboxylate (4a). To a solution of Cul (19.5 mg, 0.10 mmol) in
EtOH (3 mL) was added pyridin-2-amine (1a, 94.2 mg, 1 mmol),
ethyl propiolate (2a, 147 mg, 1.5 mmol), TsN; (295.8 mg, 1.5
mmol). After the mixture was stirred at 80 °C for 6 h (monitored
by TLC), the solvent was removed. The residue was purified via
flash chromatography (silica gel, 25% EtOAc in petroleum
ether) to give of product 4a (298.2 mg, 83%) as a white solid,
m.p. = 155-157 °C (R = 0.3 in 1:3 v/v ethyl acetate/60-90
petroleum ether). *H NMR (400 MHz, CDCl;) 6 8.94 (s, 1H), 8.80
(s, 1H), 8.07 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.8 Hz, 1H), 7.37 (t,J
= 8.0 Hz, 1H), 7.27 (d, J = 7.2 Hz, 2H), 6.95 (t, ] = 6.8 Hz, 1H),
4.48-4.43 (m, 2H), 2.37 (s, 3H), 1.44 (t, J = 7.2, 3H); *C NMR
(100 MHz, CDCI,) 6 160.4, 149.0, 146.0, 144.2, 136.8, 129.4 (2C),
128.5, 128.2 (2C), 127.9, 117.0, 114.1, 100.3, 61.0, 21.6, 14.7; IR
(KBr) v 3257, 2308, 1656, 1550, 1435, 1336, 1220, 1165,
1089 cm ™ '; HRMS (ESI-TOF) (m/z). Caled for C;,H;,N30,S, [M +
H]+ 360.1013, found 360.1006.
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The products 4b-4x were prepared by the similar procedure

Ethyl-8-methyl-2-((4-methylphenyl)sulfonamido)imidazo[1,2-a]
pyridine-3-carboxylate (4b) (242.7 mg, 65%), white solid, m.p. =
151-152 °C (Rf = 0.25 in 1 : 4 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, CDCl;) 6 8.78 (s, 1H), 8.68 (s, 1H),
8.14 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.15 (d, ] =
6.8 Hz, 1H), 6.83 (t,J = 6.8 Hz, 1H), 4.40-4.46 (m, 2H), 2.55 (s,
3H), 2.37 (s, 3H), 1.43 (t, J = 7.0 Hz, 3H); ">*C NMR (100 MHz,
CDCl;) 6 160.6, 148.4, 146.0, 144.2, 136.7, 129.1 (2C), 128.9 (2C),
127.6,126.7, 125.6, 113.9, 100.5, 60.9, 21.7, 16.7, 14.7; IR (KBr) »
2974, 1654, 1544, 1446, 1359, 1236, 1163, 1087, 1056 cm™};
HRMS (ESI) (m/z). Caled for C5H;oN30,S, [M + H]" 374.1169,
found 374.1162.
Ethyl-7-ethyl-2-((4-methylphenyl) sulfonamido) imidazo[1,2-
a] pyridine-3-carboxylate (4¢) (333.0 mg, 86%), yellow solid, m.p.
= 109-111 °C (R = 0.33 in 1 : 3 v/v ethyl acetate/60-90 petro-
leum ether). *H NMR (400 MHz, CDCI,) 6 8.81 (s, 2H), 8.06 (d, J
= 7.6 Hz, 2H), 7.39 (s, 1H), 7.27 (d, J = 7.6 Hz, 2H), 6.80 (d, ] =
6.8 Hz, 1H), 4.46-4.41 (m, 2H), 2.72-2.67 (m, 2H), 2.37 (s, 3H),
1.43 (t, ] = 7.2 Hz, 3H), 1.26 (t, ] = 7.4 Hz, 3H); "*C NMR (100
MHz, CDCl;) 6 160.5, 148.8, 146.5,144.2, 136.8,129.5 (3C), 128.1
(2C), 127.3, 115.7, 114.4, 100.2, 61.0, 28.5, 21.7, 14.7, 14.2; IR
(KBr) v 2970, 1656, 1544, 1436, 1384, 1220, 1165, 1085,
864 cm™"; HRMS (ESI) (m/z). Caled for CioH,;N;0,S, [M + H]'
388.1326, found 388.1326.
