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of natural products against 5-
enolpyruvylshikimate-3-phosphate synthase using
the Anagreen herbicide-like natural compound
library†

Maycon Vinicius Damasceno de Oliveira, a Gilson Mateus Bittencourt
Fernandes, a Kauê S. da Costa, *b Serhii Vakal *c and Anderson H. Lima *a

The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes a reaction

involved in the production of amino acids essential for plant growth and survival. EPSPS is the main target of

glyphosate, a broad-spectrum herbicide that acts as a competitive inhibitor concerning

phosphoenolpyruvate (PEP), which is the natural substrate of EPSPS. In the present study, we introduce

a natural compound library, named Anagreen, which is a compendium of herbicide-like compounds

obtained from different natural product databases. Herein, we combined the structure- and ligand-

based virtual screening strategies to explore Anagreen against EPSPS using the structure of glyphosate

complexed with a T102I/P106S mutant of EPSPS from Eleusine indica (EiEPSPS) as a starting point. First,

ligand-based pharmacophore screening was performed to select compounds with a similar

pharmacophore to glyphosate. Then, structure-based pharmacophore modeling was applied to build

a model which represents the molecular features of glyphosate. Then, consensus docking was

performed to rank the best poses of the natural compounds against the PEP binding site, and then

molecular dynamics simulations were performed to analyze the stability of EPSPS complexed with the

selected ligands. Finally, we have investigated the binding affinity of the complexes using free energy

calculations. The selected hit compound, namely AG332841, showed a stable conformation and binding

affinity to the EPSPS structure and showed no structural similarity to the already known weed EPSPS

inhibitors. Our computational study aims to clarify the inhibition of the mutant EiEPSPS, which is resistant

to glyphosate, and identify new potential herbicides from natural products.
Introduction

Glyphosate (N-(phosphonomethyl)glycine) is the most relevant
and widely used broad-spectrum organophosphate herbicide in
agriculture, owing to its low cost and high efficiency.1,2 Glyph-
osate inhibits 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS), a transferase family enzyme that converts phospho-
enolpyruvate (PEP) and shikimate-3-phosphate (S3P) to 5-
enolpyruvylshikimate-3-phosphate (EPSP) in the penultimate
step of the shikimate pathway leading to the biosynthesis of
aromatic amino acids.3–5 Glyphosate acts as a competitive
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mation (ESI) available. See

847
inhibitor of PEP, mimicking an intermediate state of the
EPSPS–substrate complex, thus inhibiting enzyme catalysis.6

The application of glyphosate for a wide range of industrial
crops has led to the emergence of new resistant weeds world-
wide.7 According to the International Survey of Herbicide
Resistant Weeds website,8 51 weed species have acquired
resistance to EPSPS-targeting herbicides, and in most cases, the
resistance is caused by 2 to 5 molecular mechanisms at the
same time. Different EPSPS mutations have been reported to
confer a target-site resistance to glyphosate in weeds,9–16

including the double substitution Pro106Leu and Thr102Ile
observed in several weed species.17–21

Eleusine indica (E. indica) is a highly invasive diploid grass
(also known as goosegrass or yard-grass) originating from Asia
that has adapted to a wide range of climate conditions, and
currently, it is a common weed in tropical, subtropical, and
temperate regions of the world that has evolved resistance to
multiple herbicides.22 Glyphosate is known to be one of the
main herbicides for E. indica control.23 The rst single resis-
tance mutation P106S was identied in E. indica EPSPS
© 2022 The Author(s). Published by the Royal Society of Chemistry
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(EiEPSPS) two decades ago by Baerson et al.24 The double
mutation T102I + P106S was rst characterized also in E. ind-
ica.18 It confers a higher level of glyphosate resistance than
single mutations at position 106 (such as P106L, P106T, P106A,
and T102I). Thus, there is an urgent need for new herbicide
discoveries to overcome the glyphosate resistance in E. indica.

Computational methods have been widely applied to
perform virtual screening of bioactive compounds against
specic molecular targets.25–27 Up to date, there are dozens of
reports about the successful application of molecular docking,
pharmacophore modeling, QSAR modeling in drug and pesti-
cide discovery.28–32 However, studies reporting the discovery of
novel compounds with herbicidal activity by rational in silico
modeling are rather scarce.

Considering that natural products act as an interesting
resource of novel bioactive compounds with industrial appli-
cations,33–35 we constructed currently the largest library of
herbicide-like small organic compounds named Anagreen
Herbicide-Like (AHL) comprising more than 62 thousand
unique compounds of natural origin. In this work, we present
a hierarchical ligand- and structure-based virtual screening
approach following an in-depth validation to identify novel E.
indica EPSPS-targeting compounds based on a herbicide-like
compound library AHL. This study explores the molecular
chemo-structural diversity of natural products and their
potential bioactivity against the native (EiEPSPSwt) and T102I/
P106S mutant (EiEPSPSmut) of EPSPS structures obtained from
Eleusine indica.
Results and discussion
Anagreen herbicide-like natural products library

A set of predened lters suggested by Avram et al.28 have been
applied to the initially constructed core dataset (395 742
compounds), which allowed us to construct a targeted library,
entitled Anagreen herbicide-like, comprising 62 706 nature-
derived compounds. To the best of our knowledge, it is the
largest natural product-based library aimed at discovering new
compounds with herbicide-like properties available currently.

