RSC Advances

PAPER

View Article Online
View Journal | View Issue

Cite this: RSC Adv., 2022, 12, 16530

Received 25th April 2022 Accepted 25th May 2022

DOI: 10.1039/d2ra02638d

rsc.li/rsc-advances

Organobase-catalyzed 1,1-diborylation of terminal alkynes under metal-free conditions†

Junchen Li,^a Min An,^b Zhenhua Gao,^a Yongbiao Guo, ^b Haibo Liu,^a Peichao Zhao,^a Xiaojing Bi,^{*a} Enxue Shi ^b ^{*a} and Junhua Xiao ^b ^{*a}

An organobase-catalyzed 1,1-diborylation of terminal alkynes from propargylic derivatives with bis(2,4-dimethylpentane-2,4-glycolato)diboron (B_2 oct₂) is first reported, regionselectively providing 1,1-diborylalkene products with high efficiency. The catalytic pathway is well postulated on the basis of DFT calculations.

Organoboron compounds have attracted much attention as versatile building blocks in the synthesis of carbon-carbon and carbon heteroatom bonds,1 which main features are their stability and ease of handling. Among this important class of reagents, 1,1-diborylalkenes are of particular interest, in part due to that the two geminal boron moieties can be differentiated and transformed via Pd-catalyzed cross-coupling reactions in a progressive manner to provide the bioactive and functional polysubstituted alkene motifs.^{2,3} Sequent manipulations of 1,1diborylalkenes with different electrophiles allow for the stersynthesis of challenging unsymmetrically substituted alkenes.4 What's noteworthy, is that the presence of the geminal boron moiety always has a positive effect on the first cross-coupling reaction. Owing to the significance of 1,1diborylalkenes as general reaction intermediates in organic synthesis, developing efficient and practical methods for their synthesis is highly desirable.

In comparison with previous multi-step routes, 1,1-diborylation of terminal alkynes with diboron reagents represents one of the most step-economical and atom-economical strategies for synthesis of 1,1-diborylalkenes.⁵ In recent years, several elegant works were continuously discovered.⁶⁻⁹ Sawamura reported a seminal 1,1-diborylation of terminal propargylic derivatives with bis(pinacolato)diboron (B₂pin₂) catalyzed by a strong inorganic base (LiO⁶Bu) for the preparation of 1,1-diborylalkenes (Scheme 1, eqn (1)).⁶ A mild 1,1-diborylation of terminal alkynes with B₂pin₂ catalyzed by a cobalt complex was explored by Chirik and co-workers (Scheme 1, eqn (2)).⁷ What's more, stereoselective 1,1-diborylation products with two different boron substituents could be realized using an

Scheme 1 Previous work on 1.1-diborylation and our work.

unsymmetrical diboron reagent pinB-Bdan naphthalene-1,8-diaminato). After that, Ingleson successfully developed a low-coordinate NHC-zinc hydride complexcatalyzed 1,1-diborylation of terminal alkynes using pinacolborane (HBpin) via C-H borylation and hydroboration process (Scheme 1, eqn (3)).8 In 2020, Engle and co-workers explored a copper-catalyzed protocol for the stereodefined 1,1diborylation of terminal alkynes, involving a sequential dehydrogenative borylation of the alkyne substrate with 1,8-diaminonaphthalatoborane (HBdan), followed by hydroboration with HBpin (Scheme 1, eqn (4)).9 Although having achieved such progress, relatively harsh reaction conditions, expensive ligand or preformed catalyst were always involved. Therefore, development of user-friendly and environmental benign protocols for preparation of 1,1-diborylalkenes is still highly desirable to meet the requirements of sustainable development in the field of scientific research and industrial production. In this context, we report on an environmental benign and metal-free protocol for 1,1-diborylation of terminal alkynes with bis(2,4dimethylpentane-2,4-glycolato)diboron $(B_2 oct_2)$ under the catalysis organobase 2-tert-Butyl-1,1,3,3tetramethylguanidine (BTMG) at room temperature.