Ethyl-5-ethyl-2-((4-methylphenyl)sulfonamido)imidazo[1,2-
alpyridine-3-carboxylate (4d) (89.5 mg, 23%), yellow solid, m.p.
= 105-107 °C (R = 0.25 in 1 : 4 v/v ethyl acetate/60-90 petro-
leum ether). "H NMR (400 MHz, CDCl;) 6 8.84 (s, 1H), 8.05 (d, J
= 8.0 Hz, 2H), 7.49 (d, J = 8.8 Hz, 1H), 7.38 (t,/ = 7.8 Hz, 1H),
7.27 (d, J = 7.2 Hz, 2H), 6.80 (d, J = 6.8 Hz, 1H), 4.43-4.38 (m,
2H), 3.13-3.07 (m, 2H), 2.37 (s, 3H), 1.43 (t, ] = 6.8 Hz, 3H), 1.20
(t,J = 7.2 Hz, 3H); *C NMR (100 MHz, CDCl;) 6 159.7, 150.1,
148.3, 145.3, 144.1, 136.8, 129.5, 129.4 (2C), 128.3 (2C), 114.6,
113.5, 101.9, 61.3, 27.4, 21.7, 14.7, 11.3; IR (KBr) » 3263, 2978,
1597, 1519, 1440, 1327, 1159, 1089, 812, 663 cm ™ '; HRMS (ESI)
(m/z). Caled for CyoH,;N3;0,S, [M + H]" 388.1326, found
388.1317.
Ethyl-8-methoxy-2-((4-methylphenyl)sulfonamido)imidazo
[1,2-a]pyridine-3-carboxylate (4e) (202.4 mg, 52%), white solid,
m.p. = 162-164 °C (R = 0.25 in 1: 3 v/v ethyl acetate/60-90
petroleum ether). "H NMR (400 MHz, CDCl;) 6 8.69 (s, 1H), 8.57
(d,J = 6.4 Hz, 1H), 8.11 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.4 Hz,
2H), 6.83 (t,J = 7.4 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 4.46-4.41
(m, 2H), 3.99 (s, 3H), 2.37 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H); °C
NMR (100 MHz, CDCl,) 6 160.6, 148.3, 148.0, 144.2, 139.9, 137.0,
129.4 (2C), 128.6 (2C), 120.6, 114.1, 106.5, 101.4, 61.1, 56.5, 21.8,
14.7; IR (KBr) v 2983, 1656, 1544, 1452, 1267, 1159, 1089, 1012,
665 cm ™ '; HRMS (ESI) (m/z). Caled for C,5H;oN;05S, [M + HJ'
390.1118, found 390.1112.
Ethyl-2-(phenylsulfonamido)imidazo[1,2-a]pyridine-3-
carboxylate (4f) (303.8 mg, 88%), white solid, m.p. = 116-118 °C
(R¢ = 0.25 in 1 : 3 v/v ethyl acetate/60-90 petroleum ether). "H
NMR (400 MHz, CDCl,) 6 8.93 (s, 2H), 8.19 (d, J = 7.6 Hz, 2H),
7.59 (d,J = 8.8 Hz, 1H), 7.54 (t,] = 7.2 Hz, 1H), 7.47 (t,] = 7.4 Hz,
2H), 7.37 (t,] = 8.0 Hz, 1H), 6.95 (t, ] = 6.8 Hz, 1H), 4.48-4.42 (m,
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2H), 1.44 (t,J = 7.0 Hz, 3H); *C NMR (100 MHz, CDCl;) 6 160.5,
149.0, 145.9, 139.7, 133.3, 128.8 (2C), 128.6, 128.2 (2C), 127.9,
117.0, 114.1, 100.3, 61.0, 14.7; IR (KBr) » 3273, 2983, 1660, 1546,
1440, 1332, 1220, 1166, 1087 cm™ *; HRMS (ESI) (m/z). Caled for
C16H15N;0,8, [M + H]' 346.0856, found 346.0851.