Using Canvas,36 we performed a cheminformatics analysis of
the prepared dataset. The median molecular weight of the
dataset (SD) is 337.5 � 62.5 Da, while the median Alog P is 3.19
� 1.25 units. The number of H-bond acceptors varies from 2 to 7
(the most typical value is 4), whereas the number of H-bond
donors – from 0 to 2 (the mode is 1). The total count of rotat-
able bonds in the dataset varies between 1 and 11 (the mode is
5), chiral centers – from 0 to 11 (the most typical value is 0),
rings – from 0 to 3 (the mode is 3). The median polar surface
area is 69.64 � 27.80 �A2.
Validation of the screening protocols

First, two validation datasets were generated using the same
input – known actives against EPSPS using a total of 25
compounds (ESI Table S1†). Since there are Ki values only for
compounds targeting E. coli K12 EPSPS, they were selected as
positive controls in validation screening. The datasets were
© 2022 The Author(s). Published by the Royal Society of Chemistry
prepared using different decoy-generating tools, namely DUD-E
(Directory of Useful Decoys, Enhanced)37 and RADER (RApid
DEcoy Retriever),38 and had a 1 : 60 vs. 1 : 35 ratio of actives to
decoys, respectively. Since two different chemical classes of
compounds, the phosphonomethylglycines (e.g., glyphosate)
and phosphonooxycyclohexenes, are known to inhibit EPSPS in
vitro and in vivo (based on the compounds available in
ChEMBL39), we explored not only glyphosate/glyphosate-bound
complexes (PDB IDs: 3FJZ, 2QFU, 2GGA, 2AAY, 1G6S, 3NVS,
3SLH, 1RF6) but also an intermediate state-like inhibitor (ISLI)/
ISLI-bound complexes (PDB IDs: 2PQC, 2PQD).

First, we tested the screening power of glyphosate-based
pharmacophore modeling protocols. The pharmacophore
models constructed from the glyphosate–EPSPS interactions
(PDB IDs: 3FJZ) or overlayed multiple (PDB IDs: 3FJZ, 2QFU,
2GGA, 2AAY, 1G6S, 3NVS, 3SLH, and 1RF6) active conforma-
tions of glyphosate contained three pharmacophore features –

two negative ionic groups and one H-bond donor or a positive
ionic group (Fig. S1, panels (A) and (B)†). Both of these models
showed satisfactory screening power with high enrichment
factor (EF) values and efficient early recognition for top-0.5%
compounds, especially in the case of RADER-generated valida-
tion set, but moderate performance for top-1% and top-2%
compounds (Table 1, Fig. S2, panels (A)–(D)†). However, the
interaction-based model had higher ROC AUC (area under the
receiver operating characteristic curve) values and, thus, was
selected as the rst lter for the initial screening of the Ana-
green herbicide-like dataset.

Then, we evaluated the ISLI-based pharmacophore modeling
protocols. The pharmacophore hypotheses built from the ISLI–
EPSPS interactions (PDB IDs: 2PQC) or overlayed multiple (PDB
IDs: 2PQC, 2PQD) active conformations of ISLI (named [3R-
[3A,4A,5B(R*)]]-5-(1-carboxy-1-phosphonoethoxy)-4-hydroxy-3-
(phosphonooxy)-1-cyclohexene-1-carboxylic acid) contained
a different number of pharmacophore features, i.e., the
interaction-based model comprised ve features (three negative
ionic groups, one H-bond acceptor and one H-bond donor),
while the active conformations-based – only three (one negative
ionic group and two H-bond acceptors) (Fig. S1, panels (C) and
(D)†). Both models showed excellent screening power (Table 1,
Fig. S2, panels (E)–(H)†) for top-0.5% and top-1% of the list,
mainly when the RADER-generated dataset was used as a target.
In the case of the top-2% of the results, the enrichment factor
(EF) and Boltzmann-enhanced discrimination of ROC (BED-
ROC) values were moderate. Since the early recognition capa-
bility and enrichment values in the active conformations-based
model were much better, it was selected as the second lter for
the initial screening step.
Pharmacophore-based screening of Anagreen herbicide-like
library

Two separate pharmacophore-based screening runs were per-
formed to lter the Anagreen herbicide-like dataset and main-
tain only the pharmacophore-compliant compounds. Firstly, we
screened the target library using glyphosate–EPSPS
interactions-based pharmacophore (GEIB-Ph), comprising two
RSC Adv., 2022, 12, 18834–18847 | 18835
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Table 1 Results of the pharmacophore modeling protocols validation