[&]quot;State Key Laboratory of NBC Protection for Civilian, Beijing, P. R. China. E-mail: xiao. junhua@pku.edu.cn; exshi@sina.com; xiaojingbimail@yeah.net

^bCollege of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, P. R. China

[†] Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d2ra02638d

Inspired by Sawamura's strong inorganic base catalyzed 1,1diborylation strategy⁶ and the rapid development of organocatalysis in recent years, 10 we focused on the role of organic base as catalyst in this type of reaction. At the outset, a commercially strong organic base 1,1,3,3-tetramethylguanidine (TMG) was selected as the catalyst to verify its catalytic reactivity in the reaction between methyl propiolate 1a and B₂oct₂ 2a. The effect of solvent was initially evaluated and the results indicated that hexane, dichloromethane, 1,2-dichloroethane and toluene all failed to afford the desired gem-diborylated product (Table 1, entries 1-4). To our delight, when CCl₄ was used as the solvent, 17% yield of product 3aa was obtained (entry 5). Whereas, further solvent screening experiments with THF, Et2O, and EtOAc gave only inferior results (entries 6-8). A slightly higher yield of 35% was obtained utilizing DMF as the solvent (entry 9). Gratifyingly, the yield of 3aa was dramatically increased to 79%

Table 1 Condition optimization^a

Entry	Solvent	Catalyst (mol%)	Yield ^b (%)
1	Hexane	TMG	0
2	DCM	TMG	0
3	DCE	TMG	0
4	Toluene	TMG	0
5	CCl_4	TMG	17
6	THF	TMG	7
7	Et_2O	TMG	5
8	EtOAc	TMG	4
9	DMF	TMG	35
10	MeCN	TMG	79
11	MeCN	$\mathrm{Et_{3}N}$	95
12	MeCN	BTMG	98 (95) ^c
13	MeCN	TMEDA	77
14	MeCN	TBD	0
15	MeCN	DBU	0
16	MeCN	Pyridine	0
17	MeCN	Quinine	0
18	MeCN	DMAP	12
19	MeCN	2,6-Lutidine	19
20	MeCN	${ m Li_2CO_3}$	0
21	MeCN	Na_2CO_3	0
22	MeCN	K_2CO_3	0
23	MeCN	Cs_2CO_3	95
24	MeCN	NaOH	95
25	MeCN	$\mathrm{LiO}^t\mathrm{Bu}$	0
26	MeCN	_	0
27^{d}	MeCN	BTMG	96 (94) ^c
28^d	MeCN	Et ₃ N	65
29^d	MeCN	Cs_2CO_3	21
30^d	MeCN	NaOH	86

 $[^]a$ Reaction conditions: methyl propiolate **1a** (0.1 mmol), B₂oct₂ **2a** (0.1 mmol), catalyst (10 mol%), solvent (2 mL), rt., 24 h. b Yields determined by GC-MS. c Isolated yields in parenthesis. d 5 mol% of catalyst was employed.

when MeCN was employed as the solvent (entry 10). Then, organobase catalyst screening was performed (entries 11-19), among which organobase like Et3N, BTMG and TMEDA all proved being effective catalysts, producing 3aa in yields of 95%, 98% and 77%, respectively (entries 11-13). However, other organobases like TBD, DBU, pyridine and quinine all showed nearly no catalytic activity (entries 14-17). DMAP and 2,6-lutidine were not the proper catalyst because the yields were less than 20% (entries 18-19). Several kinds of inorganic base were also tested to catalyze our reaction, carbonates (K₂CO₃, Na₂CO₃, and Li₂CO₃) all led to the failure of the reaction (entries 20–22), nevertheless, Cs₂CO₃ and NaOH showed excellent performance with formation of product 3aa in 95% yield (entries 23-24). The strong inorganic base (LiOtBu), which was employed in Sawamura's work,6 exhibited no catalytic activity (entry 25) and the high catalytic activity of Et₃N and Cs₂CO₃ indicated that the alkalinity of the base may be not the critical factor for this reaction (entries 11 and 23). When the transformation was conducted in the absence of catalyst, no product was observed (entry 26). It is noteworthy that further lowering the loading of BTMG to 5 mol%, a still high yield of 96% was obtained (entry 27). However, when the loading of other bases (Et₃N, Cs₂CO₃ and NaOH) was also lowered to 5 mol%, an obvious reduction of yields was observed (entries 28-30). Therefore, the catalytic system consisting of 5 mol% BTMG as the catalyst in MeCN performed well as the optimal conditions.

With optimized conditions in hand, we next sought to investigate the scope of this regioselective 1,1-diborylation with respect to the alkyne component (Table 2). A broad array of propargylic derivatives can effectively serve as coupling partners. Linear alkyl ester group of propargyl acid such as methyl, ethyl, n-propyl, n-butyl and n-pentyl were well-tolerated to furnish 1,1-diborylated products in excellent yield (entries 1–5, 88-94% yield). Steric bulk proximal to the ester functionality is compatible, as exemplified by the presence of isopropyl, isobutyl, tert-butyl and isopentyl substituents (entries 6-9, 86-91 yield%). We found that benzyl and 1-phenylpropyl propiolate also participated readily to give the corresponding products in a yield of 92% and 78%, respectively (entries 10-11). Moreover, 4-chlorophenethyl propiolate was found to be a competent substrate with the chloro-group remaining unreacted in this transformation (entry 12, 93% yield). Phenyl propionate reacted well to form the desired diborylated product 3ma in 78% yield (entry 13). Notably, N-methyl-N-phenylpropiolamide also showed good reactivity towards such diborylation reaction, which provided the desired product 3na in 53% yield (entry 14).