Ethyl-2-((4-chlorophenyl)sulfonamido)imidazo[1,2-a]
pyridine-3-carboxylate (4g) (292.4 mg, 77%), white solid, m.p. =
141-143 °C (Rf = 0.3 in 1 : 3 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, CDCl;) 6 8.94 (s, 2H), 8.15 (d, J =
8.0 Hz, 2H), 7.60 (d,J = 9.2 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.40
(t,J = 8.0 Hz, 1H), 6.97 (t,] = 6.6 Hz, 1H), 4.49-4.44 (m, 2H), 1.45
(t, /] = 6.8 Hz, 3H); *C NMR (100 MHz, CDCl;) 6 160.5, 148.8,
145.9, 139.8, 138.2, 129.8 (2C), 129.1 (2C), 128.7, 127.9, 117.0,
114.3,100.4, 61.1, 14.7; IR (KBr) » 3273, 2981, 1660, 1546, 1438,
1334, 1219, 1166, 1082 cm™*; HRMS (ESI) (m/z). Calcd for Cy6-
H,,CIN;0,S, [M + H]" 380.0467, found 380.0460.
Ethyl-2-((4-bromophenyl)sulfonamido)imidazo[1,2-a]
pyridine-3-carboxylate (4h) (318.2 mg, 75%), white solid, m.p. =
135-137 °C (R¢ = 0.3 in 1 : 4 v/v ethyl acetate/60-90 petroleum
ether). '"H NMR (400 MHz, CDCl;) 8.94 (s, 2H), 8.07 (d, J =
8.0 Hz, 2H), 7.61 (t,J = 8.2 Hz, 3H), 7.40 (t,J = 7.8 Hz, 1H), 6.98
(t,] = 6.6 Hz, 1H), 4.49-4.44 (m, 2H), 1.45 (t,] = 6.8 Hz, 3H); *C
NMR (100 MHz, CDCl;) 6 160.5, 148.6, 143.9, 138.8, 132.1 (2C),
129.9 (2C), 128.7, 128.4, 127.9, 117.0, 114.3, 100.4, 61.2, 14.7; IR
(KBr) » 2964, 1658, 1546, 1438, 1330, 1217, 1147, 1085, 873,
759 cm™'; HRMS (ESI) (m/z). Caled for C;¢H4BrN;0,S, [M-H]~
421.9815, found 421.9816.
Ethyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)imidazo
[1,2-a]pyridine-3-carboxylate (4i) (272.8 mg, 66%), yellow solid,
m.p. = 160-162 °C (Rf = 0.25 in 1: 3 v/v ethyl acetate/60-90
petroleum ether). "H NMR (400 MHz, CDCl3) 6 8.94 (d, J =
6.4 Hz, 1H), 8.34 (d, ] = 8.0 Hz, 2H), 7.75 (d, ] = 8.0 Hz, 2H), 7.61
(d, J = 8.8 Hz, 1H), 7.42 (t, ] = 7.8 Hz, 1H), 7.00 (t, ] = 6.6 Hz,
1H), 4.50-4.45 (m, 2H), 1.46 (t, ] = 7.0 Hz, 3H) (N-H signals
obscured); "*C NMR (100 MHz, CDCl;) ¢ 160.5, 148.5, 145.8,
143.2, 135.0 (q, J = 32.8 Hz, 1C), 129.0, 128.8 (2C), 128.0, 126.0
(q,J = 3.8 Hz, 2C), 121.9 (q,/ = 271.3 Hz,1C), 117.0, 114.5, 100.6,
61.3, 14.7; IR (KBr) v 3273, 2985, 1664, 1546, 1438, 1321, 1166,
1128, 1087, 1060 cm™'; HRMS (ESI) (m/z). Caled for
C17H,F3N;0,8, [M + H]" 414.0730, found 414.0730.
Ethyl-2-((4-methoxyphenyl)sulfonamido)imidazo[1,2-a]
pyridine-3-carboxylate (4j) (217.6 mg, 58%), yellow solid, m.p. =
135-137 °C (Rf = 0.3 in 1 : 2 v/v ethyl acetate/60-90 petroleum
ether). '"H NMR (400 MHz, CDCl;) § 8.95 (s, 1H), 8.79 (s, 1H),
8.12 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.8 Hz, 1H), 7.37 (t, ] =
8.0 Hz, 1H), 6.97-6.92 (m, 3H), 4.48-4.43 (m, 2H), 3.82 (s, 3H),
1.44 (t, J = 7.0 Hz, 3H); *C NMR (100 MHz, CDCl;) 6 163.4,
160.5, 149.0, 146.0, 131.3, 130.5 (2C), 128.5, 127.9, 117.0, 114.1,
113.9 (2C), 100.3, 61.0, 55.6, 14.7; IR (KBr) v 3363, 1685, 1546,
1442,1325,1219, 1159, 1085, 773 cm™ *; HRMS (ESI) (m/z). Caled
for C,,H,,N;05S, [M + H]' 376.0962, found 376.0956.