Validation dataset

Enrichment metric

ROC AUC EF0.5%
a EF1% EF2%

BEDROC (a
¼ 321.9)

BEDROC (a
¼ 161.9)

BEDROC (a
¼ 80.4)

Glyphosate interaction-based model
DUD-E 0.839 20.2 9.3 3.9 0.399 0.245 0.181
RADER 0.843 27.2 13.6 3.7 0.719 0.475 0.305

Glyphosate active conformations-based model
DUD-E 0.799 20.2 9.3 5.9 0.407 0.265 0.198
RADER 0.726 27.2 13.6 4.9 0.722 0.496 0.340

ISLI interaction-based model
DUD-E 0.828 42.6 28.0 16.3 0.668 0.527 0.465
RADER 0.879 15.7 9.1 12.1 0.579 0.410 0.379

ISLI active conformations-based model
DUD-E 0.620 51.2 32.7 16.3 0.833 0.631 0.486
RADER 0.793 31.4 36.2 19.3 0.966 0.825 0.640

a Due to the small sample size, EF0.5% should be treated with caution.
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negative ionic points and one H-bond donor. Top-0.5% of the
hit-list (314 compounds in total) were retrieved and inspected.
The Phase screen score in this selection varied from 0.11
(lowest) to 1.38 (highest), with only 109 compounds having
a score higher than 1.00. The most IB-Ph-compliant compound
was AG327841 (2-amino-3-(2,4-dibromo-3-hydroxyphenyl)
propanoic acid).

Secondly, we ltered the target library using ISLI multiple
active conformations-based pharmacophores (IMACB-Ph)
composed of one negative ionic group and two H-bond accep-
tors. This time, the output list of IMACB-Ph-compliant
compounds was less than 0.5% (in sum, 165 compounds) of
the whole dataset, so all hits were retrieved and analyzed. The
Phase screen score in this selection varied from 0.51 (lowest) to
1.44 (highest), with 138 compounds having a score higher than
1.00. AG328959 (2-(2-hydroxyphenyl)-4-methyl-5H-1,3-thiazole-
4-carboxylic acid) was shown to be the most IMACB-Ph-
compliant compound.

Since both pharmacophore models overlayed in part (via
a negative ionic feature), we hypothesized that hits from GEIB-
Ph and IMACB-Ph runs would also overlay to some extent.
Therefore, aer merging both lists and removing duplicates,
35% of all compounds were discarded, and the nal list of
unique hits compliant with at least one of the used pharma-
cophore models contained 309 compounds, which were
promoted to the docking-based screening stage.
Consensus docking analysis

The rapid evolution of weed resistance against the herbicide
glyphosate has been considered from several perspectives, and
the search for new herbicides has become urgent. Herein, we
conceived a consensus docking that integrates the predictions
of independent scoring functions to rank potential leads. The
309 pharmacophore-compliant hits were rst docked against
the wild-type and mutant variants of EiEPSPS using Glide SP
18836 | RSC Adv., 2022, 12, 18834–18847
(standard precision) protocol. Unfortunately, less than 10% of
the compounds were successfully docked either to wild-type or
mutant EPSPS. Then, the successfully docked compounds were
docked and scored again using GOLD to increase the robust-
ness of the results. Table 2 shows the two scoring functions of
the consensus docking of the best hit compounds and
considers the binding energies and the intermolecular inter-
actions into the binding sites (root mean square deviation
(RMSD) < 2 �A).

The best consensus docking results were observed for the
ligands AG332841 and AG351308 EiEPSPSmut which showed
similar patterns of the hydrogen-bond interactions mainly with
the residues of Arg131, Thr102, Asp50, Gly101, Arg404, Arg105,
and Lys23. Among these residues, we can highlight Lys23,
Asp50, Gly101, Thr102, Arg105, Arg131, and Arg404, which are
responsible for essential interactions with PEP and glyphosate
in the PEP-binding site.40,41 Additionally, for EiEPSPSwt,
AG322323 and AG325666 appear with a consensus value higher
than 1 and presented a similar pattern of interactions at the
active site. Based on these results, the ligands AG332841 and
AG351308 were selected for subsequent analyses against
EiEPSPSmut while AG332841, AG351308, AG322323 and
AG325666 were selected for subsequent analyses against
EiEPSPSwt.
Binding affinities and dynamic analyses of natural products
complexed with EiEPSPS

Some reports revealed that docking methods have several
limitations in sampling ligand conformational space and
correlating docking scores with experimental binding affini-
ties.42,43 End-point binding free energy calculations using MM/
GBSA (Molecular Mechanics energies combined with the
Generalized Born and Surface Area) methods have improved
accuracy in protein–ligand binding free energy calculations.44

Thus, we have employed MM/GBSA calculations to evaluate the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Results of consensus docking exhibiting the seven best hit compounds obtained against the EiEPSPS structures

Ligand ID
Glide energies
(kcal mol�1)