The diborylation of propiolate esters bearing a terminal alkenyl group all proceeded well to give the diborylated products and kept the alkenyl group untouched (entries 15–17, 89–93% yield). It should be mentioned that diyne substrates demonstrate exceptional chemoselectivity and undergoes 1,1-diborylation exclusively at the site of propiolic acid (entries 18–19, 82–88% yield). Unfortunately, attempts to run the diborylation reaction with other types of alkynes resulted in frustrating results (for more details, please see ESI†).

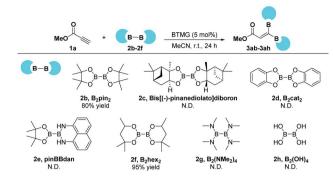

We also examined the *gem*-diborylation reaction of methyl propiolate 1a with other types of diboron reagents (Scheme 2).

Table 2 Substrate scope for 1,1-diborylation^{a,b}

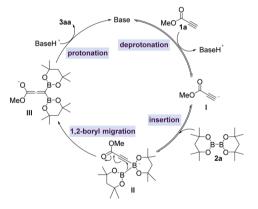
Entry	Alkyne	Product	Yield (%)
1	0 1a	B 3aa	94
2	0 1b	OB 3ba	93
3	0 1c	O B 3ca	93
4	1d	OB 3da	89
5	0 1e	O B 3ea	88
6	1f	O B 3fa	91
7) 1g	B 3ga	87
8) 1h	3ha	86
9) 1i	B 3ia	90
10) 1j	3ja	92
11	0 1k	B 3ka	78
12	CI 0 11	CI SIA 3IA	93
13	0 1m	O B 3ma	73
14	O 1n	N B 3na	53
15	0 10	3oa	89
16	1p	OB 3pa	93
17	0 1q	O B 3qa	93
18	0 1r	O B 3ra	82
19	0 1s	○ B 3sa	88

 $[^]a$ Reaction conditions: alkyne (0.1 mmol), B₂oct₂ (0.1 mmol), BTMG (5 mol%), MeCN (2 mL), rt., 24 h. b Isolated yield.

The 1,1-diborylation reaction proceeded well when B_2pin_2 (2b) was used as the diborylating reagent, affording the title diborylated product 3ab in 80% isolated yield. It should be

Scheme 2 1.1-Diborylation reaction using other diboron reagents. Reaction conditions: methyl propiolate (0.1 mmol), diboron reagent (0.1 mmol), BTMG (5 mol%), MeCN (2 mL), rt., 24 h. N.D. = not detected.

noted that a comparable yield of 95% was achieved when another six-membered partner $B_2 hex_2$ (2f) was employed. However, other diboron compounds, such as Bis[(-)-pinane-diolato]diboron (2c), $B_2 cat_2$ (2d), pinBBdan (2e), $B_2 (NMe_2)_4$ (2g), and $B_2 (OH)_2$ (2h) proved to be ineffective under this 1,1-diborylation reaction.


To demonstrate the practicability and scalability of our methodology, the gram-scale 1,1-diborylation of methyl propiolate 1a with B₂oct₂ was carried out on 12 mmol to produce 3aa in 90% yield (3.95 g) (Scheme 3).

To better understand the reaction pathway for organobasecatalyzed 1,1-diborylation of terminal alkynes, DFT studies are performed using methyl propiolate 1a and B2oct2 2a as the model substrate and BTMG as the organobase. The calculated energy profile is shown in Fig. 1. The initial step is a concerted three-component proton transfer/borylation process (TS1), the base (BTMG) helps to abstract a proton from the terminal alkyne 1a to give alkynyl anion I and protonated base. At the same time, the negatively charged terminal carbon of the alkyne could attack the boron center of the diboron species, leading to a two-component intermediate II. Then the negatively charged diboron species would undergo a 1,2-boryl migration process (TS2) to generate a 1,1-diborylallene species III. Finally, another proton transfer (TS3) from protonated base generated in the previous step to the negative-charged oxygen atom of the allene species II to give an allene hemiacetal IV, which then tautomerizes to the 1,1-diborylated product 3aa.