Ethyl-2-(methylsulfonamido)imidazo[1,2-a]pyridine-3-
carboxylate (4k) (172.8 mg, 61%), yellow solid, m.p. = 145-
147 °C (R = 0.22 in 1:2 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, CDCl;) 6 9.05 (s, 1H), 8.49 (s, 1H),
7.64 (d,J = 8.8 Hz, 1H), 7.44 (t,] = 8.0 Hz, 1H), 7.02 (t,/ = 7.0 Hz,
1H), 4.50-4.45 (m, 2H), 3.51 (s, 3H), 1.46 (t, ] = 7.0 Hz, 3H); **C

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra02722d

Open Access Article. Published on 14 July 2022. Downloaded on 1/17/2026 6:29:14 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

NMR (100 MHz, CDCl;) 6 160.3, 149.1, 146.0, 128.9, 128.0, 116.8,
114.3,100.3, 61.1, 42.1, 14.7; IR (KBr) » 3294, 2983, 1662, 1546,
1438, 1328, 1219, 1153, 1085, 758 cm ™~ *; HRMS (ESI) (m/z). Caled
for C;,H,3N;0,S, [M + H]" 284.0700, found 284.0693.

Ethyl-2-(ethylsulfonamido)imidazo[1,2-a]pyridine-3-
carboxylate (41) (193.2 mg, 65%), brown solid, m.p. = 114-
116 °C (R = 0.20 in 1:4 v/v ethyl acetate/60-90 petroleum
ether). *"H NMR (400 MHz, CDCl,) 6 9.05 (s, 1H), 8.37 (s, 1H),
7.64 (d,J = 8.8 Hz, 1H), 7.43 (t,/ = 7.8 Hz, 1H), 7.02 (t, ] = 6.8 Hz,
1H), 4.51-4.46 (m, 2H), 3.75-3.69 (m, 2H), 1.47-1.43 (m, 6H);
3C NMR (100 MHz, CDCl;) 6 160.4, 149.3, 146.0, 128.8, 128.0,
116.8, 114.3, 100.3, 61.1, 48.2, 14.7, 8.2; IR (KBr) » 3363, 1685,
1546, 1440, 1325, 1219, 1157, 1085, 773 cm ™~ *; HRMS (ESI) (m/2).
Caled for C1,H;5N30,S, [M + H]" 298.0856, found 298.0850.

Ethyl-2-(propylsulfonamido)imidazo[1,2-a]pyridine-3-
carboxylate (4m) (236.5 mg, 76%), white solid, m.p. = 129-
130 °C (R = 0.30 in 1:4 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, CDCI;) 6 9.04 (s, 1H), 8.40 (s, 1H),
7.63 (d,J = 8.8 Hz, 1H), 7.43 (t,] = 8.0 Hz, 1H), 7.01 (t,/ = 6.8 Hz,
1H), 4.50-4.44 (m, 2H), 3.66 (t, ] = 7.8 Hz, 2H),1.99-1.90 (m,
2H), 1.45 (t, J = 7.2 Hz, 3H), 1.07 (t, ] = 7.4 Hz, 3H); ">*C NMR
(100 MHz, CDCl;) 6 160.3, 149.2, 146.0, 128.8, 128.0, 116.8,
114.2, 100.2, 61.1, 55.4, 17.2, 14.2, 12.9; IR (KBr) » 3363, 1685,
1544, 1440, 1365, 1325, 1274, 1219, 1157, 1085 cm ™ '; HRMS
(ESI) (m/z). Caled for Cy3H;,N30,S, [M + H|" 312.1013, found
312.1006.