GOLD energies
(kcal mol�1)

X (esc)
Consensus
dockingGlide energies GOLD energies

EiEPSPSwt
AG332841 �6.28 74.3319 1 1 2
AG322323 �5.56 58.3528 0.78904 0.67624 1.46528
AG325666 �6.33 25.5606 1.00000 0.01181 1.01181
AG351308 �2.68 72.1308 0 0.95540 0.95540
AG334346 �4.98 24.9777 0.63014 0.00000 0.63014
AG327871 �3.41 34.7255 0.20000 0.19751 0.39751
AG327875 �3.96 26.0414 0.35068 0.02155 0.37224

EiEPSPSmut

AG332841 �6.43 74.6396 1 1 2
AG351308 �3.24 72.5991 0.22573 0.96373 1.18946
AG327871 �3.98 33.4005 0.40534 0.26693 0.67227
AG351307 �2.73 38.6039 0.10194 0.35943 0.46137
AG327875 �3.32 26.5210 0.24515 0.14464 0.38979
AG334346 �2.31 39.8455 0.00000 0.38150 0.38150
AG324178 �3.04 18.3840 0.17718 0.00000 0.17718

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Ju

ne
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

0/
29

/2
02

5 
10

:4
5:

02
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
binding energies of the compounds that presented scores
higher than 0.9. Binding to EiEPSPSwt and EiEPSPSmut both
ligands AG332841 and AG351308 presented great affinity ener-
gies (Table 3). On the other hand, for EiEPSPSwt, ligands
AG322323 and AG325666 showed binding energies of �37.92
(�3.99) and �30.68 (�5.10), respectively.

As can be seen in Table 3, our simulation of the EPSPS
structures complexed with the glyphosate inhibitor presented
the lowest binding energy. However, despite the importance of
hydrophobic interactions for the lead optimization, we also
noted that vdW analysis satisfactorily represented the
EiEPSPSmut–ligand affinity. The energy values obtained from
MM/GBSA method showed the importance of considering the
solvation energy in the herbicide design against EiEPSPS
structure. Energy values of �70.58 and �63.08 kcal mol�1 for
wild-type and mutant structures, respectively, showed to be
determinants for AG332841 affinity against EiEPSPSwt binding
pocket. We also noticed the high electrostatic contribution
related to glyphosate binding. Other studies have considered
that glyphosate forms at least seven electrostatic interac-
tions.40,41 These ndings ratify the importance of the
Table 3 Binding free energy values (kcal mol�1) were obtained for the c

MM/GBSA: binding free energy

Energy (kcal
mol�1)

EiEPSPSwt

Glyphosate AG351308 AG332841

vdW �3.78 (�4.45) �33.23 (�3.90) �22.68 (�
EEL �178.63 (�37.15) 9.87 (�16.31) 3.95 (�8.
DGgas �182.41 (�36.82) �23.36 (�16.77) �18.73 (�
EGB 74.38 (�28.75) �34.43 (�12.39) �47.71 (�
ESURF �3.31 (�0.14) �5.36 (�0.14) �4.13 (�
DGsolv 71.06 (�28.71) �39.79 (�12.33) �51.84 (�
DGtotal �111.34 (�15.98) �63.16 (�8.32) �70.58 (�

© 2022 The Author(s). Published by the Royal Society of Chemistry
electrostatic interactions in the lead optimization for EiEPSPS
structure.

We compared the binding affinities of the ligand AG332841
with glyphosate performing the per-residue energy decompo-
sition analysis in the EiEPSPSwt and EiEPSPSmut structures
(Fig. 1). The residues Lys23, Arg28, Gln101, Thr/Ile102, Arg105,
Gln180, Lys358, Glu359, Arg362, His403, Arg404, and Lys429
formed favorable interactions and contributed to the overall
affinity of the AG332841 complex. Similarly, glyphosate inter-
acts with the residues of the EiEPSPS binding pocket, such as
Lys23, Arg28, Gly101, Thr/Ile102, Arg105, Arg 131, Gln180,
Lys358, His403, Arg404, and Lys429. Themain favorable residue
difference between systems with glyphosate and AG332841 is
Arg131 which has a favorable energy value closer to
�30 kcal mol�1 in the EiEPSPSwt and closer to�20 kcal mol�1 in
the EiEPSPSmut system while for AG332841 it is �0.4 kcal mol�1

in EiEPSPSmut and �0.13 kcal mol�1. The main residues that
contributed to the value of binding free energy obtained from
the AG351308–EiEPSPSwt and AG351308–EiEPSPSmut complexes
did not present values better than the systems complexed to
glyphosate and AG332841 (Fig. S8†).
omplexes formed with the wild-type and mutant EiEPSPS structures

EiEPSPSmut

Glyphosate AG351308 AG332841

3.68) �3.39 (�4.30) �35.07 (�2.48) �27.89 (�3.29)
84) �88.16 (�42.53) 67.04 (�10.67) �7.56 (�12.20)
8.33) �91.56 (�41.15) 31.97 (�10.22) �35.45 (�11.45)
7.26) 16.41 (�31.37) �67.96 (�9.53) �23.54 (�8.72)