Based on the results of previous work⁶ and our DFT studies, a plausible reaction pathway was postulated as in Scheme 4. Methyl propiolate **1a** is firstly deprotonated in the presence of an organobase to give an alkynyl anion **I**, which then

Scheme 3 Scale up synthesis.

Fig. 1 Energy profile calculated for the organobase-catalyzed 1,1-diborylation of methyl propiolate. Relative free energies and electronic energies (in parentheses) are given in kcal mol^{-1} .

Scheme 4 Proposed catalytic mechanism.

nucleophilically attacks the diboron reagent **2a** to form an alkynyl diboron complex **II**. Complex **II** occurs a **1**,2-boryl migration process to produce a *gem*-diborylallene intermediate **III**, followed by a protonation to afford the **1**,1-diborylalkene product **3aa** with releasing the organobase catalyst to complete the catalytic cycle.

Conclusions

In conclusion, an efficient and practical methodology for 1,1-diborylation of terminal alkynes were well developed by the catalysis of a commercially available organobase under mild conditions. Employing $B_2 oct_2$ as the diborylating reagent, a series of propargylic derivatives was confirmed to be of high efficiency towards this regionselective 1,1-diborylation reaction. DFT calculations were introduced to well demonstrate the catalytic mechanism. This work provides an alternative

approach for the preparation of synthetically important 1,1-diborylalkenes.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- 1 (a) Synthesis and Application of Organoboron Compounds, ed.
 E. Fernandez and A. Whiting, Springer, Berlin, 2015; (b) Boronic Acids, ed. D. G. Hall, Wiley-VCH, Weinheim, 2011;
 (c) N. Miyaura and A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds, Chem. Rev., 1995, 95, 2457-2483; (d) A. J. J. Lennox and G. C. Lloyd-Jones, Selection of Boron Reagents for Suzuki-Miyaura Coupling, Chem. Soc. Rev., 2014, 43, 412-443; (e)
 S. J. Geier and S. A. Westcott, Dehydrogenative Borylation: The Dark Horse in Metal-Catalyzed Hydroborations and Diborations?, Rev. Inorg. Chem., 2015, 35, 69-79.
- 2 For transformations of 1,1-diborylalkenes, please see: (*a*) M. Shimizu, C. Nakamaki, K. Shimono, M. Schelper, T. Kurahashi and T. Hiyama, Stereoselective Cross-Coupling Reaction of 1,1-Diboryl-1-alkenes with Electrophiles: A Highly Stereocontrolled Approach to 1,1,2-Triaryl-1-alkenes, *J. Am. Chem. Soc.*, 2005, 127, 12506–12507; (*b*) M. Shimizu, K. Shimono, M. Schelper and T. Hiyama, Stereocontrolled Approach to 1,3,4,6-Tetraarylated 1,3,5-Hexatrienes, *Synlett*, 2007, 2007, 1969–1971; (*c*) X. Feng, H. Jeon and J. Yun, Regio- and Enantioselective Copper(I)-Catalyzed Hydroboration of Borylalkenes: Asymmetric Synthesis of 1,1-Diborylalkanes, *Angew. Chem., Int. Ed.*, 2013, 52, 3989–3992; (*d*) N. Kumar,

N. Eghbarieh, T. Stein, A. I. Shames and A. Masarwa, Photoredox-Mediated Reaction of *gem*-Diborylalkenes: Reactivity Toward Diverse 1,1-Bisborylalkanes, *Chem. - Eur. J.*, 2020, **26**, 5360–5364; (*e*) I. Beletskaya and C. Moberg, Element–Element Additions to Unsaturated Carbon–Carbon Bonds Catalyzed by Transition Metal Complexes, *Chem. Rev.*, 2006, **106**, 2320–2354.