Ethyl-2-((2-methylpropyl)sulfonamido)imidazo[1,2-a]
pyridine-3-carboxylate (4n) (214.6 mg, 66%), white solid, m.p. =
114-116 °C (R = 0.30 in 1 : 2 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, DMSO-d) 6 9.30 (s, 1H), 9.10 (d, J =
6.8 Hz, 1H), 7.71 (d, ] = 9.2 Hz, 1H), 7.59 (t, ] = 8.0 Hz, 1H), 7.22
(t, /] = 6.8 Hz, 1H), 4.41-4.36 (m, 2H), 3.57 (d, J = 6.4 Hz, 2H),
2.29-2.19 (m, 1H), 1.36 (t, J = 6.8 Hz, 3H), 1.05 (d, ] = 6.8 Hz,
6H); '*C NMR (100 MHz, DMSO-d) 6 159.8, 147.8, 144.8, 129.3,
127.8, 116.2, 114.7, 101.0, 60.6, 60.4, 24.2, 22.1 (2C), 14.3; IR
(KBr) » 2964, 1658, 1546, 1438, 1330, 1217, 1147, 1085 cm
HRMS (ESI) (m/z). Caled for Cy4H;oN;0,S, [M + H]" 326.1169,
found 326.1163.

Methyl-2-((4-methylphenyl)sulfonamido)imidazo[1,2-a]
pyridine-3-carboxylate (40) (276.2 mg, 80%), white solid, m.p. =
144-146 °C (Rf = 0.30 in 1 : 5 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, CDCI;) § 8.90 (s, 1H), 8.69 (s, 1H),
8.03 (d, J = 7.6 Hz, 2H), 7.54 (d, J = 8.8 Hz, 1H), 7.33 (t, ] =
8.0 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H), 6.90 (t, ] = 7.0 Hz, 1H), 3.93
(s, 3H), 2.32 (s, 3H); >C NMR (100 MHz, CDCl;) é 160.7, 149.0,
146.0, 144.2, 136.8, 129.4 (2C), 128.6, 128.3 (2C), 127.9, 117.0,
114.1, 100.2, 51.8, 21.6; IR (KBr) » 3282, 2954, 1691, 1664, 1544,
1450, 1332, 1222, 1163, 1085 cm ™ '; HRMS (ESI) (m/z). Caled for
C16H15N30,S, [M + H]' 346.0856, found 346.0850.

Tert-butyl  2-((4-methylphenyl)sulfonamido)imidazo[1,2-a]
pyridine-3-carboxylate (4p) (329.3 mg, 85%), white solid, m.p.
= 145-147 °C (Ry = 0.25 in 1: 6 v/v ethyl acetate/60-90 petro-
leum ether). "H NMR (400 MHz, CDCI;) 6 8.87 (s, 2H), 8.01 (d, J
= 8.0 Hz, 2H), 7.54 (d, J = 9.2 Hz, 1H), 7.30 (t, ] = 8.0 Hz, 1H),
7.22 (d,J = 8.4 Hz, 2H), 6.88 (t,/ = 6.8 Hz, 1H), 2.32 (s, 3H), 1.60
(s, 9H); *C NMR (100 MHz, CDCl;) 6 160.1, 148.7, 145.7, 144.1,
137.0, 129.8, 129.5 (2C), 128.2 (2C), 127.7, 117.0, 113.9, 101.2,
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83.4, 28.7 (3C), 21.7; IR (KBr) v 2978, 1658, 1544, 1438, 1334,
1263, 1165, 1085 cm™'; HRMS (ESI) (m/z). Caled for
C1oH,;N;0,S, [M + H]" 388.1326, found 388.1317.
N-(3-acetylimidazo[1,2-a]pyridin-2-yl)-4-methylbenzene
sulfonamide (4q) (256.8 mg, 78%), yellow solid, m.p. = 176-
178 °C (R = 0.25 in 1:1 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, CDCl;) 6 9.36 (d, J = 7.2 Hz, 1H), 7.91
(d,J = 7.6 Hz, 2H), 7.86 (t, ] = 7.8 Hz, 1H), 7.70 (d, J = 8.8 Hz,
1H), 7.41 (s, 1H), 7.27 (d, J = 7.6 Hz, 3H), 2.54 (s, 3H), 2.39 (s,
3H); "*C NMR (100 MHz, CDCl;) § 165.5, 152.0, 149.5, 142.5,
140.0, 137.0, 129.3 (2C), 128.5, 126.6 (2C), 126.4, 117.3, 103.2,
25.1, 21.5; IR (KBr) » 3051, 1598, 1552, 1513, 1261, 1139, 1080,
827 cm™'; HRMS (ESI) (m/z). Caled for C;¢H;5N303S, [M + HJ'
330.0907, found 330.0902.