0.06) �3.48 (�0.17) �4.62 (�0.17) �4.08 (�0.09)
7.26) 12.93 (�31.26) �72.59 (�9.52) �27.63 (�8.71)
4.01) �78.62 (�15.51) �40.62 (�3.42) �63.08 (�6.03)

RSC Adv., 2022, 12, 18834–18847 | 18837
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Fig. 1 Per-residue energy decomposition analysis of main residues with energy decomposition value# or$0.5 kcal mol�1 of (A) glyphosate and
(B) AG332841 complexed with EiEPSPSwt and EiEPSPSmut structures.
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To evaluate the dynamics of the interactions between
EiEPSPS and the best-ranked ligands, we rst plotted the RMSD
values of the EiEPSPS–ligand complexes obtained during 150 ns
Fig. 2 RMSD plots of the heavy atoms in the EiEPSPSwt– and EiEPSPSmu

over 150 ns of MD simulation. (A) Complex of EiEPSPSwt and AG332841; (B
AG351308; (D) complex of EiEPSPSmut and AG351308.

18838 | RSC Adv., 2022, 12, 18834–18847
of molecular dynamics (MD) simulations (Fig. 2). The selected
ligands AG332841 and AG351308 were shown to be stable in
both wild-type (EiEPSPSwt) and mutant (EiEPSPSmut) complexes.
t–ligand complexes (orange) and the ligands (maroon) were analyzed
) complex of EiEPSPSmut and AG332841; (C) complex of EiEPSPSwt and

© 2022 The Author(s). Published by the Royal Society of Chemistry
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The ligand AG332841 complexed with EiEPSPSwt and
EiEPSPSmut showed higher stability in the binding pocket, evi-
denced by RMSD values obtained during the MD simulation
(Fig. 2, panels (A) and (B)). In contrast, the ligand AG351308
showed higher uctuations. The movement of the ligand in the
active site of EiEPSPSwt during the simulation caused the loss of
some H-bond interactions with the residues of the binding
pocket, such as Arg105. RMSD analysis for this ligand shows
local uctuations, which demonstrates the instability of the
ligand structure in the active site (Fig. S3 and S4†).

Root-Mean-Square Fluctuations (RMSF) plot was performed
in the last 50 ns of the system to identify the uctuation of the
protein amino acids. In our simulations, EiEPSPS has mostly
low uctuations (between 1 to 2 �A) with only 3 loop regions
reaching values greater than 3 �A (Fig. 3, panels (A)–(C)). It is
important to note that region III refers to the C-terminal region
and it has high movement during the simulation. However, we
observed that in both regions I and II the system complexed
with AG332841 showed much lower uctuation than the system
Fig. 3 (A) Regions of EiEPSPS with fluctuation values$3.0�A. RMSF plot, i
ligand complexes analyzed over the last 50 ns of MD simulation. Panels (
EiEPSPSwt– and EiEPSPSmut–ligand complexes, respectively.

© 2022 The Author(s). Published by the Royal Society of Chemistry
complexed with AG351308 and glyphosate in either wild-type or
mutant protein. Considering only the binding pocket region, we
noticed lower uctuations in both EiEPSPSwt and EiEPSPSmut

residues when complexed with AG332841 in comparison with
AG351308 and glyphosate (Fig. 3, panels (D) and (E)).

We noticed that the ligand AG332841 formed similar H-bond
interactions to those veried by glyphosate in the EiEPSPSwt
binding site as described in the literature.41 Besides that,
additional H-bonds were formed with the residue His403 in the
binding site (Fig. 4, panels (A) and (B)).

Similarly, those interactions were also observed in the
AG332841–EiEPSPSmut complex. The ligand AG332841 formed
interactions with residues Arg362 and Arg404 similar to those
veried for glyphosate in the EiEPSPSmut binding site (Fig. S7†)
and additional hydrogen interaction formed with His403 (Fig. 4,
panel (B)). Besides that, we veried that the interactions
between Ile102 and bromine atoms of the ligand suggest better
stability due to the formation of van der Waals interactions.
n�A, of the backbones atoms in the (B) EiEPSPSwt– and (C) EiEPSPSmut–
D) and (E) show the fluctuations of the main binding pocket residues in

RSC Adv., 2022, 12, 18834–18847 | 18839
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Fig. 4 The 2D diagram of the (A) EiEPSPSwt and (B) EiEPSPSmut complexed with AG332841 shows the average distances of the main inter-
molecular interactions with occupancy value $50% obtained over the MD simulation.
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The electrostatic potential map is a widely used coloring
scheme of protein surfaces that indicates the overall charge
distribution.45–48 Meanwhile, electrostatic maps are predictive of
the chemical reactivity of ligands and their types of
Fig. 5 The electrostatic potential maps of EiEPSPSwt and EiEPSPSmut en

18840 | RSC Adv., 2022, 12, 18834–18847
intermolecular interactions. We analyzed the electrostatic
potential map of EiEPSPSwt and EiEPSPSmut to investigate
potential affinity sites of the bromine interface of AG332841.
The electrostatic map of AG332841 showed a neutral charge
zymes and AG332841 and AG351308 ligands.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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distribution. Red regions indicate negative potential, and blue
ones show positive potential (see Fig. 5).