RSC Advances

- 3 For applications of polysubstituted alkenes, please see: (a) V. C. Jordan, Antiestrogens and Selective Estrogen Receptor Modulators as Multifunctional Medicines. 1. Receptor Interactions, J. Med. Chem., 2003, 46, 883-908; (b) S. J. Lee, K. C. Gray, J. S. Paek and M. D. Burke, Simple, Efficient, and Modular Syntheses of Polyene Natural Products via Iterative Cross-Coupling, J. Am. Chem. Soc., 2008, 130, 466-468; (c) G. Petruncio, Z. Shellnutt, S. Elahi-Mohassel, S. Alishetty and M. Paige, Skipped Dienes in Natural Product Synthesis, Nat. Prod. Rep., 2021, 38, 2187-2213; (d) R. G. S. Berlinck, C. M. Crnkovic, J. R. Gubiani, D. I. Bernardi, L. P. Iócaa and J. I. Quintana-Bullaa, The Isolation of Water-soluble Natural Products - Challenges, Strategies and Perspectives, Nat. Prod. Rep., 2022, 39, 596-669; (e) C.-L. Li, S.-J. Shieh, S.-C. Lin and R.-S. Liu, Synthesis and Spectroscopic Properties of Finite Ph2N-Containing Oligo(arylenevinylene) Derivatives That Emit Blue to Red Fluorescence, Org. Lett., 2003, 5, 1131-1134.
- 4 H. Wen, L. Zhang, S. Zhu, G. Liu and Z. Huang, Stereoselective Synthesis of Trisubstituted Alkenes *via* Cobalt-Catalyzed Double Dehydrogenative Borylations of 1-Alkenes, *ACS Catal.*, 2017, 7, 6419–6425.
- 5 (a) N. Xu, Y. Hu and C. Liu, Recent Advances on Catalytic Synthesis and Application of 1,1-Diborylalkenes, *J. Mol. Catal.*, 2020, 34, 87–96; (b) X. Wang, Y. Wang, W. Huang, C. Xia and L. Wu, Direct Synthesis of Multi(boronate) Esters from Alkenes and Alkynes *via* Hydroboration and Boration Reactions, *ACS Catal.*, 2021, 11, 1–18; (c) J. Royes, A. B. Cuenca and E. Fernández, Access to 1,1-Diborylalkenes and Concomitant Stereoselective Reactivity, *Eur. J. Org. Chem.*, 2018, 2018, 2728–2739.

- 6 A. Morinaga, K. Nagao, H. Ohmiya and M. Sawamura, Synthesis of 1,1-Diborylalkenes through a Brønsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron, *Angew. Chem., Int. Ed.*, 2015, 54, 15859–15862.
- 7 S. Krautwald, M. J. Bezdek and P. J. Chirik, Cobalt-Catalyzed 1,1-Diboration of Terminal Alkynes: Scope, Mechanism, and Synthetic Applications, *J. Am. Chem. Soc.*, 2017, **139**, 3868–3875.
- 8 R. J. Procter, M. Uzelac, J. Cid, P. J. Rushworth and M. J. Ingleson, Low-Coordinate NHC-Zinc Hydride Complexes Catalyze Alkyne C-H Borylation and Hydroboration Using Pinacolborane, *ACS Catal.*, 2019, 9, 5760–5771.
- 9 Y. Gao, Z.-Q. Wu and K. M. Engle, Synthesis of Stereodefined 1,1-Diborylalkenes *via* Copper-Catalyzed Diboration of Terminal Alkynes, *Org. Lett.*, 2020, **22**, 5235–5239.
- 10 (a) S. Bertelsen and K. A. Jørgensen, Organocatalysis—after the Gold Rush, Chem. Soc. Rev., 2009, 38, 2178-2189; (b) B. List, Introduction: Organocatalysis, Chem. Rev., 2007, 107, 5413-5415; (c) W. Cao, X. Liu and X. Feng, Chiral Organobases: Properties and Applications in Asymmetric Catalysis, Chin. Chem. Lett., 2018, 29, 1201-1208; (d) V. A. Larionov, B. L. Feringa and Y. N. Belokon, Enantioselective "Organocatalysis in Disguise" by the Ligand Sphere of Chiral Metal-templated Complexes, Chem. Soc. Rev., 2021, 50, 9715-9740; (e) B. Han, X.-H. He, Y.-Q. Liu, G. He, C. Peng and J.-L. Li, Asymmetric Organocatalysis: an Enabling Technology for Medicinal Chemistry, Chem. Soc. Rev., 2021, 50, 1522-1586; (f) X. Xiao, C. Guan, J. Xu, W. Fu and L. Yu, Seleniumcatalyzed Selective Reactions of Carbonyl Derivatives: Stateof-the-art and Future Challenges, Green Chem., 2021, 23, 4647-4655; (g) X. Xiao, Z. Shao and L. Yu, A Perspective of the Engineering Applications of Carbon-based Seleniumcontaining Materials, Chin. Chem. Lett., 2021, 32, 2933-2938; (h) H. Cao, R. Qian and L. Yu, Selenium-catalyzed Oxidation of Alkenes: an Insight into the Mechanisms and Developing Trend, Catal. Sci. Technol., 2020, 10, 3113-3121.