N-(3-Hexanoylimidazo[1,2-a]pyridin-2-yl)-4-methylbenzene
sulfonamide (4r) (273.6 mg, 71%), brown solid, m.p. = 112-
114 °C (Rf = 0.25 in 1:1 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, CDCl3) 6 9.39 (d, ] = 7.2 Hz, 1H), 7.91
(d,J = 7.6 Hz, 2H), 7.84 (t, ] = 7.8 Hz, 1H), 7.72 (d, ] = 8.8 Hz,
1H), 7.39 (s, 1H), 7.27 (d, ] = 7.2 Hz, 3H), 2.74 (t,] = 7.6 Hz, 2H),
2.39 (s, 3H), 1.76-1.67 (m, 2H), 1.32 (s, 4H), 0.89 (t, ] = 6.2 Hz,
3H); "*C NMR (100 MHz, CDCl;) 6 169.4, 152.2, 149.6, 142.5,
140.0, 136.8, 129.3 (2C), 128.6, 126.7 (2C), 126.6, 117.2, 102.7,
38.7, 31.5, 28.4, 22.5, 21.6, 14.0; IR (KBr) » 3118, 2926, 1598,
1550, 1415, 1280, 1139, 1080 cm™ *; HRMS (ESI) (m/z). Calcd for
C20H,3N;0,8, [M + H]' 386.1533, found 386.1525.
Ethyl-3-((6-methylpyridin-2-yl)Jamino)-3-(tosylimino)
propanoate (4s) (93.9 mg, 25%), yellow solid, m.p. = 149-151 °C
(Re = 0.25 in 1 : 4 v/v ethyl acetate/60-90 petroleum ether). 'H
NMR (400 MHz, DMSO-d,) 6 10.94 (s, 1H), 7.85 (d, J = 8.0 Hz,
1H), 7.73-7.68 (m, 3H), 7.37 (d, J = 7.6 Hz, 2H), 7.06 (d, J =
7.2 Hz, 1H), 4.11-4.06 (m, 2H), 4.02 (s, 2H), 2.41 (s, 3H), 2.36 (s,
3H), 1.17 (t, ] = 6.8 Hz, 3H); *C NMR (100 MHz, DMSO-d)
6166.8, 158.3, 156.9, 150.0, 142.4, 139.9, 138.6, 129.4 (3C), 125.9
(2C), 120.2, 112.3, 60.9, 23.4, 20.9, 13.9; IR (KBr) v 3286, 2983,
1737, 1597, 1541, 1452, 1280, 1145, 1087 cm™*; HRMS (ESI) (m/
z). Caled for C;5H,,N30,4S, [M + H]" 376.1326, found 376.1319.
Ethyl-3-((6-methoxypyridin-2-ylJamino)-3-(tosylimino)
propanoate (4t) (234.6 mg, 60%), white solid, m.p. = 123-125°C
(Re = 0.25 in 1 : 4 v/v ethyl acetate/60-90 petroleum ether). 'H
NMR (400 MHz, DMSO-dg) 6 10.74 (s, 1H), 7.71 (t, J = 9.2 Hz,
3H), 7.63 (d,J = 6.8 Hz, 1H), 7.37 (d,J = 7.6 Hz, 2H), 6.61 (d, ] =
7.6 Hz, 1H), 4.12-4.05 (m, 4H), 3.83 (s, 3H), 2.37 (s, 3H), 1.18 (t,J
= 6.0 Hz, 3H); *C NMR (100 MHz, DMSO-d¢) 6 166.9, 162.3,
158.3, 148.4, 142.5, 141.1, 139.8, 129.4 (3C), 126.0 (2C), 107.5,
106.9, 60.9, 53.2, 20.9, 13.9; IR (KBr) » 3288, 2983, 1739, 1597,
1543, 1463, 1423, 1145, 1089, 1024 cm™; HRMS (ESI) (m/z).