Ile102 has a sizeable hydrophobic interface at the active site
of the wild-type enzyme when compared with the Thr102
present in the mutant structure. Based on these results, we
conjecture that hydrophobic interactions play a vital role in the
formation of EiEPSPS–ligand complexes, and these interactions
should be further considered for ligand optimization.
Estimation of AG332841 scaffold novelty

The compound named AG332841 (2,3-dibromo-4,5-
dihydroxyphenyl)acetic acid has shown to be the most prom-
ising hit against EiEPSPS and its structure novelty was esti-
mated based on the 2D similarity to the known compounds
deposited in the ChEMBL database that inhibit plant or bacte-
rial EPSPS structures. AG332841 scaffold belongs to the chem-
ical family of hydroxylated phenylacetates, while the majority of
known EPSPS inhibitors are phosphonomethylglycines (like
glyphosate) and phosphonooxycyclohexenes. The median Tc
value between AG332841 and the list of known inhibitors of
EPSPS was 0.11, suggesting a lack of structural similarity. Even
the highest Tc value (0.44), which was obtained for compound
CHEMBL98618, showed a low similarity. Moreover, the most
similar compound, CHEMBL98618, inhibits E. coli EPSPS, but
there is no evidence of its action against plant EPSPS. Thus, we
Fig. 6 Computational workflow applied in the virtual screening strategy

© 2022 The Author(s). Published by the Royal Society of Chemistry
conjecture that AG332841 has a new chemical scaffold not seen
earlier for other potential inhibitors of plant EPSPS structures.

This compound was taken to Anagreen herbicide-like dataset
from the COlleCtion of Open Natural Products (COCONUT),
where it has ID CNP0289943. Originally, AG332841 was isolated
from a marine red algae Rhodomela confervoides in 2011.49

Final considerations

In the present study, we applied cheminformatics and molec-
ular modeling methods involving a combination of structure-
and ligand-based virtual screening approaches to identify
natural product-derived compounds with the potential to
inhibit the wild-type (sensitive to glyphosate) and mutant
structures (resistant to glyphosate) of EiEPSPS. Our approach
intended to increase the success of nding novel herbicides
using the preltered dataset of compounds with the physico-
chemical properties common to commercial herbicides. More-
over, molecular docking and MD simulations of both wild-type
and mutant T102I/P106S EiEPSPS structures were carried out
for the best compounds to verify the stability of the predicted
binding poses, which, according to Lagarias et al.,50 correlates
with the bioactivity. The nal hit compound, namely AG332841,
showed to be stable over the MD simulation and it also
demonstrated a satisfactory binding affinity to EiEPSPS struc-
tures. In addition, it has no structural similarity to the already
known EPSPS inhibitors, which could allow further exploration
.

RSC Adv., 2022, 12, 18834–18847 | 18841
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of this compound as a potential herbicide against plant EPSPS
structures. As for now, it is speculative to say that this
compound is a better EPSPS inhibitor than glyphosate.
However, its novel chemical scaffold and dissimilar pattern of
interactions together with a comparable predicted affinity
towards a mutant EiEPSPS make AG332841 a promising
candidate for further exploration.
Computational methods

A general overview of the computational workow applied in the
present study to lter the herbicide-like natural compounds
with high affinity to EiEPSPS is shown in Fig. 6.
Anagreen herbicide-like dataset construction and preparation

First, we collected the available structural data from several
different open natural compound databases, including TCM
Database@Taiwan,51 Central African medicinal plants natural
product database (ConMedNP),25 Cameroonian medicinal
natural products database (CamMedNP),52 NuBBEDB,53,54

Seaweed Metabolites Database (SWMD),55 Dictionary of Marine
Natural Products (CMNPD),56 Indonesian Herbal Constituents
Database (IHD),57 Vietnamese Herbal Medicine Database (VIE-
THERB),58 Indone Natural Products (INDOFINE Chemical
Company, Inc.) and InterBioScreen Natural Products library
(IBSDB, InterBioScreen Ltd). Then, we manually collected the
names of metabolites from a few other databases lacking
structural data, including well-known Dr Duke's ethnobotanical
and phytochemical database59 and some other libraries. JChem
and ChemOffice were used to translate names into 2D struc-
tures. Those compounds that failed to be translated were
Fig. 7 Construction of the Anagreen herbicide-like natural compound l

18842 | RSC Adv., 2022, 12, 18834–18847
translated manually via search in PubChem, ChEMBL, and
ChemSpider. Then, all compounds were consolidated and sor-
ted, duplicates were removed, and standardized names
(AG******, where * is a digit from 0 to 9) were assigned to all
compounds using Canvas. In sum, 395 742 compounds with 2D
structures have been accumulated (this dataset was named
“Anagreen Core 1.0”). Then, we applied a set of chem-
informatics criteria suggested by Avram et al.28 to create a target
dataset called Anagreen Herbicide-Like (AHL; 62 706
compounds): molecular weight: 150–500, clog P # 3.5,
hydrogen bond donors:#3, hydrogen bond acceptor: 2–12, and
rotatable bonds: <12 (Fig. 7).

Validation of compound datasets and libraries

The datasets consisting of experimentally validated antagonists
obtained from the ChEMBL database39 and putative decoys of the
plant PPO were created with DUD-E decoy generating tool37 and
RADER web-server.38 Both datasets were used to assess the
compound screening using different tools. To avoid bias towards
particular scaffolds, all compounds were clustered based upon Tc
values using Canvas, and only the most diverse of them were
saved. In all cases, z1 : 50 ratio between inhibitors and decoys
was explicitly set, according to the following two datasets: (1) 25
EPSPS antagonists and 1254 decoys (DUD-E dataset); (2) 25 EPSPS
antagonists and 761 decoys (RADER dataset).

Enrichment calculations

All ranked lists were preprocessed in Microso® Excel® for
Office 365 MSO (Microso Inc., Albuquerque, NM, USA) and
analyzed by the Screening Explorer tool60 available online. The
following metrics have been calculated both for all tautomers
ibrary.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(full list) and the best tautomers (original list without dupli-
cates): enrichment factor (EF), receiver operating characteristic
(ROC), and Boltzmann-enhanced discrimination of ROC (BED-
ROC). The ROC curves and their AUC are known to provide
a common scale to compare the performances of virtual
screening methods. However, they suffer from some intrinsic
limitations, such as an early recognition problem, that can be
overcome with other metrics, such as BEDROC.61

The BEDROC scores using the three a values were calculated
for both protein targets based on the test screening results
obtained from two docking programs, Glide and GOLD. BED-
ROC (a ¼ 321.9) corresponds to docking enrichments at 0.5%,
BEDROC (a ¼ 161.9) – to EF at 1%, and BEDROC (a ¼ 80.4) – to
EF at 2%, requiring that 80% of the score comes from the
respective selections.62

The ROC curves were built, and the area under these curves
was calculated with Rocker.63 In the best-case scenario, an ideal
model ROC curve has a steep slope and a high area under the
curve (AUC). It means that the model nds all the active mole-
cules and no inactive hits, sensitivity, and specicity are 1, and
the EF is high.

Structure-based pharmacophore modeling

Ligand-based pharmacophore modeling. To predict the
pharmacophore, we used as a starting point the structure of
glyphosate complexed with EiEPSPS. Then, we selected three
receptor–ligand pharmacophore hypotheses, and the top-
ranked model was selected according to the most relevant
interactions formed by glyphosate with the EPSPS binding site.

Interaction-based pharmacophore modeling. To generate
a pharmacophore hypothesis, we based upon the EPSPS structure
complexed with shikimate and glyphosate (PDB ID: 2AAY).64 The
models were generated using the ‘Develop Pharmacophore
Model’ module of Phase soware incorporated in the Schro-
dinger Small Molecule Suite 2020-4.65 The following parameters
were used for hypotheses generation: scoring function – Phase
Hypo Score, number of features in the hypotheses – from 2 to 7,
donors as projection points, create receptor-based excluded
volume shell, limit excluded volume shell thickness to 5.00 �A,
pharmacophore generation method – Auto/E-pharmacophore.
All other parameters were used with default values. Validation
datasets were screened with the following options: generate
conformers during search – true, target number of conformers –
250, return all hits, scoring function – Phase Screen Score. Then,
the results were sorted according to the Screen Score and
exported for enrichment calculations. The actual
pharmacophore-based screening was carried out using Phase,
and the target number of conformers was set to 500. The hit-list
was sorted based upon the Phase Screen Score, and the top-0.5%
of hits (this sample size was previously shown to have the highest
enrichment values) were isolated for further analysis.

Consensus molecular docking

Two molecular docking tools, CSD GOLD66 and Schrodinger
Glide,67 were used in parallel according to a consensus docking
approach to increase the robustness of a screening protocol.
© 2022 The Author(s). Published by the Royal Society of Chemistry
The CSD GOLD program was used to perform molecular
docking simulations to analyze the binding mode of ve selected
natural products complexed to EiEPSPS that obtained the best
pharmacophore-like similarity with the selected pharmacophore
model. First, to validate the docking protocol, redocking simula-
tions were performed with the glyphosate structure against
EPSPS. Root Mean Square Deviation (RMSD) values less than or
equal to 1.0 �A were considered satisfactory for replicating the
ligand binding mode in the crystallographic structure. Next, for
the docking simulations, the docking grids with a radius of 8 to 15
�A, depending on the selected natural products, were positioned in
the EiEPSPS active site using the spatial coordinates of crystallo-
graphic glyphosate as a reference. Water molecules, ions, and the
glyphosate structure were removed from the EiEPSPS structure
before the docking simulations. Then, we performed the exible
docking protocol of GOLD, which considers the exibility of the
ligand and residues side chains.66 All poses obtained were ranked
according to the best superposition with the crystallographic
structure of glyphosate and lower docking energy.