Calcd for C;5H,;N;05S, [M + H]" 392.1275, found 392.1268.
4-Methyl-N-(3-(m-tolyl)imidazo[1,2-a]pyridin-2-yl)benzene
sulfonamide (4u) (98.0 mg, 26%), brown solid, m.p. = 192-
194 °C (R = 0.25 in 1:2 v/v ethyl acetate/60-90 petroleum
ether). "H NMR (400 MHz, DMSO-d,) 6 8.74 (s, 1H), 8.09-8.03
(m, 2H), 7.66 (d, J = 7.2 Hz, 2H), 7.37 (d, ] = 8.8 Hz, 1H), 7.26-
7.25 (m, 3H), 7.21 (d,J = 7.2 Hz, 1H), 7.02 (t, ] = 6.4 Hz, 1H), 6.98
(d,J = 7.2 Hz, 1H),6.90 (s, 1H), 2.34 (s, 3H), 2.24 (s, 3H); °C
NMR (100 MHz, DMSO-d¢) 6 178.0, 162.5, 146.5, 141.4, 140.1,
138.0,137.5, 135.4, 130.1, 128.62, 128.60 (2C), 126.9 (2C), 125.3,
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122.1, 116.1, 115.7, 95.9, 21.0, 20.9; IR (KBr) » 3057, 1747, 1566,
1467, 1336, 1278, 1145, 1082 cm™ ; HRMS (ESI) (m/z). Caled for
C,1H,6N;0,8, [M + H]" 378.1271, found 378.1267.

N-(Pyridin-2-yl)-2-(m-tolyl)-N'-tosylacetimidamide (av)
(141.2 mg, 37%), yellow solid, m.p. = 103-105 °C (Rf = 0.3 in
1:4 v/v ethyl acetate/60-90 petroleum ether). 'H NMR (400
MHz, CDCl;) 6 8.15 (s, 2H), 7.90 (d, J = 7.6 Hz, 2H), 7.59 (t, ] =
7.6 Hz, 2H), 7.32-7.26 (m, 3H), 7.15-6.99 (m, 4H), 4.42 (s, 2H),
2.43 (s, 3H), 2.32 (s, 3H); *C NMR (100 MHz, CDCl;) 6 163.8,
150.2,147.9, 142.9, 140.0, 139.5, 138.4, 132.5, 130.8, 129.6, 129.5
(2C), 129.3, 127.1, 126.6 (2C), 120.8, 115.4, 40.5, 21.6, 21.4; IR
(KBr) » 3358, 3278, 1597, 1566, 1527, 1435, 1280, 1143,
1085 cm™'; HRMS (ESI) (m/z). Caled for C,;H,;N30,S, [M + HJ*
380.1427, found 380.1421.

2-(4-Methoxyphenyl)-N-(pyridin-2-yl)-N'-tosylacetimidamide
(4x) (130.5 mg, 33%), yellow solid, m.p. = 137-139 °C (R = 0.3
in 1:2 v/v ethyl acetate/60-90 petroleum ether). '"H NMR (400
MHz, CDCl,) 6 8.17 (s, 1H), 8.11 (s, 1H), 7.90 (d, J = 7.6 Hz, 2H),
7.60 (t,J = 8.0 Hz, 1H), 7.50 (s, 1H), 7.32 (d,J = 7.6 Hz, 2H), 7.24
(t,J = 7.0 Hz, 2H),7.01 (t, ] = 5.8 Hz, 1H), 6.94 (d, ] = 6.8 Hz,
2H),4.42 (s, 2H), 3.81 (s, 3H), 2.44 (s, 3H); *C NMR (100 MHz,
CDCl3) 6 164.2, 159.7, 150.2, 148.0, 142.9, 140.0, 138.4, 131.5,
129.5 (3C), 126.6 (3C), 124.2, 120.9, 115.3, 115.2, 55.4, 39.9, 21.6;
IR (KBr) » 3358, 2837, 1597, 1512, 1433, 1247, 1143, 1085 cm ™ ';
HRMS (ESI) (m/z). Caled for Cy;H,1N305S, [M + H]" 396.1377,
found 396.1369.

All NMR spectra please see ESI Section 3.7
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