Glide incorporated in Schrodinger Small Molecule Suite
2020-4 was used as a second docking tool. Before grid genera-
tion, all protein structures were prepared using the Protein
Preparationmodule68 regarding the correct bond order, with the
addition of missing hydrogens and removal of crystallographic
waters. Then, a restrained energy minimization under the
OPLS-3e force eld was applied. The active site of the prepared
protein was dened using default parameters of receptor-grid
generation (using a scaling factor of 0.8 for the van der Waals
radii of protein atoms) present in the Glide module. The ligands
were prepared with the LigPrep module,69 and all possible
tautomers were generated at pH 7.0 � 2.0 using Epik, the
specied chiralities were retained. The in-depth conformational
search for each ligand was carried out with the ConfGenmodule
using the default options. Different docking calculations were
performed for each grid by using a ligand van der Waals scaling
factor of 0.8 or 1.0, and sampling was performed by either
standard (SP) or extra (XP) precision algorithms using the
default GlideScore scoring function.
Molecular dynamics simulations

The modeled structures of wild-type and mutant EPSPS struc-
tures were obtained from our previous study.41 To analyze the
variant structures of EPSPS (mutant and wild-type) complexed
with the substrate shikimate-3-phosphate (S3P), the inhibitor
(glyphosate), and the two best ligand poses selected from the
pharmacophore-based virtual screening, we performed 150 ns of
MD simulations in the Amber18 package.70 The coordinates of
glyphosate and shikimate-3-phosphate were obtained from the
crystallographic structure (PDB ID: 3NVS). First, the protonation
state of the ionizable residues was analyzed by pKa calculations
using the PDB2PQR server.71 Second, the ligand charges were
calculated using the restrained electrostatic potentials (RESP)
approach with the Hartree–Fockmethod and the 6-31G* basis set
in the Gaussian09 program.72 Third, the tLeap module of
Amber18 was used to build the receptor–ligand complex param-
eters where the ff14SB force eld73 describes the protein atoms,
RSC Adv., 2022, 12, 18834–18847 | 18843
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and the general amber force eld74 treats the ligand atoms.
Finally, these complexes were solvated in a cubic water box using
the TIP3P explicit solvation model75 with a radius of 12.0 �A
between the box and the protein surface. Counterions were added
to neutralize the protein–ligand systems. Before performing the
MD simulation, each protein system was minimized to reduce
the overall energy using the steepest-descent and conjugate
gradient algorithms.76 The minimization was performed in four
steps: the rst step corresponds to the minimization of the
solvation waters and counterions of the system, the second
minimization included hydrogen atoms of the protein, in the
third step, all hydrogens and water molecules were minimized,
and nally, the whole system.

Aer minimization, the heating of the systems was started at
0 K and gradually increased to 300 K over 100 ps with constant
volume constraints. We carried out 200 ps of density equilibra-
tion with weak restraints on the EPSPS–ligand complexes fol-
lowed by 700 ps of constant pressure equilibration at 300 K. A
Langevin thermostat was used tomaintain the temperature of the
system at 300 K. The SHAKE algorithm77 was used tomaintain all
of the H-bonds at their equilibrium distances, which allowed the
use of an integration time step of 2 fs. Then, we performed 150 ns
of MD simulation for each analyzed system.

Binding free energy calculations

The trajectories of each MD simulation were obtained to
calculate the binding free energy of EiEPSPS complexed with
glyphosate and the two best ligand poses of natural products
according to the selected pharmacophore modeling. Then, the
energy calculations were performed using molecular mechanics
generalized Born surface area continuum solvation (MM/
GBSA)78 method available in the Amber18 package. Using the
CPPTRAJ program implemented in Amber18, the non-
complexed ions and waters were removed before performing
the binding free energy calculations. For both mutant and wild-
type complexes, 5000 trajectory snapshots were used to
compute the binding free energy values.

Estimation of selected scaffolds novelty

The novelty of selected hits was estimated using the
Schr€odinger Canvas soware.36 We calculated the maximum
pairwise Tanimoto similarity of each hit regarding the 29 in vitro
validated plant EiEPSPS inhibitors in the ChEMBL28 database
using the extended chemical ngerprints for four atoms
(ECFP4). Those compounds with the lowest Tc values were
treated as carriers of novel chemical scaffolds for the develop-
ment of EPSPS-targeting herbicides.
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